Проектирование локальной сети малого предприятия
Описание структурированной кабельной системы, сетевого оборудования и среды передачи данных. Особенности технологии Ethernet. Выбор топологии сети и способа управления ею. Проектирование проводной и беспроводной локальных сетей. Конфигурирование сервера.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | аттестационная работа |
Язык | русский |
Дата добавления | 25.12.2012 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Новосибирский государственный технический университет»
Президентская программа
повышения квалификации инженерных кадров
Программа повышения квалификации
«Проектирование и организация коммуникационных сетей»
ВЫПУСКНАЯ АТТЕСТАЦИОННАЯ РАБОТА
тема «Проектирование локальной сети малого предприятия»
Слушатель: Белоусов М.Ю.
Преподаватель: Мищенко В.К.
Новосибирск 2012
Оглавление
Введение
1. Техническое задание
2. Используемые технологии
2.1 Топология
2.2 Обзор структурированной кабельной системы
2.3 Сетевое оборудование и среды передачи данных
2.4 Технологии локальных сетей
2.4.1 Технология Ethernet
2.4.2 Беспроводные локальные сети
3. Разработка архитектуры информационной сети
3.1 Выбор топологии сети для проекта
3.2 Выбор способа управления сетью
3.3 Выбор передающей среды
4. Проектирование проводной локальной сети (LAN)
5. Проектирование беспроводной локальной сети (WLAN)
5.1 Условия развёртывания сетей Wi-Fi
5.2 Разработка архитектуры с описанием основных параметров проектируемой WLAN
6. Выбор сетевого оборудования
6.1 Конфигурирование сервера
6.2 Выбор активного сетевого оборудования
7. Расчет PDV и PVV
7.1 Расчет PDV
7.2 Расчет PVV
Заключение
Список литературы
Введение
Результатом эволюции компьютерных технологий явились вычислительные сети. В настоящее время использование вычислительных сетей даёт предприятию многочисленные возможности. Конечной целью использования вычислительных сетей на предприятии является повышение эффективности его работы, которое может выражаться различными факторами: увеличении прибыли предприятия, повышение качества работы сотрудников, эффективное взаимодействие различных отделов предприятия как внутри отдельно взятого магазина, так и между торговыми точками.
Долгое время для организации локальной сети использовались проводные линии связи между отдельными узлами. Обладая многочисленными достоинствами, проводные технологии не могут полностью удовлетворить потребности крупной организации. Удаленность рабочих мест более чем на 100 м, сложность прокладки кабеля, многоэтажность здания, железобетонные перекрытия этажей - все эти факторы делают непригодным использование универсальной витой пары. На помощь приходят беспроводные сети (Wireless Local Area Network, WLAN), использующие для передачи информации радиоволны. Wi-Fi (это аббревиатура от Wireless Fidelity)- это один из форматов передачи цифровых данных по радиоканалам, стандарт IEEE 802.11.
Для предприятия выбор технологии ЛВС нужно делать, отталкиваясь от задачи, ведь цель предприятия - улучшение бизнеса. Технология Wi-Fi позволяет минимизировать время и затраты на развертывание сети. Поэтому если учесть ситуации, в которых при организации ЛВС невозможна прокладка кабеля, где стоимость прокладки кабельной сети несоизмеримо высока или необходима полная мобильность, то в этой области у беспроводных сетей нет конкуренции. Однако полностью новая технология еще не может вытеснить утвердившийся стандарт проводных сетей. Таким образом, для реализации ЛВС предприятия можно воспользоваться комбинированным вариантом.
Постановка задачи
Целью работы является разработка проекта информационной сети торговой организации.
Для решения поставленной цели необходимо разработать архитектуру информационной сети.
Актуальность проблемы
Разработка и внедрение вычислительной сети позволяет повысить эффективность работы предприятия: увеличение прибыли, повышение качества работы сотрудников, эффективное взаимодействие различных отделов предприятия как внутри отдельно взятого магазина, так и между торговыми точками. Разработанный проект учитывает особенности работы торговой организации.
Новизна работы
Для решения поставленных целей используются новые технологии, позволяющие улучшить качество реализации проекта при минимальной стоимости.
Практическая ценность
Выбор той или иной технологии реализации проекта основывается на сравнении и анализе средств решения поставленной задачи.
Внедрение результатов проекта.
Проект информационной сети внедрён и успешно эксплуатируется в торговой организации «Энтузиаст-Новосибирск».
1. Техническое задание
В данной работе рассматривается внедрение информационной сети в филиале торговой организации - магазин «Энтузиаст - Новосибирск». Он располагается на двух этажах цехового корпуса, а также занимает цокольный этаж, в котором располагается сервис центр магазина. Численность сотрудников магазина - 30 человек, половина из которых имеют персональный компьютер.
Реализация кабельной системы должна обеспечить интеграцию и работоспособность всех элементов и систем этажа.
ЛВС должна быть выполнена в соответствии с международным стандартом ISO/IEC 11801 на кабельные системы и состоять из горизонтальной и вертикальной подсистемы. Горизонтальная подсистема должна быть организована на основе 4-парного медного кабеля: неэкранированная витая пара категории 5е.
При развёртывании сети придётся столкнуться со сложностями в организации кабельной системы. Торговое помещение «Энтузиаст-Новосибирск» располагается в цеховом помещении. Сервисный центр магазина располагается на цокольном этаже, торговый зал представлен на первом и втором этажах здания. Эти факторы накладывают большие ограничения на использование современных сетевых технологий. Реализовать вертикальную кабельную структуру между этажами при наличии железобетонных перекрытий довольно проблематично. В данной ситуации выход видится в применении беспроводной технологии подключения для организации всей информационной сети предприятия. Однако стены здания также выполнены из железобетона: по этой причине сигнал Wi-Fi практически не доходит до некоторых помещений, в частности до кабинета бухгалтерии, где находятся 3 компьютера, особенно требовательные к скорости Интернета и локальной сети. Подвальные помещения также лишены возможности получать сигнал от беспроводной точки доступа.
2. Используемые технологии
2.1 Топология
Под топологией компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи.
Топология определяет требования к оборудованию, тип используемого кабеля, допустимые и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети. При разработке данного проекта использовалась топология типа «звезда». Звезда (star) - к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует отдельную линию связи. Информация от периферийного компьютера передается только центральному компьютеру, от центрального - одному или нескольким периферийным (рисунок 1).
Рис. 1 - Сетевая топология «звезда».
Достоинства звездообразной топологии:
а) нарушение соединения в каком-либо сегменте не прерывает работы локальной сети;
б) при подключении большого количества компьютеров не происходит снижения производительности;
в) безопасность информации обеспечивается на уровне сервера.
Недостатки звездообразной топологии:
а) выход из строя центрального узла приводит к неработоспособности всей сети;
б) наращивание сети сопряжено с большими финансовыми затратами
2.2 Обзор структурированной кабельной системы
Структурированная кабельная система (СКС)- физическая основа информационной инфраструктуры предприятия, позволяющая свести в единую систему множество информационных сервисов разного назначения: локальные вычислительные и телефонные сети, системы безопасности, видеонаблюдения и т. д.
СКС представляет собой иерархическую кабельную систему здания или группы зданий, разделённую на структурные подсистемы. Она состоит из набора медных и оптических кабелей, кросс-панелей, соединительных шнуров, кабельных разъёмов, модульных гнезд, информационных розеток и вспомогательного оборудования. Все перечисленные элементы интегрируются в единую систему и эксплуатируются согласно определённым правилам.
Кабельная система - это система, элементами которой являются кабели и компоненты, которые связаны с кабелем. К кабельным компонентам относится все пассивное коммутационное оборудование, служащее для соединения или физического окончания (терминирования) кабеля - телекоммуникационные розетки на рабочих местах, кроссовые и коммутационные панели («патч-панели») в телекоммуникационных помещениях, муфты и сплайсы.
Термин «структурированная» означает, с одной стороны, способность системы поддерживать различные телекоммуникационные приложения (передачу речи, данных и видеоизображений), с другой - возможность применения различных компонентов и продукции различных производителей, и с третьей- способность к реализации так называемой мультимедийной среды, в которой используются несколько типов передающих сред - коаксиальный кабель, UTP, STP и оптическое волокно.
Таблица 1 - Хронологическая таблица принятия категорий СКС
Категория СКС |
Диапазон частот |
Приложения, под которые разрабатывались категории |
Год принятия стандарта |
|
Категория 3 |
16 МГц |
Ethernet, 10Base-T |
1991 |
|
Категория 4 |
20 МГц |
Token Ring 16Мбит/с |
1993 |
|
Категория 5 |
100 МГц |
100Base-TX (Fast Ethernet) АТМ 155 |
1995 |
|
Категория 5E |
100 МГц |
100Base-TX (Fast Ethernet) 1000Base-T (Gigabit Ethernet) |
1999 |
|
Категория 6 |
200 МГц |
Gigabit Ethernet 1000Base-TX Gigabit Ethernet 2,5 Гб/с |
2004 |
|
Категория 7 |
600 МГц |
Предложений нет |
2.3 Сетевое оборудование и среды передачи данных
Сетевое оборудование - устройства, необходимые для работы компьютерной сети, такие как маршрутизатор, коммутатор, концентратор, патч-панель и др. Обычно выделяют активное и пассивное сетевое оборудование:
· Активное сетевое оборудование. Под этим названием подразумевается оборудование, за которым следует некоторая «интеллектуальная» особенность. Задача активного оборудования заключается в создании и поддержании логической структуры каналов передачи данных поверх физических носителей.
· Пассивное сетевое оборудование. Под пассивным сетевым оборудованием подразумевается оборудование, не наделенное «интеллектуальными» особенностями. Пассивное оборудование составляет физическую инфраструктуру сетей (коммутационные панели, розетки, стойки, монтажные шкафы, кабели, кабель-каналы, лотки и т.п.) От качества исполнения кабельной системы во многом зависит пропускная способность и качество каналов связи.
Средой передачи информации называется канал связи, установленный между сетевыми компьютерами. Различают кабельные и беспроводные каналы связи. В настоящее время наиболее распространены именно кабельные системы, что связано с относительной дешевизной этого технологического решения (особенно в случае применения традиционных медных кабелей).
Как правило, данные в локальных сетях передаются последовательно (поразрядно). Это решение способствует уменьшению стоимости самого кабеля, поскольку с ростом числа каналов связи неизбежно увеличивается количество проводящих жил в самом кабеле. Использование достаточно длинных кабелей неизбежно ведет к удорожанию сети, причем порой стоимость кабеля сопоставима со стоимостью остальных аппаратных компонентов сети. Существуют также и другие негативные моменты, связанные с параллельной передачей сигналов по кабелю.
Все кабели, применяемые в локальных сетях, можно отнести к одной из трех категорий:
* кабели на основе витых пар (twisted pair), которые, в свою очередь, бывают экранированными (shielded twisted pair, STP), а также неэкранированными (unshielded twisted pair, UTP);
* коаксиальные кабели (coaxial cable);
* оптоволоконные кабели (fiber cable).
Невозможно однозначно сказать, какой кабель лучше, а какой - хуже. Все определяется конкретной решаемой задачей (сетевая архитектура и топология, величина бюджетных средств, наличие требований относительно расширяемости сети в будущем и т.д.). При наличии специфических требований к развертываемой локальной сети может оказаться приемлемым беспроводное решение. В этом случае информация передается по радиоканалу или с помощью инфракрасных лучей.
2.4 Технологии локальных сетей
2.4.1 Технология Ethernet
Ethernet был разработан Исследовательским центром в Пало Альто (PARC) корпорации Xerox в 1970-м году. Ethernet стал основой для спецификации IEEE 802.3, которая появилась 1980-м году. После недолгих споров компании Digital Equipment Corporation, Intel Corporation и Xerox Corporation совместно разработали и приняли спецификацию (Version 2.0), которая была частично совместима с 802.3. На сегодняшний день Ethernet и IEEE 802.3 являются наиболее распространенными протоколами локальных вычислительных сетей (ЛВС). В настоящее Ethernet чаще всего используется для описания всех ЛВС работающих по принципу множественный доступ с обнаружением несущей (carrier sense multiple access/collision detection (CSMA/CD)), которые соответствуют Ethernet, включая IEEE 802.3.
Когда Ethernet был разработан, он должен был заполнить нишу между глобальными сетями, низкоскоростными сетями и специализированными сетями компьютерных центров, которые работали на высокой скорости, но очень ограниченном расстоянии. Ethernet хорошо подходит для приложений, где локальные коммуникации должны выдерживать высокие нагрузки при высоких скоростях в пиках.
Физическое подключение.
IEEE 802.3 определяет несколько различных стандартов физического уровня, в то время Ethernet определяет только один. Каждый из стандартов протокола физического уровня IEEE 802.3 имеет наименование, в котором отражены его важнейшие характеристики. Физические характеристики представлены в таблице 2.
Таблица 2 - Физические характеристики стандартов Ethernet Версии 2 и IEEE 802.3
Характеристики |
Ethernet |
IEEE 802.3 |
|||||
10Base5 |
10Base2 |
1Base5 |
10BaseT |
10Broad36 |
|||
Скорость, Mbps |
10 |
10 |
10 |
1 |
10 |
10 |
|
Метод передачи |
Baseband |
Baseband |
Baseband |
Baseband |
Baseband |
Broadband |
|
Макс. длина сегмента, м |
500 |
500 |
185 |
250 |
100 |
1800 |
|
Среда передачи |
50-Ом коаксиал (толстый) |
50-Ом коаксиал (толстый) |
50-Ом коаксиал (тонкий) |
неэкр. витая пара |
неэкр. витая пара |
75-ohm coax |
|
Топология |
Шина |
Шина |
Шина |
Звезда |
Звезда |
Шина |
Ethernet соответствует стандарту 10Base5 IEEE 802.3. Оба этих протокола определяют шинную топологию сети с соединительным кабелем между конечной станцией и действующей сетевой средой. В случае Ethernet, этот кабель называется трансиверный кабель. Трансиверный кабель соединяется с приемопередающим устройством, подключенным к физической сетевой среде.
Формат кадров стандартов Ethernet и IEEE 802.3 показан на рисунке 2.
Рис. 2 - Формат кадра сетей Ethernet.
Как кадр Ethernet, так и кадр IEEE 802.3 начинаются с чередующейся последовательности нулей и единиц, называемой преамбулой. Преамбула извещает принимающую станцию о начале кадра.
Байт перед адресом назначения в обоих кадрах является разделителем начала кадра - start-of-frame (SOF) delimiter. Этот байт заканчивается двумя единицами и служит для синхронизации приема всеми станциями сети.
Следующими полями в кадрах Ethernet и IEEE 802.3 являются поля адресов назначения (destination) и источника (source), длиной по 6 байтов. Адреса прошиваются в аппаратной части интерфейсных карт. Первые три байта определяют изготовителя интерфейсной карты, в то время как следующие три байта определяются самим изготовителем. Адрес источника всегда является адресом отдельного устройства, а адрес назначения может быть адресом отдельного устройства, групповым адресом, либо широковещательным.
В кадре Ethernet 2-байтовое поле, следующее за адресом источника, является полем типа. Это поле определяет протокол верхнего уровня, принимающий данные для последующей обработки, после того как завершится работа Ethernet.
В кадре IEEE 802.3 2-байтовое поле, следующее за адресом источника, является полем длины, показывающее количество байт данных, которые будут следовать за этим полем и предшествовать полю контрольной последовательности - frame check sequence(FCS).
Следующее за полем типа/длины поле содержит данные, передаваемые в кадре. После того как процессы физического и канального уровней завершатся, эти данные будут переданы протоколу верхнего уровня. В случае Ethernet протокол верхнего уровня определяется значением поля тип. В случае IEEE 802.3 тип протокола верхнего уровня определяется данными, содержащимися в кадре. Длина поля данных заполняется байтами набивки до минимальной длины кадра - 64 байта.
После поля данных следует 4-байтовое поле проверочной последовательности - FCS, содержащее величину проверки избыточности цикла - cyclic redundancy check (CRC). Эту величина вычисляется устройством-источником, а затем заново высчитывается устройством-приемником для проверки целостности информации.
2.4.2 Беспроводные локальные сети
Стандарт RadioEthernet IEEE 802.11 - это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети, т.е. когда несколько абонентов имеют равноправный доступ к общему каналу передач. 802.11 - первый промышленный стандарт для беспроводных локальных сетей (Wireless Local Area Networks), или WLAN. Стандарт был разработан Institute of Electrical and Electronics Engineers (IEEE), 802.11 может быть сравнен со стандартом 802.3 для обычных проводных Ethernet сетей [9].
Стандарт RadioEthernet IEEE 802.11 определяет порядок организации беспроводных сетей на уровне управления доступом к среде (MAC-уровне) и физическом (PHY) уровне. В стандарте определен один вариант MAC (Medium Access Control) уровня и три типа физических каналов.
Подобно проводному Ethernet, IEEE 802.11 определяет протокол использования единой среды передачи, получивший название carrier sense multiple access collision avoidance (CSMA/CA). Вероятность коллизий беспроводных узлов минимизируется путем предварительной посылки короткого сообщения, называемого ready to send (RTS), оно информирует другие узлы о продолжительности предстоящей передачи и адресате. Это позволяет другим узлам задержать передачу на время, равное объявленной длительности сообщения. Приемная станция должна ответить на RTS посылкой clear to send (CTS). Это позволяет передающему узлу узнать, свободна ли среда и готов ли приемный узел к приему. После получения пакета данных приемный узел должен передать подтверждение (ACK) факта безошибочного приема. Если ACK не получено, попытка передачи пакета данных будет повторена.
В стандарте предусмотрено обеспечение безопасности данных, которое включает аутентификацию для проверки того, что узел, входящий в сеть, авторизован в ней, а также шифрование для защиты от подслушивания.
На физическом уровне стандарт предусматривает два типа радиоканалов и один инфракрасного диапазона.
В основу стандарта 802.11 положена сотовая архитектура. Сеть может состоять из одной или нескольких ячеек (сот). Каждая сота управляется базовой станцией, называемой точкой доступа (Access Point, AP). Точка доступа и находящиеся в пределах радиуса ее действия рабочие станции образуют базовую зону обслуживания (Basic Service Set, BSS). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему (Distribution System, DS), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняется непосредственно рабочими станциями.
3. Разработка архитектуры информационной сети
3.1 Выбор топологии сети для проекта
Выбор используемой топологии зависит от задач, условий, возможностей сети. Влияние на итоговой выбор топологии также влияют следующие факторы:
· Проектируемая скорость передачи данных внутри сети;
· Среда передачи данных;
· Максимальная протяженность сети;
· Пропускная способность;
· Стоимость оборудования, поддерживающего выбранную топологию.
В техническом задании сформированы условия на построение сети со скоростью передачи данных между узлами до 100Мбит/с.
На сегодняшний день широко распространена и имеет хорошую поддержку среди сетевого оборудования топология Fast Ethernet. Данный стандарт предусматривает скорость передачи данных до 100 Мбит/сек и поддерживает два вида передающей среды - неэкранированная витая пара и волоконно-оптический кабель. Разновидности используемой среды для передачи данных представлены в таблице 3.
Таблица 3 - Классификация протоколов по типам передающей среды
Название |
Тип передающей среды |
|
100Base-T |
Основное название для стандарта Fast Ethernet (включает все типы передающих сред) |
|
100Base-TX |
Неэкранированная витая пара категории 5 и выше. |
|
100Base-FX |
Многомодовый двухволоконный оптический кабель |
|
100Base-T4 |
Витая пара. 4 пары категории 3, 4 или 5. |
Для выбора необходимого типа сети рассмотрим основные требования каждого стандарта, которые основаны на стандарте IEEE 802.3u.
Технология 100Base-TX характеризуется следующими требованиями:
· Сетевая топология должна быть физической топологией типа «звезда» без ответвлений или зацикливаний;
· Должен использоваться кабель категории 5, либо 5е;
· Класс используемых повторителей определяет количество повторителей, которые можно каскадировать;
· Длина сегмента между узлами ограничена расстоянием в 100 метров;
· Диаметр сети не должен превышать 205 метров.
Технология 100Base-FX характеризуется следующими требованиями:
· Максимальное расстояние между двумя узлами сети может достигать двух километров при полнодуплексной связи;
· Расстояние между концентратором и конечным устройством не должно превышать 208 метров
Технология 100Base-Т4 характеризуется следующими требованиями:
· Длина сегмента между узлами ограничена расстоянием в 100 метров;
· Должен использоваться кабель категории 3, 4 или 5.
Технология 100BASE-FX позволяет располагать рабочие станции на большом удалении от центрального узла, но при этом в качестве передающей среды используется дорогостоящий оптический кабель, что резко увеличивает итоговый бюджет проекта сети. Так как решающим фактором принятия решения о выборе технологии является минимальная стоимость проекта, то в основу конфигурации локальной сети положена технология 100Base-TX.
Стандарт 100BASE-TX определяет сегмент Ethernet на основе неэкранированных витых пар (UTP) категории 5 и выше с топологией звезда. Суммарное количество кабеля, необходимого для объединения такого же количества компьютеров, оказывается гораздо больше, чем в случае шины. С другой стороны, обрыв кабеля не приводит к отказу всей сети, диагностика неисправности сети становится значительно проще. В сегменте 100BASE-TX передача сигналов осуществляется по двум витым парам проводов, каждая из которых передает только в одну сторону (одна пара - передающая, другая - принимающая). Кабелем, содержащим такие двойные витые пары, каждый из абонентов сети присоединяется к сетевому коммутатору.
3.2 Выбор способа управления сетью
Требования к организации сети определяются характером решаемых задач на предприятии. Решение о выборе того или иного способа управления принимается на основании подсчета рабочего парка машин организации и выбора структуры предприятия (рисунок 3)
Размещено на http://www.allbest.ru/
Рис. 3 - Выбор способа управления сетью
Каждый компьютер должен быть подключен к локальной сети. Сотрудник магазина, в зависимости от выполняемых обязанностей, должен иметь доступ только к определённому набору данных - принцип вертикальной структуры предприятия. Такой подход к организации локальной сети возможно организовать только с помощью выделенного сервера.
Сервер позволяет разграничить права и обязанности локальных пользователей, обеспечить безопасный доступ к данным. Еще одна важная функция сервера - это централизованное управления локальной сетью.
3.3 Выбор передающей среды
Залогом успеха при проектировании локальной сети является грамотный выбор передающей среды, так как она определяет качество и надежность работы всей структуры в целом.
Передающая среда в локальных сетях представлена следующими каналами:
· медный кабель;
· волокно - оптический кабель;
· радиоканал;
· оптический канал;
· лазерный канал.
Выбор передающей среды обусловлен требованиями организации к проекту сети:
· Невысокая стоимость сети;
· Широкая инфраструктура сети;
· Способность к масштабированию.
Зачастую сеть доступа не может быть организована только за счет проводных технологий по ряду причин:
· Проблема прокладки кабеля из-за особенностей конструкции зданий, которая приводит к высокой стоимости сети;
· Высокая стоимость работ;
· Удалённость рабочих мест более чем на 100м, что накладывает ограничение на использование технологии 100BASE-TX.
В подобных случаях задача может быть решена за счет использования радиоканала, стандартом которого для локальных сетей стала технология Wi-Fi. Передача данных по радиоканалу во многих случаях надёжнее и дешевле, чем передача по коммутируемым каналам. При отсутствии развитой сетевой инфраструктуры использование радиосредств для передачи данных часто является единственно разумным вариантом организации связи. Сеть передачи с использованием точек доступа может быть развёрнута практически в любом здании.
Факторы, служащие основой для распространения радиосетей.
· Гибкость конфигурации. Все беспроводные сети поддерживают как режим инфраструктуры (подключение через точку доступа) так и режим "равный с равным" (без применения точки доступа). Добавление новых пользователей и установка новых узлов сети в любом месте не вызывают трудностей. Беспроводные сети могут быть установлены для временного использования в помещениях, где нет инсталлированной кабельной сети.
· Простота расширения сети. Беспроводные рабочие станции могут добавляться без ухудшения производительности сети. Перегрузки сети трафиком можно легко избежать добавлением точки доступа для сокращения времени отклика сети.
· Беспроводной доступ в Интернет. Подключение беспроводной точки доступа к коммутатору сети позволяет пользователям, имеющим на своих компьютерах адаптеры для приёма радиосигнала, разделять общий доступ в Интернет.
· Передающая среда. Сигнал распространяется с помощью маломощного шумоподобного сигнала, имея более десятка частотных каналов шириной 22 МГц в области 2,4 ГГц.
Приведем в таблице все аргументы при выборе передающей среды (таблица 4)
Таблица 4 - Аргументы при выборе передающей среды
Тип кабеля |
Достоинства |
Недостатки |
|
Неэкранированная витая пара UTP (категория 5 или выше) |
· доступность по цене; · доступность инструментов для установки разъемов (RJ45); · удобство прокладки кабеля; · относительная простота ремонта при повреждении; · поддержка перспективных высокоскоростных сетей (Fast и Gigabit Ethernet) при использовании кабеля категории 5 или выше. |
· относительно низкая устойчивость к электромагнитным помехам; · сравнительно малые допустимые расстояния кабельных соединений, особенно для высокоскоростных сетей; · невозможность использования во внешних участках соединений (между зданиями). |
|
Экранированная витая пара STP (оплеточный экран) |
· повышенная устойчивость к электромагнитным помехам по сравнению с неэкранированной витой парой |
· несколько более высокая цена по сравнению с кабелем типа UTP. |
|
Многомодовый оптоволоконный кабель |
· практическая нечувствительность к внешним электромагнитным помехам и отсутствие собственного излучения; · поддержка перспективных высокоскоростных сетей, в том числе на расстояниях, недоступных при использовании витой пары |
· относительно высокая цена кабеля и сетевого оборудования; · сложность установки (требуется специальный инструмент и высокая квалификация персонала); · низкая ремонтопригодность; · чувствительность к воздействиям факторов окружающей среды (могут вызвать помутнение оптоволокна) |
|
Одномодовый оптоволоконный кабель |
· улучшенные технические характеристики по сравнению с многомодовым кабелем (возможность увеличения скорости передачи или длины соединений). |
· более высокая цена; · сложная установка и ремонт. |
|
Беспроводная технология |
· устранение необходимости организации кабельной системы; · мобильность рабочих станций (простота их перемещения внутри зданий |
· относительно дорогое оборудование; · сильная зависимость надежности соединения от наличия препятствий; |
4. Проектирование проводной локальной сети (LAN)
Рассмотрев технические требования, переходим к проектированию участка локальной сети с использованием проводной технологии стандарта 802.3
Существует четыре основных правила корректной конфигурации Ethernet 802.3:
1. Количество узлов не должно превышать 1024.
2. Максимальная длина кабеля в сегменте определена соответствующей спецификацией.
3. Время двойного оборота сигнала между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала.
4. Сокращение межкадрового интервала при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала.
Правила корректного построения сегментов сетей Fast Ethernet включают:
· ограничения на максимальные длины сегментов, которые соединяют устройства - источники кадров (соединение DTE - DTE);
· ограничения на максимальные длины сегментов, соединяющих устройства-источники кадров (DTE) с портом повторителя;
· ограничения на общий максимальный диаметр сети;
· ограничения на максимальное число повторителей и максимальную длину сегмента, соединяющего повторители.
Приведем расчет самого длинного сегмента сети для определения верности построения локальной сети с использованием технологии Fast Ethernet (рисунок 4). Подробный план помещения представлен в приложении.
Посчитаем итоговую длину сегмента кабеля: 27 + 5 + 25 + 55= 112м. С учетом 10% запаса на установку розеток, протяжку и монтаж кабеля получим итоговую длину самого длинного сегмента около 123 м, что является предельным значением для технологии 100BASE-TX.
Построим техническую модель разрабатываемой локальной сети. СКС устанавливается на 1-м этаже 2-х этажного цехового здания, включающего цокольный этаж, с размерами в плане 55x25 м.
Рис. 4- Расчет самого длинного сегмента локальной сети
Высота этажа составляет 4.5 м, общая толщина перекрытий равна 50 см. На 1-м этаже использована цеховая планировка, которая представляет собой торгово-выставочный зал 55х15м, а также несколько комнат с фактическими размерами 5х4м. На цокольном этаже использована однотипная коридорная планировка рабочих помещений, которые имеют одинаковые размеры 11.5x11м. Коридор шириной 2 метра проходит по всей длине продольной оси этажа. 2-й этаж представлен открытым помещением с размерами 55x10м
В коридоре и во всех помещениях 1-го и цокольного этажей имеется подвесной потолок с высотой свободного пространства 35 см. Стены помещений изготовлены из армированного бетона и покрыты штукатуркой, толщина которой составляет 1 см. Каких-либо дополнительных каналов в полу и стенах, которые могут быть использованы для прокладки кабелей, строительным проектом здания не предусмотрено. Серверы и центральное оборудование ЛВС будут размещены в помещении серверной, то есть используется принцип одноточечного администрирования.
Создаваемая СКС должна обеспечить функционирование ЛВС: для этого на каждом рабочем месте монтируется информационная розетка с одним розеточным модулем. Для прокладки кабелей горизонтальной подсистемы вдоль коридора за подвесным потолком устанавливаются лотки. Расстояние от верхней кромки лотка до капитального потолка равно 25 см. Серверная располагается в центре этажа, и поэтому на каждую половину лотка укладываются кабели. В рабочих помещениях прокладка кабеля в соответствии с требованиями этой проектной работы будет выполняться в декоративных коробах (располагаются на высоте 1 м. от пола). Для перехода от лотков к коробам в стенках рабочих помещений сверлятся отверстия, в которые прокладывается кабель (рисунок 5)
Рис. 5 - Схема прокладки кабеля
Горизонтальная подсистема СКС строится на основе неэкранированных 4-х парных кабелей UTP категории 5e, проложенных по одному к каждому блоку розеток. Характеристики кабеля по затуханию, перекрестным наводкам и импедансу приведены в таблице:
Требуемая средняя длина кабеля(Lcp) рассчитывается с использованием эмпирической формулы, исходя из предположения, что рабочие места распределены по обслуживаемой площади равномерно:
Lcp =(Lmax+Lmin)/2,
где Lmin и Lmax - соответственно длины кабельной трассы от точки размещения кроссового оборудования до информационного разъема самого близкого и самого далекого рабочего места, посчитанные с учетом технологии прокладки кабеля, всех спусков, подъемов, поворотов и особенностей здания. При определении длины трасс необходимо добавить технологический запас величиной 10% от Lcp и запас Х для процедур разводки кабеля в распределительном узле и информационном разъеме; так что длина трасс L составит:
L= (1,1*Lcp+X)*N,
где N - количество розеток.
Рассчитаем необходимое количество кабеля. Дробные значения округляем до целых.
Для цокольного этажа Lmin и Lmax равны соответственно 20 и 123 метров.
Lcp = (20+123)/2 = 71м.
L = (1,1*71+2)*11= 881 метр кабеля.
Известно, что в бухте (катушке) 305 метров кабеля. Тогда для создания горизонтальной подсистемы необходимо 3 бухты.
Подсистема управления включает в себя кроссовое оборудование для коммутации сигналов, передаваемых по медному кабелю.
Коммутация рабочих мест осуществляется при помощи специальных кросс-кабелей к главному кроссовому элементу (коммутатор). Применение такой схемы обеспечивает более безопасный метод коммутации активного оборудования.
В помещении серверной согласно выбранному оборудованию устанавливается один открытый 19” телекоммуникационный шкаф (стойка) высотой 42U, в котором размещаются:
· сетевой коммутатор D-Link DES-1024D;
· сервер;
· 2 ИБП APC Smart-UPS RM 2U
· маршрутизатор Cisco 2811
Для коммутации шкаф укомплектовывается патч-кордами длиной 0,5, 1 и 1,5м.
Получившаяся топология ЛВС приведена на рисунке 6.
Структурированная кабельная система, являющаяся единой транспортной средой для различных систем и объединяющая в себе ранее разрозненные сети, требует изменения существующих ранее принципов организации эксплуатации и технического обслуживания локальных, телефонных и прочих сетей.
Разработанный проект охватывает не только общую кабельную систему, но и интегрированную локальную сеть, которую можно подразделить на следующие подсистемы:
· кабельное хозяйство;
· главное активное оборудование (маршрутизатор, коммутаторы и концентраторы);
· основное вычислительное оборудование (серверы с дополнительным оборудованием, подключенным к ним);
· периферийное активное оборудование (персональные компьютеры, телефонные аппараты и др.).
Рис. 6 - Топология проводной ЛВС
Основной задачей обслуживающего и ремонтно-технического персонала является устранение возникающих неисправностей в различных подсистемах. Эти функции обычно совмещались с другими обязанностями администратора, что приводило к сложности выполнения ремонтных работ в случае аврала.
В случае инсталляции структурированной кабельной системы высокое качество всех компонентов, тестирование всей кабельной системы на соответствие категории 5е после проведения инсталляции сводят к минимуму вероятность возникновения аварии в кабельном хозяйстве.
5. Проектирование беспроводной локальной сети (WLAN)
5.1 Условия развёртывания сетей Wi-Fi
При принятии решений относительно развертывания беспроводных LAN (WLAN) необходимо учитывать:
· особенности работы протоколов передачи данных 802.11;
· поведение мобильных узлов;
· вопросы защиты;
· качество связи (QoS);
· приложения, используемые беспроводными клиентами.
Физический аспект выполнения картирования места работ дает возможность понять, какую зону покрытия имеет каждая точка доступа, каково количество точек доступа, необходимое для покрытия заданной области, и установить параметры каждого канала и излучаемую мощность.
5.2 Разработка архитектуры с описанием основных параметров проектируемой WLAN
кабельный локальный сеть сервер
Возможны несколько вариантов построения беспроводной сети. В простейшем случае она может быть построена на беспроводных сетевых адаптерах с использованием точки доступа в качестве базовой станции, что обеспечивает минимальную стоимость, но при этом ограниченный радиус действия и зависимость скорости соединения от количества клиентов и их удаленности от точки доступа. Другой вариант это развертывание распределённой беспроводной сети на базе двух или более точек доступа. Этот вариант обеспечивается так называемый «бесшовный» роуминг, когда абонент, покидая зону действия одной точки доступа, автоматически подключается к зоне действия другой. При добавлении в структуру сети беспроводных коммутаторов или маршрутизаторов, получаем сеть на основе централизованной архитектуры, но это вносит дополнительные затраты на приобретение сетевого оборудования, зато позволяет достичь максимальной производительности и большей эффективности. Такие устройства могут использоваться как для создания каналов "точка-точка", так и для развертывания масштабных сетей сложной топологии с возможностью многократной ретрансляции сигналов. Однако данная реализация в условиях проекта является нецелесообразной, так как беспроводная сеть будет использоваться как дополнение к уже существующей проводной локальной сети. Также последний вариант построения является самым дорогостоящим.
Наконец, то, что больше всего интересует вас и пользователей вашей WLAN, - это такие характеристики беспроводных устройств, как зона уверенного приема и пропускная способность. Они напрямую связаны с радиусом действия и скоростью передачи данных. Радиус действия - это расстояние, на котором потери на трассе становятся равными коэффициенту усиления системы.
При развертывании WLAN в помещениях главной сложностью является учет прохождения сигнала через перегородки, стены и железобетонные перекрытия (таблица 6). Любые преграды уменьшают уровень сигнала, увеличивают потери и сказываются на скорости передачи данных. Радиоэфир довольно чувствителен к различного рода помехам. Условия приема и передачи радиосигнала ухудшают не только физические препятствия, также помехи создают и различные радиоизлучающие приборы (таблица 5).
Таблица 5 - Ослабление сигнала, вызванное различными препятствиями
Препятствие |
Ослабление, дБ |
Эффективная дальность, % |
|
Открытое пространство |
0 |
100 |
|
Окно (неметаллизированная краска) |
3 |
70 |
|
Окно (металлизированная краска) |
5-8 |
50 |
|
Тонкая стена |
5-8 |
50 |
|
Средняя стена (дерево) |
10 |
30 |
|
Толстая стена (твердый материал толщиной 15 см) |
15-20 |
15 |
|
Очень толстая стена (твердый материал толщиной 30см) |
20-25 |
10 |
|
Пол / потолок (армированный бетон) |
15-20 |
15 |
Проблема качества сигнала не решится простым увеличением мощности точек доступа. Такой подход не гарантирует повышения качества связи, а скорее наоборот - ведет к его ухудшению, так как создает массу помех в том диапазоне частот, который используют другие точки доступа. Так как точки доступа 802.11 предоставляют разделяемую среду, то в определенный момент времени лишь одна из них может вести передачу данных. Как следствие, масштабирование таких сетей ограничено. Единственный способ точно определить потери на трассе в конкретных условиях эксплуатации - это провести картирование места развертывания сети. Однако все равно полезно знать механизмы, которые влияют на характеристики системы, и то, как можно определить коэффициент усиления вашей системы и сравнить его с аналогичным параметром других систем.
Дальность расстояния определяется характеристиками помещений, в которых развертывается беспроводная сеть. Так, производители указывают максимальное значение скорости при условии прямой видимость между точкой доступа и клиентом. Одна из особенностей обмена данными в беспроводных сетях заключается в том, что при ухудшении качества связи скорость передачи автоматически падает, но падает не плавно, а до следующего фиксированного значения, то есть дискретно. В общем случае скоростной ряд для 802.11g выглядит следующим образом: 1, 2, 5.5, 11, 22, 54 Мбит/с. При улучшении качества связи скорость вновь поднимается до оптимального на текущий момент значения.
Подключение и настройка беспроводных точек доступа не является простой процедурой. Однако, только грамотное расположение точки доступа определяет оптимальной диапазон передающего устройства.
Для обеспечения уверенного приёма сигнала точки доступа должны находиться на оптимальном уровне, обеспечивающем равномерное покрытия зоны этажа, а также должны находиться друг от друга на значительном расстоянии, чтобы не быть подверженными взаимному влиянию.
Для реализации совместной работы точек доступа следует выбрать принцип объединения их в единую архитектуру. Существует 2 вариант объединения, рассмотренные в таблице 6.
Таблица 6 - Возможные варианты реализации архитектуры WLAN
Способ объединения ТД |
Проводной |
Беспроводной |
|
Принцип объединения |
ТД сегментами кабеля объединяются с маршрутизатором напрямую, либо через коммутаторы |
ТД по радиоканалу объединяются с центральной ТД («мост») по принципу «точка - точка» или «точка - несколько точек», которая взаимодействует с маршрутизатором |
|
Достоинства |
централизованная архитектура, возможность «бесшовного» роуминга |
отказ от проводов |
|
Трудности |
требуется прокладка кабельной системы |
требуется настройка каналов для корректной работы, дабы исключить перекрываемость зон обслуживания |
Для обеспечения беспроводного соединения точек доступа с коммутационным узлом необходима поддержка 2-х канальной работы точек доступа. Один из каналов обеспечивает постоянное соединение с маршрутизатором, а второй - производит вещание данных в сеть. Данная реализация значительно требует использования дорогостоящих ТД, цена которых не может окупить прокладку кабеля до каждой их точек. По этому причине объединение ТД с сетевым узлом будет производиться с помощью сетевого кабеля.
Определившись с основными параметрами проектируемой сети, рассмотрим схему реализации беспроводной сети как дополнение основной проводной локальной сети (рисунок 7).
Рис. 7 - Реализация беспроводного сегмента в рамках LAN.
Проанализировав возможную реализацию сети, сразу встаёт вопрос об отдельном питании точек доступа, которые обычно располагают как можно выше в пределах этажа. Подводить питание сети 220В является довольно сложной процедурой, за исключением тех случаев, когда розетки 220В уже имеются на стенах. Выходом из данной ситуации является подключение к сети еще одного коммутатора с поддержкой технологии Power over Ethernet. Данная технология позволяет подавать питающее напряжение устройствам через сетевой кабель Ethernet. Сетевой коммутатор необходимо расположить на одинаковом удалении от точек доступа для минимизации прокладки кабеля между точкой доступа и коммутатором (рисунок 8)
Рис. 8 - Реализация беспроводного сегмента в рамках LAN с дополнительным коммутатором.
Рассмотрев реализацию беспроводного сегмента в рамках LAN, следует представить реализацию комбинированной локальной сети организации (рисунок 9).
Рис. 9 - Реализация комбинированной локальной сети.
6. Выбор сетевого оборудования
Выбор сетевого оборудования - один из самых ответственных шагов в реализации проекта. При выборе необходимо учитывать множество факторов:
· уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;
· скорость передачи информации и возможность ее дальнейшего увеличения;
· метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);
· разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;
· стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, коммутаторов, маршрутизаторов).
Заранее продуманная и правильным образом сконфигурированная сетевая инфраструктура позволит в дальнейшем при замене или модернизации оборудования не задумываться о качестве работы информационной сети.
6.1 Конфигурирование сервера
Сервер построен на основе серверной архитектуры Intel с использованием серверного чипсета Intel 3000 с частотой системной шины 800/1066MHz, с поддержкой работы двухъядерного процессора Intel Pentium D, использованием памяти unbuffered SDRAM DDR2-533/667 (до 8GB), шин PCI-Express x8 и PCI-Express x4. Сервер ориентирован на использование дисковой подсистемы на базе фиксированных SAS HDD.
Сервер обладает минимальной стоимостью и компактностью, удобством обслуживания, эксплуатационной надежностью, средствами автоматической диагностики и устранения неисправностей. Изготавливается в корпусе Rackmount высотой 1U, что позволяет установить его в стандартную 19-ти дюймовую стойку для сервера (рисунок 10)
Основные характеристики:
· процессор: Intel® Pentium D 3.00 GHZ;
· ОЗУ: 4Gb unbuffered SDRAM DDR2-667;
· RAID-контроллер: Adaptec ASR-2405 PCI-E x8, 4-port SAS/SATA, RAID 0/1/10/JBOD, Cache 128Mb;
· дисковый массив: 4 x 500GB SAS hard drive, RAID 0+1;
· накопитель: DVD-RW/CD-RW SATA
· источник питания мощностью 350W.
Рис. 10 - Сервер на базе серверного чипсета Intel 3000.
Приведённая конфигурация подобрана из потребности при минимальной цене получить сервер, который сможет справляться с поставленными перед ним задачами. Сервер может использоваться для следующих служб:
· файл-сервер;
· сервер доменных имен;
· брандмауэр;
· сервер DHCP;
· локальный DNS с перенаправлением неизвестных запросов на вышестоящий DNA.
6.2 Выбор активного сетевого оборудования
Приведем список активного сетевого оборудования, использующегося для организации сети:
а) Коммутатор 10/100 Мбит/с с 24 портами D-Link DES-1024D (рисунок 11).
Рис. 11- Коммутатор D-Link DES-1024D.
Неуправляемый Коммутатор DES-1024D 10/100Mbps разработан для повышения производительности рабочих групп и обеспечения высокого уровня гибкости при построении сети. Мощный, но простой в использовании, этот коммутатор позволяет пользователям легко подключаться к любому порту как на скорости 10Mbps, так и 100Mbps для увеличения полосы пропускания, уменьшения времени отклика и обеспечения требованиям по высокой загрузке.
Коммутатор имеет 24 порта 10/100Mbps, позволяя рабочим группам гибко совмещать Ethernet и Fast Ethernet. Эти порты обеспечивают определение скорости и автоматически переключаются как между 100BASE-TX и 10BASE-T, так и между режимами полного или полудуплекса.
Все порты поддерживают контроль за передачей трафика - flow control. Эта функции минимизирует потерю пакетов, передавая сигнал коллизии, когда буфер порта полон.
Корпус коммутатора выполнен в 19-ти дюймовом формате, что позволяет установить его в одну стойку с сервером.
б) Коммутатор D-Link DES-1008P (рисунок 12).
Рис. 12 - Коммутатор D-Link DES-1008.
8-портовый настольный коммутатор DES-1008P D-Link с 8 портами РоЕ позволяет домашним и офисным пользователям легко подключать и подавать питание по Power over Ethernet (PoE) на устройства, такие как беспроводные точки доступа (АР), IP-камеры и IP-телефоны, а также подключать к сети другие Ethernet-устройства (компьютеры, принтеры, NAS). Разработанный специально для домашних пользователей и малого бизнеса, этот компактный коммутатор РоЕ работает почти бесшумно, что позволяет поместить его практически в любой комнате или офисе.
DES-1008P имеет 4 порта 10/100Base-TX с поддержкой протокола РоЕ. На каждый порт PoE подаётся питание с мощностью до 15,4 Вт, в итоге коммутатор может подавать питание до 123Вт, что дает возможность пользователям подключить к DES-1008P устройства, совместимые с 802.3af. Это позволяет размещать устройства в труднодоступных местах (потолки, стены и т.д.) вне зависимости от расположения розеток питания и минимизировать прокладку кабеля. Для подачи питания через DES-1008P на устройства, не совместимые с 802.3af PoE, рекомендуется использовать PoE-адаптеры (например, DWL-P50).
Установка устройства происходит легко и быстро и не требует дополнительных настроек. Поддержка автоматического определения полярности MDI/MDI-X на всех портах исключает необходимость в использовании кроссовых кабелей для подключения к другому коммутатору или концентратору. Функция автосогласования скорости на всех портах автоматически определяет скорость (10Мбит/с или 100Мбит/с) для обеспечения совместимости и оптимальной производительности. При включении устройств 802.3af DES-1008P автоматически выбирает подходящее питание. Кроме того, DES-1008P содержит диагностические светодиодные индикаторы для отображения статуса и активности портов. Это позволяет быстро обнаружить и исправить возникшие проблемы в сети. Благодаря фильтрации скорости и методу коммутации store-and-forward, DES-1008P поддерживает максимальную производительность сети с минимальными ошибками при передаче пакетов. Благодаря портам РоЕ, высокой производительности и простоте использования, 8-портовый коммутатор D-Link с 4 портами РоЕ DES-1008P является идеальным выбором для подключения устройств РоЕ в домашних сетях и сетях малых предприятий.
в) Точка доступа D-Link AirPremier DWL-3200AP (рисунок 13).
Рис. 13 - Точка доступа D-Link AirPremier DWL-3200AP.
Мощная и надежная внутриофисная точка доступа D-Link AirPremier DWL-3200AP предназначена для сетей масштаба предприятия и предлагает богатый набор функций для построения управляемых и защищенных беспроводных локальных сетей. Точка доступа поддерживает стандарт Power over Ethernet (PoE). В комплект поставки точки доступа входят две антенны с высоким коэффициентом усиления 5 dBi, что позволяет обеспечить оптимальный радиус действия беспроводной сети.
DWL-3200AP помещена в металлический корпус с вентиляцией, что соответствует нормам пожарной безопасности и гарантирует защиту от перегрева. Точка доступа поддерживает стандарт 802.3af Power over Ethernet (PoE), что позволяет устанавливать это устройство даже в тех местах, где силовые розетки питания не доступны.
г) Маршрутизатор Cisco 2811
Рис. 14- Cisco 2811
Функции Cisco 2811
* Одновременная работа различных сервисов (например, обеспечения безопасности и голосовой связи) со скоростью физической линии, а также расширенных сервисов в нескольких каналах T1/E1/xDSL WAN
* Отличная защита инвестиций благодаря повышенной производительности и модульности
* Отличная защита инвестиций благодаря повышенной модульности
* Увеличенная плотность благодаря четырем слотам высокоскоростных интерфейсных карт распределенных сетей
Подобные документы
Установка структурированной кабельной системы в одноэтажном офисном здании. Расчет количества информационных розеток. Администрирование компьютерной сети и выбор топологии. Основные задачи оптимизации локальных сетей. Проектирование аппаратной станции.
курсовая работа [950,8 K], добавлен 25.03.2015Сравнительный анализ различных топологий сетей. Исследование элементов структурированной кабельной системы. Методы доступа и форматы кадров технологии Ethernet. Локальные сети на основе разделяемой среды: технология TokenRing, FDDI, Fast Ethernet.
курсовая работа [1,2 M], добавлен 19.12.2014Этапы проектирования структурированной кабельной системы. Выбор топологии сети, среды передачи и метода доступа. Администрирование и управление структурированной кабельной системы. Физическая среда передачи в локальных сетях. Особенности Windows Server.
курсовая работа [912,4 K], добавлен 27.11.2011Выбор и обоснование технологий построения локальных вычислительных сетей. Анализ среды передачи данных. Расчет производительности сети, планировка помещений. Выбор программного обеспечения сети. Виды стандартов беспроводного доступа в сеть Интернет.
курсовая работа [5,3 M], добавлен 22.12.2010Знакомство с понятием структурированной кабельной системы: ее подсистемы, типы кабелей, проектирование плана здания, серверной, кампуса. Различные технологии передачи данных, составление схемы соединений. Расчет стоимости оборудования, тест сети.
курсовая работа [152,3 K], добавлен 13.12.2013Топология и принципы администрирования кабельной сети, выбор метода подключения сетевого оборудования. Проектирование локальной вычислительной сети. Оценка затрат на внедрение структурированной кабельной системы и системы бесперебойного питания.
дипломная работа [1,8 M], добавлен 28.10.2013Обзор и анализ возможных технологий построения сети: Ethernet, Token Ring, FDDI, Fast Ethernet. Основные виды кабелей и разъемов. Выбор архитектуры, топологии ЛВС; среды передачи данных; сетевого оборудования. Расчет пропускной способности локальной сети.
дипломная работа [476,4 K], добавлен 15.06.2015- Выбор конфигурации сети малого предприятия. Расчет стоимости проекта. Мобильные операционные системы
Разработка проекта компьютерной сети на основе технологии Fast Ethernet. Выбор топологии сети, кабельной системы, коммутатора, платы сетевого адаптера, типа сервера и его аппаратного обеспечения. Характеристика существующих мобильных операционных систем.
курсовая работа [381,4 K], добавлен 06.08.2013 Схемы взаимодействия устройств, методы доступа и технология передачи данных в информационной сети. Ethernet как верхний уровень интегрированной системы автоматизации. Разработка конфигурации сервера, рабочих станций и диспетчерской станции предприятия.
курсовая работа [902,9 K], добавлен 30.04.2012Анализ зоны проектирования, информационных потоков, топологии сети и сетевой технологии. Выбор сетевого оборудования и типа сервера. Перечень используемого оборудования. Моделирование проекта локальной сети с помощью программной оболочки NetCracker.
курсовая работа [861,6 K], добавлен 27.02.2013