Система мониторинга ресурсов и сервисов локальной вычислительной сети

Основные проблемы, возникающие у сетевых администраторов предприятий. Программные средства диагностики. Установка ядра системы. Настройка модуля отслеживания загрузки. Расчет затрат на разработку системы сетевого мониторинга, её внедрение и сопровождение.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 13.08.2014
Размер файла 4,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

Настоящий документ является техническим проектом разработки и внедрения системы сетевого мониторинга верхнепышминской городской сети передачи данных общего доступа ООО Геркон. В проекте проведено исследование существующих систем сетевого мониторинга, анализ текущей ситуации на предприятии и обоснован выбор конкретных компонентов системы сетевого мониторинга.

Документ содержит описание проектных решений и спецификации оборудования.

Результатом проектирования являются разработанные решения по внедрению и использованию системы:

§ Полное описание всех этапов проектирования, разработки и внедрения системы;

§ Руководство системного администратора, включающее описание пользовательского интерфейса системы.

Настоящий документ представляет законченные проектные решения и может быть использован для внедрения системы.

ПЕРЕЧЕНЬ ЛИСТОВ ГРАФИЧЕСКИХ ДОКУМЕНТОВ

Таблица 1 - Перечень листов графических документов

1

Системы сетевого мониторинга

220100 401000

2

Логическая структура сети

220100 401000

3

Алгоритм работы ядра сетевого мониторинга и оповещений

220100 401000

4

Структура анализатора загрузки сетевых интерфейсов

220100 401000

5

Структура сборщика системных журналов событий

220100 401000

6

Интерфейс Nagios

220100 401000

7

Обобщенная структура системы сетевого мониторинга

220100 401000

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ И ТЕРМИНОВ

Ethernet - стандарт передачи данных, выпущенный IEEE. Определяет как передавать или получать данные из общей среды передачи данных. Формирует нижний транспортный уровень и используется различными высокоуровневыми протоколами. Обеспечивает скорость передачи данных 10Мбит/сек.

Fast Ethernet - технология передачи данных со скоростью 100Мбит/сек, использующая CSMA/CD метод, как и 10Base-T.

FDDI - Fiber Distributed Data Interface - волоконно-оптический интерфейс распределенной передачи данных - технология передачи данных со скоростью 100Мбит/сек, использующая метод маркерного кольца.

IEEE - Institute of Electrical and Electronic Engineers (Институт инженеров по электротехнике и электронике) - организация, разрабатывающая и публикующая стандарты.

LAN - Local Area Network - локальная сеть, ЛВС.

MAC адрес - Media Access Control - идентификационный номер сетевого устройства, определяемый, как правило, производителем.

RFC - Request for Comments - свод документов, выпускаемых организацией IEEE, и включающих в себя описание стандартов, спецификаций и др.

TCP/IP - Transmission Control Protocol/ Internet Protocol - протокол управления передачей/протокол Internet.

ЛВС - Локальная вычислительная сеть.

ОС - Операционная система.

ПО - Программное обеспечение.

СКС - Структурированная кабельная система.

СУБД - Система управления базами данных.

Тренд - Долговременная статистика, которая позволяет построить так называемую тенденцию.

Утилизация - Загрузка канала или сегмента.

ЭВМ - Электронно-вычислительная машина.

ВВЕДЕНИЕ

Информационная инфраструктура современного предприятия представляет собой сложнейший конгломерат разномасштабных и разнородных сетей и систем. Чтобы обеспечить их слаженную и эффективную работу, необходима управляющая платформа корпоративного масштаба с интегрированными инструментальными средствами. Однако до недавнего времени сама структура индустрии сетевого управления препятствовала созданию таких систем - «игроки» этого рынка стремились к лидерству, выпуская продукты ограниченной области действия, использующие средства и технологии, не совместимые с системами других поставщиков.

Сегодня ситуация меняется к лучшему - появляются продукты, претендующие на универсальность управления всем разнообразием корпоративных информационных ресурсов, от настольных систем до мэйнфреймов и от локальных сетей до ресурсов Сети. Одновременно приходит осознание того, что управляющие приложения должны быть открыты для решений всех поставщиков [13, с. 28].

Актуальность данной работы обусловлена тем, что в связи с распространением персональных компьютеров и созданием на их основе автоматизированных рабочих мест (АРМ) возросло значение локальных вычислительных сетей (ЛВС), диагностика которых, является объектом нашего исследования. Предметом исследования являются основные методы организации и проведения диагностики современных компьютерных сетей.

"Диагностика локальной сети" - процесс (непрерывного) анализа состояния информационной сети. При возникновении неисправности сетевых устройств фиксируется факт неисправности, определяется ее место и вид. Сообщение о неисправности передается, устройство отключается и заменяется резервным [5, с. 153].

Сетевой администратор, на которого чаще всего ложатся функции по проведению диагностики, должен начинать изучать особенности своей сети уже на фазе ее формирования т.е. знать схему сети и подробное описание конфигурации программного обеспечения с указанием всех параметров и интерфейсов. Для оформления и хранения этой информации подойдут специальные системы документирования сети. Используя их, системный администратор, будет заранее знать все возможные «скрытые дефекты» и «узкие места» своей системы, для того, чтобы в случае возникновения нештатной ситуации знать, с чем связана проблема с оборудованием или программным обеспечением, повреждена программа или к ошибке привели действия оператора.

Сетевому администратору следует помнить, что с точки зрения пользователей качество работы прикладного программного обеспечения в сети оказывается определяющим. Все прочие критерии, такие как число ошибок передачи данных, степень загруженности сетевых ресурсов, производительность оборудования и т. п., являются вторичными. "Хорошая сеть" - это такая сеть, пользователи которой не замечают, как она работает.

Предприятие

Преддипломная практика проходила на предприятии ООО «Геркон» в отделе сопровождения в должности системного администратора. Предприятие предлагает услуги доступа в Интернет в городах Верхняя Пышма и Среднеуральск по технологии Ethernet и коммутируемым (dial-up) каналам с 1993 года и является одним из первых поставщиков услуг Интернет в этих городах. Правила предоставления услуг урегулированы публичной офертой и регламентом.

Научные и производственные задачи подразделения

Отдел сопровождения решает следующий спектр задач в пределах данного предприятия:

§ техническая и технологическая организация предоставления доступа в Интернет по коммутируемым и выделенным каналам;

§ техническая и технологическая организация беспроводного доступа в Интернет;

§ выделение дискового пространства для хранения и обеспечения работы сайтов (хостинг);

§ поддержка работы почтовых ящиков или виртуального почтового сервера;

§ размещение оборудования клиента на площадке провайдера (колокация);

§ аренда выделенных и виртуальных серверов;

§ резервирование данных;

§ развертывание и поддержка корпоративных сетей частных предприятий.

В процессе деятельности и увеличения объемов поставок услуг возникла проблема упреждающего обнаружения неисправных и слабых мест в организации сети, то есть ставилась задача внедрения решения, позволяющего прогнозировать необходимость замены или модернизации участков сети до того, как неисправности отразятся на работе абонентских узлов.

1. СИСТЕМЫ СЕТЕВОГО МОНИТОРИНГА

Несмотря на множество приемов и инструментов обнаружения и устранения неполадок в компьютерных сетях, «почва под ногами» сетевых администраторов все еще остается достаточно зыбкой. Компьютерные сети все чаще включают волоконно-оптические и беспроводные компоненты, наличие которых делает бессмысленным применение традиционных технологий и инструментов, предназначенных для обычных медных кабелей. Вдобавок к нему при скоростях свыше 100 Мбит/с традиционные подходы к диагностике зачастую перестают работать, даже если средой передачи является обычный медный кабель. Однако, возможно, наиболее серьезным изменением в компьютерных сетевых технологиях, с которым пришлось столкнуться администраторам, стал неизбежный переход от сетей Ethernet с разделяемой средой передачи к коммутируемым сетям, в которых в качестве коммутируемых сегментов часто выступают отдельные серверы или рабочие станции.

Правда, по мере осуществления технологических преобразований некоторые старые проблемы решились сами собой. Коаксиальный кабель, в котором выявить электротехнические неисправности всегда было труднее, чем в случае витой пары, становится редкостью в корпоративных средах. Сети Token Ring, главной проблемой которых была их несхожесть с Ethernet (а вовсе не слабость в техническом отношении), постепенно заменяются коммутируемыми сетями Ethernet. Порождающие многочисленные сообщения об ошибках протоколов сетевого уровня протоколы, такие, как SNA, DECnet и AppleTalk, замещаются протоколом IP. Сам же стек протоколов IP стал более стабильным и простым для поддержки, что доказывают миллионы клиентов и миллиарды страниц Web в Internet. Даже закоренелым противникам Microsoft приходится признать, что подключение нового клиента Windows к Internet существенно проще и надежнее установки применявшихся ранее стеков TCP/IP сторонних поставщиков и отдельного программного обеспечения коммутируемого доступа.

Как бы многочисленные современные технологии ни затрудняли выявление неполадок и управление производительностью сетей, ситуация могла бы оказаться еще тяжелее, если бы технология АТМ получила широкое распространение на уровне ПК. Свою положительную роль сыграло и то, что в конце 90-х, не успев получить признание, были отвергнуты и некоторые другие высокоскоростные технологии обмена данными, включая Token Ring с пропускной способностью 100 Мбит/с, 100VG-AnyLAN и усовершенствованные сети ARCnet. Наконец, в США был отклонен очень сложный стек протоколов OSI (который, правда, узаконен рядом правительств европейских стран) [8, с. 15].

Рассмотрим некоторые актуальные проблемы, возникающие у сетевых администраторов предприятий.

Иерархическая топология компьютерных сетей с магистральными каналами Gigabit Ethernet и выделенными портами коммутаторов на 10 или даже 100 Мбит/с для отдельных клиентских систем, позволила увеличить максимальную пропускную способность, потенциально доступную пользователям, как минимум в 10--20 раз. Конечно, в большинстве компьютерных сетей существуют узкие места на уровне серверов или маршрутизаторов доступа, поскольку приходящаяся на отдельного пользователя пропускная способность существенно меньше 10 Мбит/с. В связи с этим замена порта концентратора с пропускной способностью 10 Мбит/с на выделенный порт коммутатора на 100 Мбит/с для конечного узла отнюдь не всегда приводит к значительному увеличению скорости. Однако если учесть, что стоимость коммутаторов в последнее время снизилась, а на большинстве предприятий проложен кабель Категории 5, поддерживающий технологию Ethernet на 100 Мбит/с, и установлены сетевые карты, способные работать на скорости 100 Мбит/с сразу после перезагрузки системы, то становится ясно, почему так нелегко сопротивляться искушению модернизации. В традиционной локальной сети с разделяемой средой передачи анализатор протоколов или монитор может исследовать весь трафик данного сегмента сети.

Рис. 1.1 - Традиционная локальная сеть с разделяемой средой передачи и анализатором протоколов

Хотя преимущество коммутируемой сети в производительности иногда почти не заметно, распространение коммутируемых архитектур имело катастрофические последствия для традиционных средств диагностики. В сильно сегментированной сети анализаторы протоколов способны видеть только одноадресный трафик на отдельном порту коммутатора, в отличие от сети прежней топологии, где они могли тщательно исследовать любой пакет в домене коллизий. В таких условиях традиционные инструменты мониторинга не могут собрать статистику по всем «диалогам», потому что каждая «переговаривающаяся» пара оконечных точек пользуется, в сущности, своей собственной сетью.

Рис. 1.2 - Коммутируемая сеть

В коммутируемой сети анализатор протоколов в одной точке может «видеть» только единственный сегмент, если коммутатор не способен зеркально отображать несколько портов одновременно.

Для сохранения контроля над сильно сегментированными сетями производители коммутаторов предлагают разнообразные средства для восстановления полной «видимости» сети, однако на этом пути остается немало трудностей. В поставляемых сейчас коммутаторах обычно поддерживается «зеркальное отображение» портов, когда трафик одного из них дублируется на ранее незадействованный порт, к которому подключается монитор или анализатор.

Однако «зеркальное отображение» обладает рядом недостатков. Во-первых, в каждый момент времени виден только один порт, поэтому выявить неполадки, затрагивающие сразу несколько портов, очень непросто. Во-вторых, зеркальное отражение может привести к снижению производительности коммутатора. В-третьих, на зеркальном порту обычно не воспроизводятся сбои физического уровня, а иногда даже теряются обозначения виртуальных локальных сетей. Наконец, во многих случаях не могут в полной мере зеркально отображаться полнодуплексные каналы Ethernet.

Частичным решением при анализе агрегированных параметров трафика является использование возможностей мониторинга агентов mini-RMON, тем более что они встроены в каждый порт большинства коммутаторов Ethernet. Хотя агенты mini-RMON не поддерживают группу объектов Capture из спецификации RMON II, обеспечивающих полнофункциональный анализ протоколов, они тем не менее позволяют оценить уровень использования ресурсов, количество ошибок и объем многоадресной рассылки.

Некоторые недостатки технологии зеркального отображения портов могут быть преодолены установкой «пассивных ответвителей», производимых, например, компанией Shomiti. Эти устройства представляют собой заранее устанавливаемые Y-коннекторы и позволяют отслеживать с помощью анализаторов протокола или другого устройства не регенерированный, а реальный сигнал [23, с. 17].

Следующей актуально проблемой, является проблема с особенностями оптики. Администраторы компьютерных сетей обычно используют специализированное оборудование диагностики оптических сетей только для решения проблем с оптическими кабелями. Обычное стандартное программное обеспечение управления устройствами на базе SNMP или интерфейса командной строки способно выявить проблемы на коммутаторах и маршрутизаторах с оптическими интерфейсами. И только немногие сетевые администраторы сталкиваются с необходимостью проводить диагностику устройств SONET.

Что касается волоконно-оптических кабелей, то причин для возникновения возможных неисправностей в них существенно меньше, чем в случае медного кабеля. Оптические сигналы не вызывают перекрестных помех, появляющихся от того, что сигнал одного проводника индуцирует сигнал на другом -- этот фактор наиболее усложняет диагностическое оборудование для медного кабеля. Оптические кабели невосприимчивы к электромагнитным шумам и индуцированным сигналам, поэтому их не требуется располагать подальше от электромоторов лифтов и ламп дневного света, т. е. из сценария диагностики все эти переменные можно исключить.

Сила сигнала, или оптическая мощность, в данной точке на самом деле является единственной переменной, которую требуется измерить при поиске неисправностей в оптических сетях. Если же можно определить потери сигнала на всем протяжении оптического канала, то можно будет идентифицировать практически любую проблему. Недорогие дополнительные модули для тестеров медного кабеля позволяют проводить оптические измерения.

Предприятиям, развернувшим крупную оптическую инфраструктуру и самостоятельно ее обслуживающим, может понадобиться приобрести оптический временный рефлектометр (Optical Time Domain Reflecto-meter, OTDR), выполняющего те же функции для оптического волокна, что и рефлектометр для медного кабеля (Time Domain Reflectometer, TDR). Прибор действует подобно радару: он посылает импульсные сигналы по кабелю и анализирует их отражения, на основании которых он выявляет повреждения в проводнике или какую-либо другую аномалию, и затем сообщает експерту, в каком месте кабеля следует искать источник проблемы.

Хотя различные поставщики кабельных соединителей и разъемов упростили процессы терминирования и разветвления оптического волокна, для этого по-прежнему требуется некоторый уровень специальных навыков, и при разумной политике предприятие с развитой оптической инфраструктурой вынуждено будет обучать своих сотрудников. Как бы хорошо ни была проложена кабельная сеть, всегда существует возможность физического повреждения кабеля в результате какого-либо неожиданного происшествия [2, с. 24].

При диагностике беспроводных локальных сетей стандарта 802.11b также могут возникнуть проблемы. Сама по себе диагностика, столь же проста, как и в случае сетей Ethernet на базе концентраторов, так как беспроводная среда передачи информации разделяется между всеми обладателями клиентских радиоустройств. Компания Sniffer TechНlogies первой предложила решение для анализа протоколов таких сетей с пропускной способностью до 11 Мбит/с, и впоследствии большинство лидирующих поставщиков анализаторов представили аналогичные системы.

В отличие от концентратора Ethernet с проводными соединениями, качество беспроводных клиентских соединений далеко от стабильного. Микроволновые радиосигналы, используемые во всех вариантах локальной передачи, слабы и порой непредсказуемы. Даже небольшие изменения положения антенны могут серьезно сказаться на качестве соединений. Точки доступа беспроводной локальной сети снабжаются консолью управления устройствами, и это часто более действенный метод диагностики, чем посещение клиентов беспроводной сети и наблюдение за пропускной способностью и условиями возникновения ошибок с помощью портативного анализатора.

Хотя проблемы синхронизации данных и установки устройств, возникающие у пользователей персональных цифровых секретарей (PDA), более естественно соответствуют задачам группы технической поддержки, а не обязанностям сетевого администратора, нетрудно предвидеть, что в недалеком будущем многие такие устройства превратятся из отдельных вспомогательных средств, дополняющих ПК, в полноправных сетевых клиентов.

Как правило, операторы корпоративных беспроводных сетей будут (или должны) препятствовать развертыванию чрезмерно открытых систем, в которых любой пользователь, находящийся в зоне действия сети и обладающий совместимой интерфейсной картой, получает доступ к каждому информационному кадру системы. Протокол безопасности беспроводных сетей WEP (Wired Equivalent Privacy) обеспечивает аутентификацию пользователей, гарантию целостности и шифрование данных, однако, как это обычно случается, совершенная система безопасности осложняет анализ причин сетевых неполадок. В защищенных сетях с поддержкой WEP специалисты по диагностике должны знать ключи или пароли, защищающие информационные ресурсы и контролирующие доступ в систему. При доступе в режиме приема всех пакетов анализатор протоколов сможет видеть все заголовки кадров, но содержащаяся в них информация без наличия ключей будет бессмысленной [23, с. 19].

При диагностировании туннелированных каналов, которые многие производители называют виртуальными частными сетями с удаленным доступом, возникающие проблемы аналогичны имеющим место при анализе беспроводных сетей с шифрованием. Если трафик не проходит через туннелированный канал, то причину неисправности определить нелегко. Это может быть ошибка аутентификации, поломка на одной из оконечных точек или затор в общедоступной зоне Internet. Попытка использования анализатора протоколов для выявления высокоуровневых ошибок в туннелированном трафике будет пустой тратой сил, потому что содержание данных, а также заголовки прикладного, транспортного и сетевого уровней зашифрованы. Вообще, меры, принимаемые в целях повышения уровня безопасности корпоративных сетей, обычно затрудняют выявление неисправностей и проблем производительности. Межсетевые экраны, proxy-серверы и системы выявления вторжений могут дополнительно осложнить локализацию неполадок [2, с. 31].

Таким образом, проблема диагностики компьютерных сетей является актуальной и в конечном счете, диагностирование неисправностей является задачей управления. Для большинства критически важных корпоративных систем, проведение продолжительных восстановительных работ не допустимо, поэтому единственным решением будет использование резервных устройств и процессов, способных взять на себя необходимые функции немедленно после возникновения сбоев. На некоторых предприятиях сети всегда имеют дополнительный резервный компонент на случай сбоя основного, т. е. n х 2 компонентов, где n -- количество основных компонентов, необходимое для обеспечения приемлемой производительности. Если среднее время восстановления (Mean Time To Repair, MTTR) достаточно велико, то может понадобиться еще большая избыточность. Дело в том, что время устранения неисправности предсказать нелегко, а значительные затраты в течение непредсказуемого периода восстановления являются признаком плохого управления.

Для менее важных систем резервирование может оказаться экономически неоправданным, и в этом случае будет целесообразно вкладывать средства в наиболее эффективные инструменты (и в обучение персонала), чтобы максимально ускорить процесс диагностики и устранения неисправностей на предприятии. Кроме того, поддержку определенных систем можно доверить сторонним специалистам, либо привлекая их на предприятие по контракту, либо пользуясь возможностями внешних центров обработки данных, либо обращаясь к провайдерам услуг по сопровождению приложений (Application Service Providers, ASP) или провайдерам услуг управления. Помимо затрат наиболее значительным фактором, влияющим на решение об обращении к услугам сторонних организаций, можно считать уровень компетентности собственного персонала. Сетевые администраторы должны решить, не является ли некоторая конкретная функция настолько тесно связанной со специфическими задачами предприятия, что от стороннего специалиста нельзя будет ожидать более качественного выполнения работы, чем это будет сделано силами служащих компании.

Почти сразу после того, как были развернуты первые корпоративные сети, надежность которых оставляла желать лучшего, производители и разработчики выдвинули концепцию «самовосстанавливающихся сетей». Современные сети, безусловно, надежнее, чем они были в 90-х гг., но не потому, что неполадки стали самоустраняться. Ликвидация сбоев программного обеспечения и аппаратных средств современных сетей все еще требуют вмешательства человека, и в ближайшей перспективе в таком положении дел не предвидится никаких принципиальных изменений. Методы и инструменты диагностики вполне соответствуют современной практике и технологиям, но они еще не достигли такого уровня, который позволил бы значительно сэкономить время сетевых администраторов в их борьбе с неполадками сетей и дефицитом производительности [23, с. 23].

1.1 Программные средства диагностики

Среди программных средств диагностики компьютерных сетей, можно выделить специальные системы управления сетью (Network Management Systems) - централизованные программные системы, которые собирают данные о состоянии узлов и коммуникационных устройств сети, а также данные о трафике, циркулирующем в сети. Эти системы не только осуществляют мониторинг и анализ сети, но и выполняют в автоматическом или полуавтоматическом режиме действия по управлению сетью - включение и отключение портов устройств, изменение параметров мостов адресных таблиц мостов, коммутаторов и маршрутизаторов и т.п. Примерами систем управления могут служить популярные системы HPOpenView, SunNetManager, IBMNetView.

Средства управления системой (System Management) выполняют функции, аналогичные функциям систем управления, но по отношению к коммуникационному оборудованию. Вместе с тем, некоторые функции этих двух видов систем управления могут дублироваться, например, средства управления системой могут выполнять простейший анализ сетевого трафика.

Экспертные системы. Этот вид систем аккумулирует человеческие знания о выявлении причин аномальной работы сетей и возможных способах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекстно-зависимая help-система. Более сложные экспертные системы представляют собой так называемые базы знаний, обладающие элементами искусственного интеллекта. Примером такой системы является экспертная система, встроенная в систему управления Spectrum компании Cabletron.

1.1.1 Анализаторы протоколов

В ходе проектирования новой или модернизации старой сети часто возникает необходимость в количественном измерении некоторых характеристик сети таких, например, как интенсивности потоков данных по сетевым линиям связи, задержки, возникающие на различных этапах обработки пакетов, времена реакции на запросы того или иного вида, частота возникновения определенных событий и других характеристик.

Для этих целей могут быть использованы разные средства и прежде всего - средства мониторинга в системах управления сетью, которые уже обсуждались ранее. Некоторые измерения на сети могут быть выполнены и встроенными в операционную систему программными измерителями, примером тому служит компонента ОС Windows Performance Monitor. Даже кабельные тестеры в их современном исполнении способны вести захват пакетов и анализ их содержимого [2, с. 45].

Но наиболее совершенным средством исследования сети является анализатор протоколов. Процесс анализа протоколов включает захват циркулирующих в сети пакетов, реализующих тот или иной сетевой протокол, и изучение содержимого этих пакетов. Основываясь на результатах анализа, можно осуществлять обоснованное и взвешенное изменение каких-либо компонент сети, оптимизацию ее производительности, поиск и устранение неполадок. Очевидно, что для того, чтобы можно было сделать какие-либо выводы о влиянии некоторого изменения на сеть, необходимо выполнить анализ протоколов и до, и после внесения изменения.

Анализатор протоколов представляет собой либо самостоятельное специализированное устройство, либо персональный компьютер, обычно переносной, класса Нtebook, оснащенный специальной сетевой картой и соответствующим программным обеспечением. Применяемые сетевая карта и программное обеспечение должны соответствовать топологии сети (кольцо, шина, звезда). Анализатор подключается к сети точно также, как и обычный узел. Отличие состоит в том, что анализатор может принимать все пакеты данных, передаваемые по сети, в то время как обычная станция - только адресованные ей. Программное обеспечение анализатора состоит из ядра, поддерживающего работу сетевого адаптера и декодирующего получаемые данные, и дополнительного программного кода, зависящего от типа топологии исследуемой сети. Кроме того, поставляется ряд процедур декодирования, ориентированных на определенный протокол, например, IPX. В состав некоторых анализаторов может входить также экспертная система, которая может выдавать пользователю рекомендации о том, какие эксперименты следует проводить в данной ситуации, что могут означать те или иные результаты измерений, как устранить некоторые виды неисправности сети.

Несмотря на относительное многообразие анализаторов протоколов, представленных на рынке, можно назвать некоторые черты, в той или иной мере присущие всем им:

Пользовательский интерфейс. Большинство анализаторов имеют развитый дружественный интерфейс, базирующийся, как правило, на Windows или Motif. Этот интерфейс позволяет пользователю: выводить результаты анализа интенсивности трафика; получать мгновенную и усредненную статистическую оценку производительности сети; задавать определенные события и критические ситуации для отслеживания их возникновения; производить декодирование протоколов разного уровня и представлять в понятной форме содержимое пакетов.

Буфер захвата. Буферы различных анализаторов отличаются по объему. Буфер может располагаться на устанавливаемой сетевой карте, либо для него может быть отведено место в оперативной памяти одного из компьютеров сети. Если буфер расположен на сетевой карте, то управление им осуществляется аппаратно, и за счет этого скорость ввода повышается. Однако это приводит к удорожанию анализатора. В случае недостаточной производительности процедуры захвата, часть информации будет теряться, и анализ будет невозможен. Размер буфера определяет возможности анализа по более или менее представительным выборкам захватываемых данных. Но каким бы большим ни был буфер захвата, рано или поздно он заполнится. В этом случае либо прекращается захват, либо заполнение начинается с начала буфера [23, с. 26].

Фильтры. Фильтры позволяют управлять процессом захвата данных, и, тем самым, позволяют экономить пространство буфера. В зависимости от значения определенных полей пакета, заданных в виде условия фильтрации, пакет либо игнорируется, либо записывается в буфер захвата. Использование фильтров значительно ускоряет и упрощает анализ, так как исключает просмотр ненужных в данный момент пакетов [2, с. 54].

Переключатели - это задаваемые оператором некоторые условия начала и прекращения процесса захвата данных из сети. Такими условиями могут быть выполнение ручных команд запуска и остановки процесса захвата, время суток, продолжительность процесса захвата, появление определенных значений в кадрах данных. Переключатели могут использоваться совместно с фильтрами, позволяя более детально и тонко проводить анализ, а также продуктивнее использовать ограниченный объем буфера захвата [23, с. 32].

Поиск. Некоторые анализаторы протоколов позволяют автоматизировать просмотр информации, находящейся в буфере, и находить в ней данные по заданным критериям. В то время, как фильтры проверяют входной поток на предмет соответствия условиям фильтрации, функции поиска применяются к уже накопленным в буфере данным.

Методология проведения анализа может быть представлена в виде следующих шести этапов:

1. Захват данных.

2. Просмотр захваченных данных.

3. Анализ данных.

4. Поиск ошибок. (Большинство анализаторов облегчают эту работу, определяя типы ошибок и идентифицируя станцию, от которой пришел пакет с ошибкой.)

5. Исследование производительности. Рассчитывается коэффициент использования пропускной способности сети или среднее время реакции на запрос.

6. Подробное исследование отдельных участков сети. Содержание этого этапа конкретизируется по мере того, как проводится анализ.

Обычно процесс анализа протоколов занимает относительно немного времени - 1-2 рабочих дня.

Большинство современных анализаторов позволяют анализировать сразу несколько протоколов глобальных сетей, таких, как X.25, PPP, SLIP, SDLC/SNA, frame relay, SMDS, ISDN, протоколы мостов/маршрутизаторов (3Com, Cisco, Bay Networks и другие). Такие анализаторы позволяют измерять различные параметры протоколов, анализировать трафик в сети, преобразование между протоколами локальных и глобальных сетей, задержку на маршрутизаторах при этих преобразованиях и т. п. Более совершенные приборы предусматривают возможность моделирования и декодирования протоколов глобальных сетей, 'стрессового' тестирования, измерения максимальной пропускной способности, тестирования качества предоставляемых услуг. В целях универсальности почти все анализаторы протоколов глобальных сетей реализуют функции тестирования ЛВС и всех основных интерфейсов. Некоторые приборы способны осуществлять анализ протоколов телефонии. А самые современные модели могут декодировать и представлять в удобном варианте все семь уровней OSI. Появление ATM привело к тому, что производители стали снабжать свои анализаторы средствами тестирования этих сетей. Такие приборы могут проводить полное тестирование сетей АТМ уровня E-1/E-3 с поддержкой мониторинга и моделирования. Очень важное значение имеет набор сервисных функций анализатора. Некоторые из них, например возможность удаленного управления прибором, просто незаменимы [2, с. 65].

Таким образом, современные анализаторы протоколов WAN/LAН/ДTM позволяют обнаружить ошибки в конфигурации маршрутизаторов и мостов; установить тип трафика, пересылаемого по глобальной сети; определить используемый диапазон скоростей, оптимизировать соотношение между пропускной способностью и количеством каналов; локализовать источник неправильного трафика; выполнить тестирование последовательных интерфейсов и полное тестирование АТМ; осуществить полный мониторинг и декодирование основных протоколов по любому каналу; анализировать статистику в реальном времени, включая анализ трафика локальных сетей через глобальные сети.

1.1.2 Протоколы мониторинга

Протокол SNMP

SNMP (англ. Simple Network Management Protocol -- простой прото-кол управления сетью) -- это протокол управления сетями связи на основе архитектуры TCP/IP.

На основе концепции TMN в 1980--1990 гг. различными органами стандартизации был выработан ряд протоколов управления сетями передачи данных с различным спектром реализации функций TMN. К одному из типов таких протоколов управления относится SNMP. Протокол SNMP был разработан с целью проверки функционирования сетевых маршрутизаторов и мостов. Впоследствии сфера действия протокола охватила и другие сетевые устройства, такие как хабы, шлюзы, терминальные сервера, LAN Manager сервера, машины под управлением Windows NT и т.д. Кроме того, протокол допускает возможность внесения изменений в функционирование указанных устройств.

Эта технология, призвана обеспечить управление и контроль за устройствами и приложениями в сети связи путём обмена управляющей информацией между агентами, располагающимися на сетевых устройствах, и менеджерами, расположенными на станциях управления. SNMP определяет сеть как совокупность сетевых управляющих станций и элементов сети (главные машины, шлюзы и маршрутизаторы, терминальные серверы), которые совместно обеспечивают административные связи между сетевыми управляющими станциями и сетевыми агентами.

При использовании SNMP присутствуют управляемые и управляющие системы. В состав управляемой системы входит компонент, называемый агентом, который отправляет отчёты управляющей системе. По существу SNMP агенты передают управленческую информацию на управляющие системы как переменные (такие как «свободная память», «имя системы», «количество работающих процессов»).

Агент в протоколе SNMP - это обрабатывающий элемент, который обеспечивает менеджерам, размещенным на управляющих станциях сети, доступ к значениям переменных MIB, и тем самым дает им возможность реализовывать функции по управлению и наблюдению за устройством.

Программный агент - резидентная программа, выполняющая функции управления, а также собирающая статистику для передачу ее в информационную базу сетевого устройства.

Аппаратный агент - встроенная аппаратура (с процессором и памятью), в которой хранятся программные агенты.

Переменные, доступные через SNMP, организованы в иерархии. Эти иерархии и другие метаданные (такие, как тип и описание переменной) описываются Базами Управляющей Информации (Management Information Bases (MIBs)).

На сегодня существует несколько стандартов на базы данных управляющей информации [3, 4]. Основными являются стандарты MIB-I и MIB-II, а также версия базы данных для удаленного управления RMON MIB. Кроме этого, существуют стандарты для специальных MIB устройств конкретного типа (например, MIB для концентраторов или MIB для модемов), а также частные MIB конкретных фирм-производителей оборудования.

Первоначальная спецификация MIB-I определяла только операции чтения значений переменных. Операции изменения или установки значений объекта являются частью спецификаций MIB-II.

Версия MIB-I (RFC 1156) определяет до 114 объектов, которые подразделяются на 8 групп:

* System - общие данные об устройстве (например, идентификатор поставщика, время последней инициализации системы).

* Interfaces - описываются параметры сетевых интерфейсов устройства (например, их количество, типы, скорости обмена, максимальный размер пакета).

* AddressTranslationTable - описывается соответствие между сетевыми и физическими адресами (например, по протоколу ARP).

* InternetProtocol - данные, относящиеся к протоколу IP (адреса IP-шлюзов, хостов, статистика об IP-пакетах).

* ICMP - данные, относящиеся к протоколу обмена управляющими сообщениями ICMP.

* TCP - данные, относящиеся к протоколу TCP (например, о TCP-соединениях).

* UDP - данные, относящиеся к протоколу UDP (число переданных, принятых и ошибочных UPD-дейтаграмм).

* EGP - данные, относящиеся к протоколу обмена маршрутной информацией ExteriorGatewayProtocol, используемому в сети Internet (число принятых с ошибками и без ошибок сообщений).

Из этого перечня групп переменных видно, что стандарт MIB-I разрабатывался с жесткой ориентацией на управление маршрутизаторами, поддерживающими протоколы стека TCP/IP.

В версии MIB-II (RFC 1213), принятой в 1992 году, был существенно (до 185) расширен набор стандартных объектов, а число групп увеличилось до 10 [7, с. 19].

Агенты RMON

Новейшим добавлением к функциональным возможностям SNMP яв-ляется спецификация RMON, которая обеспечивает удаленное взаимодействие с базой MIB.

Стандарт на RMON появился в ноябре 1991 года, когда Internet Engineering Task Force выпустил документ RFC 1271 под названием "Remote Network Monitoring Management Information Base" ("Информационная база дистанционного мониторинга сетей"). Данный документ содержал описание RMON для сетей Ethernet.

RMON -- протокол мониторинга компьютерных сетей, расширение SNMP, в основе которого, как и в основе SNMP, лежит сбор и анализ информации о характере информации, передаваемой по сети. Как и в SNMP, сбор информации осуществляется аппаратно-программными агентами, данные от которых поступают на компьютер, где установлено приложение управления сетью. Отличие RMON от своего предшественника состоит, в первую очередь, в характере собираемой информации -- если в SNMP эта информация характеризует только события, происходящие на том устройстве, где установлен агент, то RMON требует, чтобы получаемые данные характеризовали трафик между сетевыми устройствами.

До появления RMON протокол SNMP не мог использоваться удален-ным образом, он допускал только локальное управление устройствами. База RMON MIB обладает улучшенным набором свойств для удаленного управления, так как содержит агрегированную информацию об устрой-стве, что не требует передачи по сети больших объемов информации. Объекты RMON MIB включают дополнительные счетчики ошибок в пакетах, более гибкие средства анализа графических трендов и статистики, более мощные средства фильтрации для захвата и анализа отдельных пакетов, а также более сложные условия установления сигналов предупреждения. Агенты RMON MIB более интеллектуальны по сравнению с агентами MIB-I или MIB-II и выполняют значительную часть работы по обработке информации об устройстве, которую раньше выполняли менеджеры. Эти агенты могут располагаться внутри различных коммуникационных устройств, а также быть выполнены в виде отдельных программных модулей, работающих на универсальных ПК и ноутбуках (примером может служить LANalyzerНvell).

Интеллект агентов RMON позволяет им выполнять простые дей-ствия по диагностике неисправностей и предупреждению о возможных отказах - например, в рамках технологии RMON можно собрать данные о нормальном функционировании сети (т. е. выполнить так называемый baselining), а потом выставлять предупреждающие сигналы, когда режим работы сети отклонится от baseline - это может свидетельствовать, в частности, о неполной исправности оборудования. Собрав воедино информацию, получаемую от агентов RMON, приложение управления может помочь администратору сети (находящемуся, например, за тысячи километров от анализируемого сегмента сети) локализовать неисправность и выработать оптимальный план действий для ее устранения.

Сбор информации RMON осуществляется аппаратно-программными зондами, подключаемыми непосредственно к сети. Чтобы выполнить задачу сбора и первичного анализа данных, зонд должен обладать достаточными вычислительными ресурсами и объемом оперативной памяти. В настоящее время на рынке имеются зонды трех типов: встроенные, зонды на базе компьютера, и автономные. Продукт считается поддерживающим RMON, если в нем реализована хотя бы одна группа RMON. Разумеется, чем больше групп данных RMON реализовано в данном продукте, тем он, с одной стороны, дороже, а с другой - тем более полную информацию о работе сети он предоставляет.

Встроенные зонды представляют собой модули расширения для сетевых устройств. Такие модули выпускаются многими производителями, в частности, такими крупными компаниями, как 3Com, Cabletron, Bay Networks и Cisco. (Кстати, 3Com и Bay Networks недавно приобрели компании Axon и ARMON, признанных лидеров в области разработки и производства средств управления RMON. Такой интерес к этой технологии со стороны крупнейших производителей сетевого оборудования лишний раз показывает, насколько нужным для пользователей является дистанционный мониторинг.) Наиболее естественным выглядит решение встраивать модули RMON в концентраторы, ведь именно из наблюдения за этими устройствами можно со-ставить себе представление о работе сегмента. Достоинство таких зондов очевидно: они позволяют получать информацию по всем основным группам данных RMON при относительно невысокой цене. Недостатком в первую очередь является не слишком высокая производительность, что проявляется, в частности, в том, что встроенные зонды часто поддерживают далеко не все группы данных RMON. Не так давно 3Com объявила о намерении выпустить поддерживающие RMON драйверы для сетевых адаптеров Etherlink III и Fast Ethernet. В результате окажется возможным собирать и анализировать данные RMON непосредственно на рабочих станциях в сети.

Зонды на базе компьютера - это просто подключенные к сети компьютеры с установленным на них программным агентом RMON. Такие зонды (к числу которых относится, например, продукт Cornerstone Agent 2.5 компании Network General) обладают более высокой производительностью, чем встроенные зонды, и поддерживают, как правило, все группы данных RMON. Они более дороги, чем встроенные зонды, но гораздо дешевле автономных зондов. Помимо этого, зонды на базе компьютера имеют довольно большой размер, что может иногда ограничивать возможности их применения.

Автономные зонды обладают наивысшей производительностью; как легко понять, это одновременно и наиболее дорогие продукты из всех описанных. Как правило, автономный зонд - это процессор (класса i486 или RISC-процессор), оснащенный достаточным объемом оперативной памяти и сетевым адаптером. Лидерами в этом секторе рынка являются компании Frontier и Hewlett-Packard. Зонды этого типа невелики по размеру и весьма мобильны - их очень легко подключать к сети и отключать от нее. При решении задачи управления сетью глобального масштаба это, конечно, не слишком важное свойство, однако если средства RMON применяются для анализа работы корпоративной сети средних размеров, то (учитывая высокую стоимость устройств) мобильность зондов может сыграть весьма положительную роль.

Объекту RMON присвоен номер 16 в наборе объектов MIB, а сам объект RMON объединяет в соответствии с документом RFC 1271, состоит из десяти групп данных.

* Statistics - текущие накопленные статистические данные о характеристиках пакетов, количестве коллизий и т.п.

* History - статистические данные, сохраненные через определенные промежутки времени для последующего анализа тенденций их изменений.

* Alarms - пороговые значения статистических показателей, при превышении которых агент RMON посылает сообщение менеджеру. Позволяет пользователю определить ряд пороговых уровней (эти пороги могут относиться к самым разным вещам - любому параметру из группы статистики, амплитуде или скорости его изменения и многому другому), по превышении которых генерируется аварийный сигнал. Пользователь может также определить, при каких условиях превышение порогового значения должно сопровождаться аварийным сигналом - это позволит избежать генерации сигнала "по пустякам", что плохо, во-первых, потому, что на постоянно горящую красную лампочку никто не обращает внимания, а во-вторых, потому, что передача ненужных аварийных сигналов по сети приводит к излишней загрузке линий связи. Аварийный сигнал, как правило, передается в группу событий, где и определяется, что с ним делать дальше.

* Host - данных о хостах сети, в том числе и об их MAC-адресах..

* HostTopN - таблица наиболее загруженных хостов сети. Таблица N главных хостов (HostTopN) содержит список N первых хостов, характеризующихся максимальным значением заданного статистического параметра для заданного интервала. Например, можно затребовать список 10 хостов, для которых наблюдалось максимальное количество ошибок в течение последних 24 часов. Список этот будет составлен самим агентом, а приложение управления получит только адреса этих хостов и значения соответствующих статистических параметров. Видно, до какой степени такой подход экономит сетевые ресурсы

* TrafficMatrix - статистика об интенсивности трафика между каждой парой хостов сети, упорядоченная в виде матрицы. Строки этой матрицы пронумерованы в соответствии с MAC-адресами станций - источников сообщений, а столбцы - в соответствии с адресами станций-получателей. Матричные элементы характеризуют интенсивность трафика между соответствующими станциями и количество ошибок. Проанализировав такую матрицу, пользователь легко может выяснить, какие пары станций генерируют наиболее интенсивный трафик. Эта матрица, опять-таки, формируется самим агентом, поэтому отпадает необходимость в передаче больших объемов данных на центральный компьютер, отвечающий за управление сетью.

* Filter - условия фильтрации пакетов. Признаки, по которым фильтруются пакеты, могут быть самыми разнообразными - например, можно потребовать отфильтровывать как ошибочные все пакеты, длина которых оказывается меньше некоторого заданного значения. Можно сказать, что установка фильтра соответствует как бы организации канала для передачи пакета. Куда ведет этот канал - определяет пользователь. Например, все ошибочные пакеты могут перехватываться и направляться в соответсвующий буфер. Кроме того, появление пакета, соответствующего установленному фильтру, может рассматриваться как событие (event), на которое система должна реагировать заранее оговоренным образом.

* PacketCapture - условия захвата пакетов. В состав группы перехвата пакетов (packet capture) входят буфера для захвата, куда направляются пакеты, чьи признаки удовлетворяют условиям, сформулированным в группе фильтров. При этом захватываться может не пакет целиком, а, скажем, только первые несколько десятков байт пакета. Содержимое буферов перехвата можно впоследствии анализировать при помощи различных программных средств, выясняя целый ряд весьма полезных характеристик работы сети. Перестраивая фильтры на те или иные признаки, можно характеризовать разные параметры работы сети.

* Event - условия регистрации и генерации событий. В группе событий (events) определяется, когда следует отправлять аварийный сигнал приложению управления, когда - перехватывать пакеты, и вообще - как реагировать на те или иные события, происходящие в сети, например, на превышение заданных в группе alarms пороговых значений: следует ли ставить в известность приложение управления, или надо просто запротоколировать данное событие и продолжать работать. События могут и не быть связаны с предачей аварийных сигналов - например, направление пакета в буфер перехвата тоже представляет собой событие.

Данные группы пронумерованы в указанном порядке, поэтому, например, группа Hosts имеет числовое имя 1.3.6.1.2.1.16.4.

Десятую группу составляют специальные объекты протокола TokenRing.

Всего стандарт RMON MIB определяет около 200 объектов в 10 группах, зафиксированных в двух документах - RFC 1271 для сетей Ethernet и RFC 1513 для сетей TokenRing [28, с. 95].

Отличительной чертой стандарта RMON MIB является его независимость от протокола сетевого уровня (в отличие от стандартов MIB-I и MIB-II, ориентированных на протоколы TCP/IP). Поэтому, его удобно использовать в гетерогенных средах, использующих различные протоколы сетевого уровня.

1.2 Популярные системы управления сетями

Система управления сетью (Network management system) - аппаратные и/или программные средства для мониторинга и управления узлами сети. Программное обеспечение системы управления сетью состоит из агентов, локализующихся на сетевых устройствах и передающих информацию сетевой управляющей платформе. Метод информационного обмена между управляющими приложениями и агентами на устройствах определяется протоколами.

Системы управления сетями должны обладать целым рядом качеств:

* истинной распределенностью в соответствии с концепцией кли-ент/сервер,

* масштабируемостью,

* открытостью, позволяющей справиться с разнородным - от настольных компьютеров до мейнфреймов - оборудованием.

Первые два свойства тесно связаны. Хорошая масштабируемость достигается за счет распределенности системы управления. Распределенность означает, что система может включать несколько серверов и клиентов. Серверы (менеджерами) собирают данные о текущем состоянии сети от агентов (SNMP, CMIP или RMON), встроенных в оборудование сети, и накапливают их в своей базе данных. Клиенты представляют собой графические консоли, за которыми работают администраторы сети. Программное обеспечение клиента системы управления принимает запросы на выполнение каких-либо действий от администратора (например, построение подробной карты части сети) и обращается за необходимой информацией к серверу. Если сервер обладает нужной информацией, то он сразу же передает ее клиенту, если нет - то пытается собрать ее от агентов.

Ранние версии систем управления совмещали все функции в одном компьютере, за которым работал администратор. Для небольших сетей или сетей с небольшим количеством управляемого оборудования такая структура оказывается вполне удовлетворительной, но при большом количестве управляемого оборудования единственный компьютер, к которому стекается информация от всех устройств сети, становится узким местом. И сеть не справляется с большим потоком данных, и сам компьютер не успевает их обрабатывать. Кроме того, большой сетью управляет обычно не один администратор, поэтому, кроме нескольких серверов в большой сети должно быть несколько консолей, за которыми работают администраторы сети, причем на каждой консоли должна быть представлена специфическая информация, соответствующая текущим потребностям конкретного администратора.


Подобные документы

  • Разработка структуры локально-вычислительной сети ГБОУ СПО "ВПТ". Обоснование топологии, выбор аппаратного обеспечения для коммутации и сегментации. Установка и настройка сетевых протоколов и служб. Система мониторинга сетевых узлов и сетевого трафика.

    дипломная работа [1,8 M], добавлен 25.10.2013

  • Типы сетевых кабелей локальной вычислительной сети. Особенности установки беспроводного соединения Wi-Fi. Расчет трудоемкости работ по созданию ЛВС, затрат на ее разработку и монтаж. Предполагаемая прибыль от реализации ЛВС, капитальных затрат покупателя.

    курсовая работа [295,9 K], добавлен 27.12.2010

  • Анализ административного программного обеспечения локальной сети. Структура сетевых операционных систем. Планирование и сетевая архитектура локальной сети. Использование сетевых ресурсов на примере предприятия, предоставляющего услуги Интернет-провайдера.

    контрольная работа [112,5 K], добавлен 15.12.2010

  • Анализ и практическая реализация использования администрирования и мониторинга сети на предприятии. Процесс создания карты сети в программе LANState. Сетевые программы для сисадминов, программы мониторинга сети. Описание локальной вычислительной сети.

    курсовая работа [3,6 M], добавлен 15.02.2017

  • Классификация локальной вычислительной сети. Типы топологий локальной вычислительной сети. Модель взаимодействия систем OSI. Сетевые устройства и средства коммуникаций. Виды сетевых кабелей. Конфигурация компьютеров-серверов, техники рабочих станций.

    курсовая работа [1,3 M], добавлен 05.01.2013

  • Топология и принципы администрирования кабельной сети, выбор метода подключения сетевого оборудования. Проектирование локальной вычислительной сети. Оценка затрат на внедрение структурированной кабельной системы и системы бесперебойного питания.

    дипломная работа [1,8 M], добавлен 28.10.2013

  • Выбор спецификации активного и пассивного сетевого оборудования локальной вычислительной сети. Расчет количества кабеля и кабель-каналов. Выбор операционной системы рабочих станций. Настройка серверного, активного сетевого и серверного оборудования.

    курсовая работа [2,5 M], добавлен 18.05.2021

  • Функциональная схема локальной вычислительной сети. Планирование структуры и топология сети. IP–адресация и протокол TCP/IP. Настройка сетевого принтера и антивирусной системы NOD32. Технология прокладки кабельной системы. Технология создания патч-корда.

    курсовая работа [6,0 M], добавлен 08.08.2015

  • Способы классификации сетей. Разработка и описание структуры локальной вычислительной сети, расположенной в пятиэтажном здании. Технические сведения, топология иерархической звезды. Клиентское аппаратное обеспечение. Установка и настройка сервера.

    курсовая работа [58,1 K], добавлен 27.07.2011

  • Подбор пассивного сетевого оборудования. Обоснование необходимости модернизации локальной вычислительной сети предприятия. Выбор операционной системы для рабочих мест и сервера. Сравнительные характеристики коммутаторов D-Link. Схемы локальной сети.

    курсовая работа [1,9 M], добавлен 10.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.