Математические методы оптимизации производственных систем и объектов

Решения алгебраических уравнений методом выделения корней. Аппроксимация функций методом наименьших квадратов; дихотомия, бисекция. Одномерная оптимизация многоэкстремальных функций; метод золотого сечения. Многомерная оптимизация градиентным методом.

Рубрика Программирование, компьютеры и кибернетика
Предмет Математическое программирование
Вид курсовая работа
Язык русский
Прислал(а) ray
Дата добавления 04.03.2013
Размер файла 956,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Создание программы в среде программирования MatLab для решения задачи одномерной оптимизации (нахождение минимума и максимума заданных функций) методом золотого сечения, построение блок-схемы алгоритма и графическое изображение исследованных функций.

    реферат [112,0 K], добавлен 14.06.2010

  • Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет коэффициентов аппроксимации, детерминированности в Microsoft Excel. Построение графиков функций, линии тренда.

    курсовая работа [590,9 K], добавлен 10.04.2014

  • Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.

    курсовая работа [990,8 K], добавлен 23.10.2011

  • Построение эмпирических формул методом наименьших квадратов. Линеаризация экспоненциальной зависимости. Элементы теории корреляции. Расчет аппроксимаций в табличном процессоре Excel. Описание программы на языке Turbo Pascal; анализ результатов ее работы.

    курсовая работа [390,2 K], добавлен 02.01.2015

  • Одномерная оптимизация, метод "золотого сечения". Условная нелинейная оптимизация, применение теоремы Джона-Куна-Таккера. Исследование функции на выпуклость и овражность. Безусловная оптимизация неквадратичной функции, метод Дэвидона-Флетчера-Пауэлла.

    курсовая работа [2,1 M], добавлен 12.01.2013

  • Теоретические основы метода оптимизации. Разработка компьютерной системы для решения задач многомерной безусловной оптимизации методом Хука-Дживса с минимизацией по направлению. Описание структуры программы и результаты ее отладки на контрольных примерах.

    курсовая работа [595,4 K], добавлен 13.01.2014

  • Традиционные языки высокоуровневого программирования. Обзор методов интегрирования. Оценка апостериорной погрешности. Численное решение систем линейных уравнений. Аппроксимация функций методом наименьших квадратов. Решение дифференциальных уравнений.

    методичка [6,4 M], добавлен 23.09.2010

  • Разработка алгоритма аппроксимации данных методом наименьших квадратов. Средства реализации, среда программирования Delphi. Физическая модель. Алгоритм решения. Графическое представление результатов. Коэффициенты полинома (обратный ход метода Гаусса).

    курсовая работа [473,6 K], добавлен 09.02.2015

  • Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.

    лабораторная работа [23,5 K], добавлен 23.09.2014

  • Матричная форма записи системы линейных уравнений, последовательность ее решения методом исключений Гаусса. Алгоритмы прямого хода и запоминания коэффициентов. Решение задачи о сглаживании экспериментальных данных с помощью метода наименьших квадратов.

    курсовая работа [610,7 K], добавлен 25.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.