Подсистема выделения текстильных волокон в задачах экспертизы

Методы обработки изображений. Представление изображения в форматах RGB и HSB. Экономическая эффективность разработки и внедрения программного обеспечения подсистем обработки и выделения текстильных волокон. Защита оператора ЭВМ от вредных факторов.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 19.06.2010
Размер файла 287,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Республики Беларусь

Белорусский Государственный Университет

Информатики и Радиоэлектроники

Кафедра: Электронных вычислительных машин

Факультет: Компьютерных Систем и Сетей

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К ДИПЛОМНОМУ ПРОЕКТУ

НА ТЕМУ:

"Подсистема выделения текстильных волокон в задачах экспертизы"

Дипломник:(С.В. Шкутко)

Руководитель:(Р.Х. Садыхов)

Консультанты:

по экономической части (Т.Л. Слюсарь)

по охране труда и экологической безопасности (Э.Д. Подлозный)

по ЕСКД (В.А. Радишевский)

г. МИНСК

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ОБЗОР ЛИТЕРАТУРЫ

1.1 Текстильные волокна

1.2 Методы обработки изображений

1.3 Представление изображения в форматах RGB и HSB

1.4 Хранение растровых изображений в формате Bitmap

1.5 Экономическое обоснование и охрана труда

2. СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ

2.1 Структура системы обработки текстильных волокон

2.2 Структура подсистемы выделения текстильных волокон

3. ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ

3.1. Работа с BMP - файлами

3.2 Преобразование изображения из RGB - представления в HSB

3.3 Выделение волокон на исходном изображении

3.4 Выделение объектов заданного цвета

3.5 Выбор исходного изображения

4. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ И ПРИМЕНЕНИЯ ПОДСИСТЕМЫ ВЫДЕЛЕНИЯ ТЕКСТИЛЬНЫХ ВОЛОКОН

4.1 Характеристика подсистемы выделения текстильных волокон

4.2 Исходные данные

4.3 Расчет себестоимости и отпускной цены программного средства

4.4 Заработная плата исполнителей основная и дополнительная

4.5 Отчисления в фонд социальной защиты

4.6 Налоги, входящие в себестоимость программного средства

4.7 Материалы

4.8 Спецоборудование

4.9 Машинное время

4.10 Расходы на научные командировки

4.11 Прочие затраты

4.12 Накладные расходы

4.13 Полная себестоимость программного средства

4.14 Прибыль от реализации создаваемого программного средства

4.15 Прогнозируемая цена без налогов

4.16 Платежи в местный и республиканский бюджет

4.17 Цена без налога на добавленную стоимость

4.18 Налог на добавленную стоимость

4.19 Прогнозируемая отпускная цена

4.20 Выводы по разделу

5. Охрана труда и экологическая безопасность. Безопасность при работе оператора-криминалиста с компьютером

5.1 Анализ вредных факторов, воздействующих на оператора

5.2 Формирование изображения на мониторе

5.3 Особенности функционирования зрительной системы оператора

5.4 Воздействие излучений от дисплея

5.5 Выводы по разделу

Заключение

Литература

ВВЕДЕНИЕ

Важнейшая задача правоохранительных органов - повышение эффективности борьбы с любыми проявлениями преступной деятельности. Решение этой задачи требует активного использования в раскрытии и расследовании правонарушений современных научно-технических средств и методов.

Большинство преступлений сопровождается активным воздействием лиц, их совершающих, на различные элементы вещной обстановки события преступления. При этом возникают мельчайшие материальные образования - микрообъекты. Использование результатов исследования микрообъектов - одна из предпосылок повышения эффективности борьбы с преступностью.

К числу микрообъектов, широко встречающихся в криминалистической практике, относятся текстильные волокна. Связано это, прежде всего, с повсеместным использованием изделий из волокнистых материалов (предметы одежды, декоративно-обивочные и технические ткани, средства упаковки и т.д.). Информация, получаемая в результате обнаружения и исследования волокон, позволяет решать многие вопросы, играющие существенную роль в раскрытии преступлений. Особенно велико значение волокон одежды, так как они часто указывают на особенности (характер изделия, цвет, иногда индивидуальные свойства) предметов одежды преступника. Ценность микрообъектов - текстильных волокон для получения розыскной и доказательственной информации состоит в том, что они имеют довольно прочное сцепление со многими материалами, особенно с ворсистыми текстильными изделиями, и длительное время сохраняются на них, образуя устойчивые следы.

Современные возможности криминалистической экспертизы микрообъектов велики. Применение высокочувствительных методов исследования позволяет анализировать морфологическое строение, структуру, химический состав чрезвычайно малых количеств веществ и материалов, что дает обширную информацию о видовой принадлежности исследуемых микрообъектов, характере процессов, повлекших их образование, признаках и назначении предметов, частью которых они являются, а при наличии последних проводить идентификационное исследование.

Сказанное в полной мере относится и к текстильным волокнам. Каждая разновидность изделий из волокнистых материалов обладает комплексом особенностей, что обусловливается использованием при их получении волокон того или иного вида, формы, диаметра и длины, применением определенных приемов изготовления материала. Характерные свойства изделиям придают и технологические процессы обработки.

Задачами экспертного исследования текстильных волокон может быть решение ряда вопросов, имеющих как самостоятельное значение, так и являющихся отдельными этапами комплексного сравнительного исследования волокон между собой и с изделиями.

Уже само наличие волокон от определенных изделий, механизм их повреждения и локализация в конкретных местах исследуемых предметов нередко позволяют устанавливать фактические данные события преступления, такие как характер условий, в которых данные предметы находились, источник их происхождения, принадлежность к одному комплекту. По одинаковым перекрестным наслоениям волокон оказывается возможным устанавливать контакты предметов одежды между собой и с телом человека, что особо важно. Присутствие волокон определенного вида и назначения на предметах вещной обстановки позволяет получить информацию о внешних признаках изделия, от которого эти волокна могли быть отделены, что чрезвычайно важно для раскрытия неочевидных преступлений, розыска лиц, их совершивших.

Текстильные материалы, как правило, окрашены. Большое разнообразие используемых для их крашения способов и красителей, применение в ткацком производстве комбинаций цветных волокон, нитей, пряжи раскрывают широкие возможности сравнительного исследования микрообъектов - текстильных волокон по их цвету, способу крашения и свойствам красителей. Для исследования ограниченных количеств волокон в криминалистической практике апробирован ряд методов: визуальное сравнение, спектральные и хроматографические методы, химические реакции.

Человек с нормальным зрением различает в солнечном спектре до 160 цветовых оттенков. С этой точки зрения глаз человека является весьма точным аналитическим прибором для дифференциации окрашенных волокон.

Визуальная оценка цвета волокон осуществляется несколькими способами: невооруженным глазом, с помощью микроскопа и с применением светофильтров. Задача исследования при этом состоит в распознавании цветового оттенка и выражении его в конкретном названии (величине) или оценке сходства, различия сравниваемых объектов по цветовому оттенку и насыщенности цвета.

Простейший способ распознавания цвета состоит в сравнении волокон с эталонами, цветовые характеристики которых известны. Такое исследование может быть осуществлено невооруженным глазом или с использованием лупы. Визуальная оценка цвета волокон при их сравнении с эталонами должна проводиться при освещении, спектр излучения которого близок к солнечному свету. В противном случае при распознавании цветовых оттенков, особенно синих и фиолетовых, можно допустить ошибку. Визуальное сравнение цвета окрашенных микрообъектов носит субъективный характер, что вызывает определенные трудности в формулировке результатов исследования, так как различие или сходство цвета нельзя выразить в конкретных понятиях (величинах).

Всесторонняя объективная оценка цвета волокон может быть получена только спектрофотометрическим методом. В принципе, когда объект исследования не ограничен в размерах, спектральный анализ красителей волокон может быть осуществлен на любом спектрофотометре. Особенно эффективно в этом случае исследование растворов красителей, извлеченных соответствующими растворителями, или растворов непосредственно волокон. Исследование единичных элементарных волокон может быть осуществлено лишь с помощью специальных микроспектрофотометров, представляющих собой агрегат, состоящий из микроскопа, монохроматора, микроскопа-фотометра и электронно-вычислительной системы.

Исследование красителей может быть проведено химическими реакциями и методами бумажной и тонкослойной хроматографии.

Указанные методы требуют для своей реализации специального оборудования и зачастую занимают много времени. К тому же текущая их реализация не соответствует современному уровню развития техники. Для реализации экспертизы необходимо из множества микрообъектов, собранных на месте происшествия выбрать те, которые представляют интерес для дальнейшего анализа. Поэтому и возникла задача создания системы, которая бы позволила быстро и без особых затрат решать задачу анализа цвета текстильных волокон независимо от их строения и происхождения. Задача эта в настоящее время решается в основном “вручную” большим числом работников лабораторий криминалистического анализа, т. е. требует от работников лабораторий постоянного физического и умственного напряжения, отрицательно влияет на зрение. Затраты времени и людских ресурсов при таком подходе к поиску волокон весьма значительны, т. к. количество обрабатываемых объектов очень велико. Использование для решения данных задач вычислительной техники избавит от необходимости привлечения к процессу анализа дорогостоящего специализированного оборудования и сократит потребление временных ресурсов. В данном дипломном проекте разрабатывается подсистема выделения, которая на исходных изображениях, представляющих собой фотографии различного типа волокон, осуществляет выделение волокон и позволяет дать ответ о присутствии искомых объектов заданного цвета. Подсистема выделения предназначена для использования на ранних этапах криминалистического анализа с целью уменьшения времени идентификации объектов, собранных с элементов вещной обстановки события преступления. В конечном итоге данное программное средство в совокупности с уже используемыми методами должно значительно упростить проведение экспертизы, сократить потребление людских и временных ресурсов.

1.ОБЗОР ЛИТЕРАТУРЫ

1.1 Текстильные волокна

Работа [1] посвящена анализу текстильных волокон применительно к решению задач криминалистической экспертизы, описаны основные методы анализа, приведены справочные данные по различным типам волокон, описана технология изготовления и промышленной обработки волокон. При оценке результатов исследования волокон бывает принципиально важным знать свойства и строение текстильных материалов. Текстильные материалы подразделяются на текстильные волокна, нити и пряжу, вырабатываемые из них, и текстильные изделия. К текстильным относятся волокна натурального происхождения и химические. Последние применяются в виде элементарных волокон, называемых элементарной нитью (единичное волокно неопределенно большой длины), либо в виде штапелек (кусочков элементарных волокон определенной длины). Конструктивными элементами текстильных изделий обычно являются нити и пряжа или непосредственно волокна (предметы валяльно-войлочного производства, нетканые материалы, нитки и т.д.). В настоящее время натуральные волокна в чистом виде применяются для выработки ограниченного ассортимента изделий. Обычно они используются в смеси с химическими волокнами. К натуральным относятся хлопок, лубяные волокна, шерсть и натуральный шелк. Химические волокна используются в текстильной промышленности как самостоятельно, так и в смеси с натуральными. В мировой практике наметилась устойчивая тенденция замены шерстяных, шелковых и хлопковых волокон на химические. Этим достигается не только экономия натурального сырья, но и возможность придания изделиям специально заданных потребительских свойств, оригинального внешнего вида.

Все химические волокна, в зависимости от характера исходного сырья, делятся на два класса: искусственные и синтетические. Искусственные волокна получают из полимерных материалов естественного происхождения, главным образом - целлюлозосодержащих; синтетические - из полимеров, образованных в результате химического синтеза. Несмотря на большое число разновидностей химических волокон, описанных в литературе, текстильная промышленность применяет довольно ограниченное их количество. В основном используются волокна, изготовляемые на основе целлюлозы и полиамидные, полиэфирные, полиакрилонитрильные; несколько в меньших масштабах - на основе хлор - и фторсодержащих полимеров, полиолефинов. Увеличение ассортимента химических волокон происходит преимущественно за счет модификации уже выпускаемых.

Для крашения текстильных материалов в основном используются два метода - поверхностное крашение и печать. Кроме того, широко применяется крашение химических волокон в массе.

Поверхностное крашение сводится к погружению текстильного материала в раствор красителя. Для крашения могут применяться как индивидуальные красители, так и их смеси. При этом процесс крашения может быть однованновым и многованновым, в последнем случае текстильные материалы поочередно погружаются в несколько растворов красителей (для изделий, выработанных из нескольких видов волокон). Материалу, состоящему из волокон разного вида, можно придать однородный цвет, если окрасить отдельные волокна в цвета, дающие внешне однородную окраску.

Крашение способом печати сводится к нанесению на полотно текстильного материала цветных рисунков или узоров с помощью печатных валиков. Осуществляется такое крашение на цилиндрических тканепечатных машинах с помощью паст красителей.

Поверхностное крашение и печать используются для текстильных материалов из любых волокон. Крашение в массе применяется исключительно для химических волокон. Оно сводится в введению мельчайших частичек красителей или пигментов в массу полимера (раствор или расплав) перед формованием волокна.

Для снятия текстильных волокон с поверхности предметов пользуются инструментами и липкими пленочными материалами. Инструментами в данном случае служат пинцеты, скальпели, шпатели и др. Наиболее эффективны адгезионные пленочные материалы. Преимущество их применения состоит в том, что при этом сохраняется картина распределения волокон в наслоениях и одновременно с волокнами снимаются другие сопутствующие им микрообъекты. Изъятые волокна могут быть подвергнуты предварительному микроскопическому исследованию непосредственно на пленке.

1.2 Методы обработки изображений

Процесс распознавания объектов изображений представляет собой совокупность этапов выделения признаков, характеристик и классификации объектов по ним. Полученная на первом этапе информация является входной к этапу классификации. В качестве такой информации обычно используется либо контурное, либо скелетное представление объекта (когда текстурные характеристики не анализируются). Это связано с тем, что существенно расширяются возможности распознавания, когда объекты представлены в таком виде. Однако следует отметить, что скелетное и контурное представления имеют свои особенности, преимущества, недостатки и по сравнению друг с другом, и по сравнению с другими характеристиками, получаемыми на первом этапе.[2]

Контурное представление кажется более предпочтительным, нежели скелетное, в плане информативности. Очевидно, информативность контура выше, поскольку, имея контурное представление всегда можно получить скелетное, в то время как обратная операция не дает однозначного результата. Таким образом, происходит потеря некоторой информации об объекте. Иногда это приводит к упрощению процесса распознавания, а иногда затрудняет его. Следует отметить, что в плане доступности информации предпочтительным является скелетное представление. Действительно, осуществить структурный анализ формы объекта по скелету проще, чем по контуру. Это связано с тем, что в скелетном представлении явно выражены узлы (точки ветвления), линии, углы. Таким образом совместное использование распознавания по контуру и по скелету представляется наиболее целесообразным, когда требуется повышенное качество распознавания и не накладываются временные ограничения. К сожалению последнее возможно далеко не всегда. Поэтому обычно используется какое-либо одно представление в зависимости от класса объектов, подлежащих распознаванию. Например, для распознавания линейных объектов используются скелеты, а для площадных - контура.

По виду анализа алгоритмы[3] распознавания объектов по контуру можно разделить на три группы:

статистический;

структурный;

синтаксический.

По технологии обработки контурной информации среди алгоритмов распознавания можно выделить три основные группы:

алгоритмы, отслеживающие и обрабатывающие только граничные точки;

алгоритмы, отслеживающие граничные и некоторые другие точки;

алгоритмы, выделяющие и обрабатывающие граничные элементы (точки, штрихи) статистическими методами.

Методы выделения контура условно можно разделить на следующие группы: методы выделения перепадов яркости; методы отслеживания(или обхода) контуров; сканирующие методы выделения контуров.

В методах первого класса в окрестности каждой точки вычисляют градиент перепада яркости. Точки резкого изменения градиента выделяются как контурные. Таким образом, строится контурная модель, часто состоящая из набора незамкнутых штрихов. Эти методы в основном используются в полутоновых и цветных изображениях. На основании такой модели очень трудно описать форму объектов. Поэтому чаще всего исходные изображения сводят к бинарным. На последних в основном используются методы двух других классов, так как контур можно получить путем локального логического анализа изображения. Сканирующие методы позволяют выделять контуры объектов в процессе однократного просмотра исходного изображения. Для этого используются описания двух соседних строк изображения, списковые структуры, методы переиндексации.

Методы отслеживания наиболее проработаны и просты в реализации. Однако в большинстве из них сначала выделяются границы, а затем осуществляется их аппроксимация. Это требует больших затрат памяти и времени.

Более универсальный подход - совмещение этапов отслеживания и аппроксимации контура. Эффективность с точки зрения машинного времени для сжатия контурного описания достигается за счет применения локальных методов линейной аппроксимации, основанных на анализе геометрических особенностей заданной кривой. Различные эвристики позволяют сделать операцию аппроксимации, линейно зависящей от количества точек контура.

На исходном растре возможно наличие посторонних шумов. Поэтому для выделения элементарных объектов графического изображения необходимо устранить эти шумы.

Существует много критериев, по которым оценивается улучшенное изображение. Это, например, улучшение качества снимка для его визуального восприятия, минимизация среднеквадратичного отклонения исходного изображения от обработанного, сравнение с эталоном и т.д. В нашем случае нет идеального изображения, к которому нужно стремиться или с которым можно сравнивать. Цель фильтрации шумов графических изображений заключается в устранении помех, которые могут повлиять на структуру и форму выделенных объектов. Другими словами, данная операция должна подготовить изображение для операций утоньшения и выделения контуров с тем, чтобы в последующем на растровом изображении были выделены объекты, в точности соответствующие исходным. Исходя из анализа графических изображений, для разработки надежных алгоритмов фильтрации выделены основные виды помех, присутствующие на изображении.

1.3 Представление изображения в форматах RGB и HSB

Согласно работе [4] основой теории цветового зрения является тот установленный экспериментально факт, что все цвета могут быть получены путем сложения (смешения) трех световых потоков, например, красного, зеленого и синего с высокой насыщенностью (RGB - представление). Стандартная колориметрическая система RGB была принята для цветовых измерений всеми странами мира в 1931г. В её основу были положены исследования, проведенные английским физиком Д. Максвеллом, который в 1860 г. построил равносторонний цветовой треугольник. Вершины последнего соответственно характеризуют спектральные цвета: красный R ( = 630 нм), зеленый G ( = 528 нм), синий B ( = 457нм), как наиболее равномерно распределенные по спектру: красный - на низких частотах, зеленый - на средних и синий - на высоких частотах.

Экспериментально установлено (закон Грассмана), что количественно и качественно световой поток может быть определен следующим равенством:

F' = r'R + g'G + b'B = mF,(1.1)

где F' - заданный или искомый световой поток;

r', g', b' - количества или модули цветов красного R, зеленого G или синего B;

произведения r'R, g'G, b'B называются цветовыми компонентами потока;

m = r' + g' + b' - представляет собой сумму (алгебраическую) количеств (модулей) цветов и называется цветовым модулем;

F - цветность потока F'.

Воспроизведение каждого цвета при установленных основных цветах однозначно, то есть каждому воспроизведенному цвету соответствует только одна комбинация основных цветов. Воспроизведенный цвет определяется количеством основных цветов r', g', b'. Однако оперировать этими количествами неудобно и модули принято выражать в количествах единичных цветов. Для этого вводятся относительные величины:

r = r'/(r'+g'+b'); g = g'/(r'+g'+b'); b = b'/(r'+g'+b'),(1.2)

характеризующие цветность и называемые координатами цветности.

Из приведенных выше соотношений следует, что r + g + b=1.

Система RGB удобна тем, что ее параметры можно определять экспериментально, так как основные цвета R, G и B реальны. В частности, в качестве цветов G и B взяты значения, соответствующие ярко видимым линиям паров ртути. Наличие отрицательных ординат для большой группы реальных цветов затрудняет калориметрические расчеты, что является одним из недостатков системы RGB. Вторым недостатком служит то, что для вычисления количественной характеристики яркости цвета необходимо определить все три его компонента.

Исходное 3-х зональное изображение в формате rgb преобразуется в набор скалярных планов. Каждый из планов можно представить как компоненту нового векторного поля [5], которое получено с помощью локальных преобразований исходного. Основные три из таких компонент получаются с помощью нелинейных преобразований цветовых координат rgb->HSB (Hue, Saturation, Brightness). Существует большое число цветовых координат, которые более или менее соответствуют физиологическому восприятию цвета здоровым человеком. Система координат HSB является одной из наиболее производительных среди известных.

Яркость - характеристика удельной интенсивности свечения излучающей или отражающей поверхности. Яркость измеряется силой света, излучаемого единицей поверхности. Сила света характеризует интенсивность излучения света источником в данном направлении. Измеряется плотностью светового потока, излучаемого в молом телесном углу, к величине этого угла.

Насыщенность определяется количеством примеси белого в рассматриваемом цвете. Иначе говоря, насыщенность означает восприятие степени чистоты цвета, то есть степень его свободы от примеси белого цвета. Насыщенность представляет собой число световых порогов, отделяющих данный цвет от белого, равной с ним яркости.

Одним из планов является пространственное распределение насыщенности, определяющее степень окрашенности объекта. В связи с тем, что для слабоокрашенных объектов цветовая компонента вычисляется со значительной погрешностью, снижающей в результате точность цветовой селекции, вводится порог насыщенности, ниже которого цвет объекта считается серым (бесцветным). Цветовая компонента определяется на круге, в то время как остальные - на обычной числовой оси. Серый цвет представлен бинарным планом - маской, которая определяет (не)окрашенные области на изображении, и планом яркости.

1.4 Хранение растровых изображений в формате Bitmap

Формат bitmap изображения может хранить точную информацию о любом возможном изображении, поскольку каждое изображение может быть разбито на сетку, настолько мелкую, насколько это доступно человеческому глазу.

Аппаратно независимый формат хранения изображения Bitmap [6] был разработан фирмой Microsoft и предназначен для хранения и отображения растрового изображения. Файлы аппаратно независимого bitmap могут содержать изображения с 1, 4, 8 или 24 битами на пиксель. 1-, 4- и 8-битные изображения имеют карты цветов, тогда как 24-битные изображения имеют непосредственную цветопередачу.

1.5 Экономическое обоснование и охрана труда

В работе [7] отражены действующие в настоящее время требования, обобщена новая справочная и учебная литература по определению экономической эффективности проектируемых новых программных средств. Приведены все необходимые формулы и методы для экономического обоснования дипломного проекта. Содержится пример расчета эффективности разрабатываемого программного средства.

В работе [8] описаны вредные факторы, влияющие на пользователя в процессе работы с компьютером, определяются методы защиты от этих воздействий. Кроме этого, приведены стандарты безопасности, которым должны соответствовать мониторы компьютеров и защитные фильтры. Влияние мониторов на зрительную систему, опорно-двигательную систему операторов подробно рассмотрено в источниках [9] и [10]. Приведены рекомендации по организации рабочего времени за экраном монитора, а также по расположению рабочих мест в помещении при соблюдении норм безопасности. Описаны методы защиты от излучений мониторов. Источники [11] и [12] являются нормативными документами, определяющими требования к видеотерминальным устройствам персональных компьютеров. В них подробно представлены нормы излучений, безопасные для пользователя.

2. СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ

2.1 Структура системы обработки текстильных волокон

Обобщенная структурная схема системы обработки текстильных волокон представлена на чертеже РТДП 5.000.001. На ней представлены следующие модули:

1. Cбор информации с места преступления либо объектов вещной обстановки. На данном этапе производится сбор данных для последующей обработки. Для обнаружения, фиксации и изъятия текстильных волокон используется аппаратура и приборы, имеющиеся на вооружении у следователей, экспертов, техников, приспособленные для работы с небольшими количествами веществ и материалов [1]. Кроме того, для изъятия текстильных волокон, особенно когда их наличие лишь предполагается, применяют специальные липкие пленки и ленты. Изъятие волокон как технический прием подразумевает отделение их от предмета-носителя и перенесение в среду, защищающую волокна от повреждений. Для изъятия единичных волокон удобны адгезионные пленочные материалы. Для снятия с объектов-носителей комочков волокон, фрагментов нитей, пряжи пользуются пинцетами и другими инструментами. Пылезаборники применяют лишь при сборе волокон, рассеянных на больших площадях либо находящихся в глубине изделий, в щелях, узких пазах и других труднодоступных местах. Объекты, направляемые на исследование, соответствующим образом зафиксируются и надежно упаковываются. Средства, используемые для этого, обеспечивают защиту от повреждений и дополнительных загрязнений. Этим требованиям лучше всего отвечают пленки из полиэтилена и стеклянная посуда.

2. Ввод данных в ЭВМ, получение исходных изображений. Для дальнейших исследований на ЭВМ получают фотографии исследуемых объектов. Для этого каждые элемент исследования подвергается съемке цифровыми камерами либо высококачественным фотооборудованием с последующим сканированием фотографий. При этом используются различные фильтры, освещение и другие приемы для максимальной эффективности обнаружения. Изображение, полученное каким либо из способов на ЭВМ, преобразуется в формат BMP 24 bit для последующей обработки. Следует отметить, что на данном этапе применяется только высококачественное оборудование.

3. Предварительная обработка исходных данных. При использовании сканеров последние могут не распознать некоторые цвета и изображение получается не совсем качественное, что может сказаться на дальнейшем ходе исследований. Поэтому предварительно фотографии подвергаются фильтрации любыми доступными программными средствами, например Photoshop.

4. Первичный анализ, построение планов и гистограмм. Для проведения выделения необходимо получить информацию о точках изображения, их яркости, насыщенности, цветности. Для этого строятся r, g, b - планы, производится преобразование изображения из rgb - представления в hsb, строятся гистограммы цветности, насыщенности и яркости. Эти данные активно используются на последующих этапах.

5. Выделение волокон. На данном этапе на основе построенных ранее гистограмм осуществляется отделение волокон от фона изображения. Выделение осуществляется под контролем оператора в несколько этапов пока не будет достигнуто максимальное соответствие выделенных волокон реальному изображению.

6. Поиск объектов заданного цвета. Поиск волокон задаваемого оператором цвета производится в результате анализ полученного при выделении волокон изображения. При этом задается цвет волокна и погрешность, с которой следует определять цвет.

7. Идентификация волокон. При обнаружении текстильных волокон заданного цвета на исходном изображении производится идентификация волокон, собранных на самом первом этапе различными химическими, оптическими и другими методами. На данном этапе используется специальное оборудование, реактивы и иные средства, используемые в криминалистической практике.

8. Оформление отчетных документов. Этот этап заключается в оформлении результатов о проведенных исследованиях. Данная информация передается в другие отделы следственных органов, которые на их основании строят дальнейшую розыскную и оперативную работу.

9. Сохранение отчетной информации в базе данных. Вся информация, полученная в результате исследований, хранится в базе данных для ведения отчетности и последующего использования в случае необходимости при повторном возбуждении дел, либо причастности улик к другим преступлениям либо правонарушениям. Для этого используются высоконадежные технологии с целью избежания потери информации.

2.2 Структура подсистемы выделения текстильных волокон

Структурная схема, представленная на чертеже РТДП 5.000.002. Данная схема описывает функционально законченные блоки программного модуля выделения текстильных волокон на изображении и состоит из следующих элементов:

1. Выбор изображения для обработки. Выбор изображения производится путем задания текущего каталога и поиска необходимой фотографии из множества найденных в текущем каталоге.

2. Выбор операции. Этот модуль управляет всей работой подсистемы выделения. Здесь осуществляется выбор производимых над исходным изображением манипуляций. После окончания выполнения выбранной процедуры управление вновь передается в данный модуль для проведения дальнейших преобразований.

3. Выделение волокон. Этот модуль осуществляет выделение всех пикселов, сходных по цвету с цветом фона. При этом на обрабатываемом изображении остаются только те объекты, которые отличались от фона.

4. Построение R, G, B - планов. Путем прохода по всему изображению создается 3 BMP - файла, содержащих информацию о красной, голубой и зеленой составляющей обрабатываемой картинки. Информация, сохраненная в таком виде, удобна для восприятия пользователем и позволяет сразу получить визуальное представление выходных данных без использования дополнительных программных средств.

5. Поиск волокон заданного цвета. На этом этапе осуществляется поиск волокон заданного цвета для их последующей идентификации. Поиск осуществляется путем прохода по всему изображению, на котором уже выделены все волокна и нахождению объектов с заданным цветом. Результаты работы сохраняются в отдельном файле чтобы улучшить визуальное восприятие информации оператором.

6. Сохранение изображения. На этом этапе происходит сохранение изображения в bmp-формате. В результате оператор получает полное визуальное представление о проделанных манипуляциях и в случае необходимости может повторить обработку с другими задаваемыми параметрами для достижения максимального качества преобразований.

7. Преобразование из RGB - представления в HSB. Данный модуль путем прохода по всем точкам изображения осуществляет для каждого пиксела определение его красной, голубой и зеленой составляющих, и на основе их анализа производит преобразование из RGB - представления в HSB. Полученные данные сохраняются для дальнейшего использования в файле с расширением hsb.

8. Построение гистограмм цветности, насыщенности и яркости. Этим модулем осуществляется построение указанных гистограмм, которые в дальнейшем используются для выделения волокон. Гистограммы сохраняются в bmp - формате и файлах отчета.

9. Сохранение результатов обработки в файлах отчета. Результаты преобразований сохраняются в текстовых файлах для ведения необходимой отчетности и дальнейшего использования при необходимости повторных исследований. Файлы отчета не занимают много места на дисковом пространстве и содержат всю необходимую информацию, полученную в ходе проведенных преобразований.

3. ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ

3.1 Работа с BMP - файлами

В данном дипломном проекте в качестве исходных данных для обработки используются фотографии, сохраненные в формате BMP, 24 бит на пиксель, с изображенными на них текстильными волокнами различного типа и окраски.

Файлы формата bitmap [6], содержащие битовое изображение, начинаются со структуры BITMAPFILEHEADER табл.3.1. Эта структура описывает тип файла и его размер, а также смещение области битов изображения.

Таблица 3.1.

Заголовок файла BITMAPFILEHEADER

Смещение

Размер

Имя

Описание

0

2

BfType

Тип файла. Поле содержит значение 0x4D42 (текстовая строка «ВМ»).

2

4

BfSize

Размер файла в байтах. Это поле может содержать неправильное значение, так как в SDK для Windows 3.0 поле bfSize было описано неправильно (поле содержит размер файла в двойных словах). Обычно содержимое этого поля игнорируется, так как из-за ошибки в документации старые приложения устанавливали в этом поле неправильное значение.

6

2

BfReserved1

Зарезервировано, должно быть равно нулю.

8

2

BfReserved2

Зарезервировано, должно быть равно нулю.

10

4

BfOffBits

Смещение битов изображения от начала файла в байтах.

Сразу после структуры BITMAPFILEHEADER в файле следует структура BITMAPNFOHEADER. Этот заголовок содержит описание изображения и, необязательно, карту цветов. Структура заголовка bitmap иногда рассматривается как BITMAPINFO с полями вплоть до карты цветов как BITMAPINFOFEADER табл. 3.2.

Таблица 3.2.

Заголовок файла BITMAPINFOHEADER

Смещение

Размер

Имя

Описание

14

4

BiSize

Размер этого заголовка в байтах, (всегда 40)

18

4

BiWidth

Ширина битового изображения в пикселях

22

4

BiHeight

Высота битового изображения в пикселях

26

2

BiPlanes

Число плоскостей изображения, должно быть 1

28

2

BiBitCount

Количество бит на один пиксель. Может быть равно 1, 4, 8 или 24.

30

4

BiCompression

Тип сжатия. BI_RGB - сжатие не используется; BI_RLE4 - сжатие изображения, в которых для представления одного пикселя используется 4 бита; BI_RLE8 - сжатие изображения, в которых для представления пикселя используется 8 бит;

34

4

BiSizeImage

Размер сжатого изображения в байтах, или ноль

38

4

BiXPelsPerMeter

Горизонтальное разрешение, в пикселях / на метр

42

4

BiYPelsPerMeter

Вертикальное разрешение, в пикселях / на метр

42

4

BiYPelsPerMeter

Вертикальное разрешение, в пикселях / на метр

46

4

BiClrUsed

Количество используемых цветов, описание ниже

50

4

BiColorImportant

Число «важных» цветов

54

4*N

BmiColors

Карты цветов

Поле biSizeImage может быть (и обычно бывает) нулем, если данные несжатые.

Изображения, использующие 1, 4 или 8 бит на пиксель должны иметь карту цветов. Размер карты цветов - обычно 2, 16 или 256 элементов данных соответственно, но может быть меньше, если изображение не нуждается в полном комплекте цветов. Если поле biClrUsed - ненулевое, оно содержит количество используемых цветов, которое также представляет собой число элементов данных в карте цветов. Если это поле - нулевое, карта цветов имеет полный размер. Для 24-битных изображений карты цветов отсутствуют, и изображение содержит непосредственные RGB цвета. Поле biClrUsed может быть ненулевое для создания таблицы цветов фиксированного размера.

Поскольку возможно, что устройство отображения не будет иметь столько доступных цветов, сколько требуется для изображения, элементы данных в карте цветов должны начинаться с наиболее важных цветов. Поле biClrImportant, если оно ненулевое, сообщает, сколько цветов важно для хорошего воспроизведения изображения.

Элементы данных карты цветов содержат четыре байта табл. 3.3.

Таблица 3.3.

Элемент карты цветов RGBQUAD

Смещение

Имя

Описание

0

RgbBlue

Значение синего для элемента карты цветов

1

RgbGreen

Значение зеленого для элемента карты цветов

2

RgbRed

Значение красного для элемента карты цветов

3

RgbReserved

Ноль

Данные bitmap следуют сразу за картой цветов. Данные могут быть несжатые, либо же для 4- и 8-битных изображений может использоваться схема сжатия RLE.

Логически биты (и физически, при отсутствии сжатия) сохраняются построчно. Каждая строка дополняется нулевыми байтами до 4-байтовой границы. Строки сохраняются в порядке снизу вверх.

В bitmap с одним битом на пиксель каждый пиксель - единственный бит, биты упаковываются по восемь в байт. Старший бит в байте - самый левый пиксель.

В bitmap с 4 битами на пиксель для несжатого изображения в байт упакованы два пикселя, причем старший полубайт будет самым левым пикселем, и каждая строка дополняется нулями до 4-байтовой границы.

В bitmap изображениях с 8 битами на пиксель в несжатом виде один пиксель упакован в байт с дополнением каждой строки на границу 4 байт.

В bitmap изображениях с 24 битами на пиксель каждый пиксель - три байта, содержание значения синего, зеленого и красного в том же порядке. Каждая строка дополняется нулями до границы 4 байт. Именно этот формат данных используется в разрабатываемой в подсистеме выделения текстильных волокон.

3.2 Преобразование изображения из RGB - представления в HSB

Исходное изображение преобразуется из RGB - представления в HSB в случае выбора пунктов 2 либо 3 из главного меню с целью построения гистограмм цветности, яркости и насыщенности. Обрабатываемое изображение представляет собой картинку в формате BMP 24 бит. Это значит, что, согласно разделу 3.1, после заголовка файла, размером 54 байта, следует информация о строках изображения, где каждой точке изображения соответствуют 3 байта со значениями голубого, зеленого и красного цвета. Причем строки изображения выровнены по длине до границы 4 байт.

Таким образом, читая из исходного файла по 3 байта информацию о каждом пикселе можно получить значение яркости (Brightness).

В качестве значения яркости выбирается значение максимальной компоненты RGB - представления:

B = max(r, g, b),(3.1)

где r,g,b - значения компонент RGB - представления [5].

Исходя из полученных значений строится гистограмма яркости, которая сохраняется в файле Br_gist.bmp. Пример получаемой гистограммы предложен на рис.3.1.

Рис. 3.1. Гистограмма яркости изображения

Гистограммы сохраняются в bmp - файлах с целью улучшения визуального восприятия информации, т.к. наглядность в этом случае гораздо выше, чем у текстового представления.

Насыщенность S определяется через максимальные и минимальные компоненты RGB - представления. Насыщенность определяется относительным количеством белого, который надо добавить к полностью насыщенному цвету. Уровень белого определяется минимальной компонентой RGB - представления. Остальные две компоненты окрашивают белую подложку [5].

S= 1 - min(r, g, b)/max(r, g, b).(3.2)

Гистограмма насыщенности, пример которой представлен на рис. 3.2, сохраняется в файле Sa_gist.bmp.

Рис.3.2. Гистограмма насыщенности

Для вычисления цветности определяются сектора цветового круга, в которые данный цвет попадает. Цвет определяется большей по уровню компонентой RGB - представления. Сначала вычитается уровень белого - цвет приводится к насыщенному виду.

{r', g', b'} = {r - min, g - min, b - min}.(3.3)

Остается 2 ненулевых компоненты, возможные варианты соотношений между ними и цветностью представлены в табл. 3.4.

Таблица 3.4.

Ситуация

Сектор

Угол в секторе,

Цвет

r' g'

0 - 60

(g'/r')60

g' > r'

60 - 120

(r'/g')60

120 -

g' b'

120 - 180

(b'/g')60

120 +

Ситуация

Сектор

Угол в секторе,

Цвет

b' > g'

180 - 240

(g'/b')60

240 -

b' r'

240 - 300

r'/b')60

240 +

r' > b'

300 - 0

(b'/r')60

360 -

Блок - схема данного алгоритма представлена на чертеже РТДП 5.000.003.

Следует отметить, что насыщенность лежит в диапазоне 0…1, в то время как цветность располагается на окружности (или другой топологически эквивалентной кривой). Существует ряд случаев, когда определить значение цветности с достаточной точностью невозможно. Это случаи так называемого серого цвета от черного до белого. Эти случаи характеризуются низким уровнем насыщенности [5].

Гистограмма цветности рис.3.3 сохраняется в файле Hu_gist.bmp. Кроме того, гистограммы сохраняются в текстовых файлах name.txt либо name_.txt в зависимости от выбора пункта главного меню, где name.bmp - имя исходного файла для дальнейшей обработки иными программными средствами в случае необходимости. При построении гистограмм согласно пункту 2 меню учитываются все пикселы изображения. При выборе операции “Создание H,S,B планов для точек с большой (малой) насыщенностью” при построении гистограмм учитываются лишь те точки, значение насыщенности которых соответствует задаваемым пользователем параметрам.

Гистограмма цветности в дальнейшем используется для выделения волокон на исходном изображении.

Рис. 3.3. Гистограмма цветности изображения

В случае достаточной насыщенности цвет определяется однозначно. При обработке цветных изображений данный алгоритм цветоопределения показывает достаточно высокую производительность и не уступает более сложным методам определения цветности, основанным на использовании непрерывных функций и выводящим метрики формально.

Используя полученные значения для цветности, и сравнивая их с порогом цветности можно выделить на изображении окрашенные и неокрашенные участки. Таким образом, если участок на изображении является неокрашенным, то, следовательно, не имеет дальнейшего смысла обработка данного участка на предмет определения наличия на нем окрашенных текстильных волокон.

Информация о HSB - представлении исходного изображения хранится в одноименном файле с расширением *.hsb. Дальнейшие преобразования основаны на анализе содержимого данного файла. Здесь следует отметить, что для избежания ошибок следует предусмотреть наличие на диске 25 Мбайт свободного пространства в случае проведения полного анализа изображения, т.к. для проведения манипуляций с данными программа создает ряд графических и текстовых файлов.

3.3 Выделение волокон на исходном изображении

Операция выделения волокон позволяет окрасить одним цветом все точки, имеющие цвет фона и близкие к ним по цвету. Таким образом, в итоге на изображении должны остаться лишь те объекты, которые фону не принадлежали. Данная операция основана на обработке информации, хранящейся в построенной ранее гистограмме цветности.

Гистограмма цветности (Hue) содержит данные о количественном содержании пикселов каждого цвета на обрабатываемой картинке. Таким образом, можно используя гистограмму цветности получить информацию о том, объекты каких цветов содержатся на изображении. Объект, окрашенный заданным цветом, будет представлен на ней в виде пика с максимумом, соответствующим значению необходимого цвета либо близким к нему в случае если объект имеет цвет немного отличающийся от задаваемого. Т.к. на обрабатываемых изображениях изображено небольшое количество волокон на некотором фоне, то, следовательно, наибольшее количество пикселов на изображении будет окрашено именно цветом фона. Исходя из данных соображений, можно сделать вывод о том, что самый большой пик будет соответствовать именно цвету фона, а остальные - объектам, которые нам необходимо выделить для дальнейшей обработки. На рис. 3.4 видно, что самый большой пик соответствует фону, а остальные небольшие пики - текстильным волокнам и другим объектам.

Используя этот факт можно осуществить выделение объектов на исходных фотографиях. Для осуществления выделения необходимо экспериментально подобрав диапазон цвета, которому принадлежит фон, исключить этот диапазон из дальнейшего рассмотрения (приравнять к нулю количество точек заданного цвета). Диапазон цвета выбирается оператором таким образом, чтобы выделяемый объем изображения максимально соответствовал фону, и не терялась информация о содержащихся элементах.

Рис 3.4. Гистограмма цветности до выделения фона

Диапазон цвета выбирается оператором таким образом, чтобы выделяемый по его выбору цветом объем изображения максимально соответствовал фону, и не терялась информация о содержащихся элементах. На рис. 3.5 видно, что после выделения фона соответствующий пик исчез, а оставшиеся соответствуют объектам, которые содержались на изображении. Причем в конкретном случае, скорее всего на изображении остался один объект средней длины, для которого Hue 62 и несколько мелких объектов различных цветов, которые, видимо, являются помехой фона. Для наглядности на исходном изображении пикселы принадлежащие фону можно окрасить в один цвет, например в белый. При этом на изображении останутся объекты, которые отличались по цвету от цвета фона. Объекты могут иметь самую разнообразную форму, т. к. исходя из специфики анализируемых изображений, на фотографиях имеют место не только объекты большой длины, но и мельчайшие фрагменты продуктов текстильного производства, пыль и прочие сопутствующие частицы. Кроме того, возможно проявление дефектов, полученных в результате изготовления фотографий.

Рис 3.5. Гистограмма цветности после выделения фона

Задача выделения на изображении волокон сводится к выбору точек, которые отличаются от фона по некоторому критерию. Одним из таких критериев может служить цвет точки. В этом случае, анализируя цвет пиксела изображения можно используя погрешность, которая задается оператором, выделить точки, цвет которых отличается от фона. Дальнейший анализ можно производить только для полученных элементов на изображении, т.е. не учитывая фон. Проведенное выделение не только упрощает весь дальнейший процесс обработки, но и может быть использовано для проведения экспертизы в случае, когда необходимо анализировать не волокна какого-либо конкретного цвета, а всю совокупность объектов изображения. Но не всегда выделение волокон происходит эффективно, если используется только анализ цвета волокна. В ряде случаев волокно может мало отличаться по цвету от фона на малую величину и при анализе только цветности это может привести к ошибке выделения волокна, т.е. оно не будет выделено. Поэтому необходимо анализировать насыщенность. Это позволит, например, на розовом фоне выделить слабо окрашенные красные элементы.

Полученное в результате выделения изображение сохраняется в файле name_f.bmp, где name.bmp - имя исходного изображения.

3.4 Выделение объектов заданного цвета

Изображение с выделенными на нем волокнами может быть подвергнуто дальнейшему преобразованию с целью нахождения волокон заданного цвета. Данная операция может и не производиться, если нет необходимости в поиске волокон конкретного цвета, а необходимо лишь получить общую картину содержания объектов либо их расположения. Для произведения выделения необходимо используя главное меню выбрать файл *_f.bmp для произведения с ним дальнейших манипуляций. Если будет выбрано изображение, на котором еще не выделены текстильные волокна, то пользователю будет предложено предварительно произвести выделение. Далее, после выбора операции “Поиск точек заданного цвета”, производится проход по всей картинке с целью определения пикселов необходимого, с учетом вводимой погрешности и насыщенности, цвета. Результат сохраняется в файле name_i.bmp и его содержимое можно росмотреть любой программой просмотра, поддерживающей данный графический формат.

3.5 Выбор исходного изображения

Исходное изображение может находиться в любом месте дискового пространства. Для того чтобы выбрать картинку для анализа используется операция “Изменить путь либо файл" главного меню программы. Пользователю предлагается выбрать новый путь для поиска либо оставить текущий каталог неизменным. Информация о найденных файлах формата bmp выводится в отдельном окне, которое предусматривает возможность вертикального скроллинга для выбора необходимого файла рис. 3.6. В окне выводятся имя файла и его размер, текущее имя подсвечивается мигающим курсором.

Рис. 3.6. Выбор исходного изображения

Переход между файлами осуществляется нажатием клавиш “вверх” либо “вниз” на клавиатуре. Выбор осуществляется нажатием клавиши Enter и имя выбранного файла отражается в главном меню программы. Если же файлов нужного формата не найдено, то в окне выдается сообщение “*.bmp файлы не найдены”. При ошибочном выборе пути либо диска выводятся сообщения “Ошибка пути” и “Ошибка выбора диска” соответственно. При обнаружении данных ошибок текущий путь остается неизменным и пользователь в случае необходимости может заново повторить ввод информации о нахождении анализируемых изображений на диске.

Для поиска файлов по маске *.bmp используются стандартные функции findfirst и findnext, описанные в файле dos.h. Найденная информация организуется в двунаправленный список для последующего использования при организации скроллинга и выбора имени файла для обработки. Пользователь в любой момент может изменить диск либо путь к файлам. Для изменения пути и диска используются функции chdir и chdrive, описанные в файлах библиотечных файлах BorlandC dir.h и direct.h соответственно. Данное обстоятельство позволяет программе функционировать независимо от расположения на диске.

4. ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ И ПРИМЕНЕНИЯ ПОДСИСТЕМЫ ВЫДЕЛЕНИЯ ТЕКСТИЛЬНЫХ ВОЛОКОН

4.1 Характеристика подсистемы выделения текстильных волокон

Программа разрабатывается для нужд Министерства внутренних дел Республики Беларусь. Назначение программы первичная обработка изображений при проведении криминалистической экспертизы. Программа предназначена для квалифицированных пользователей, не требует знаний в области компьютерной техники, легка и понятна в эксплуатации. Разработанная программа не предназначена для широкого распространения в силу специфики предназначения.


Подобные документы

  • Обзор существующего программного обеспечения для автоматизации выделения границ на изображении. Разработка математической модели обработки изображений и выделения контуров в оттенках серого и программного обеспечения для алгоритмов обработки изображений.

    дипломная работа [1,7 M], добавлен 27.03.2013

  • Выбор методов обработки и сегментации изображений. Математические основы примененных фильтров. Гистограмма яркости изображения. Программная реализация комплексного метода обработки изображений. Тестирование разработанного программного обеспечения.

    курсовая работа [1,3 M], добавлен 18.01.2017

  • Описание математических методов представления и обработки графических изображений. Описание разработанного программного дополнения. Описание функций и их атрибутов. Представление и обработка графических изображений. Результаты тестирования программы.

    курсовая работа [1,7 M], добавлен 27.01.2015

  • Представление графической информации в компьютере. Понятие пикселя и растрового изображения. Редактор растровой графики Photoshop. Инструменты выделения. Механизм выделения областей. Геометрические контуры выделения. Эффект растровой графики шум.

    контрольная работа [1,4 M], добавлен 01.02.2009

  • Задачи цифровой обработки изображений. Методы пороговой сегментации. Создание программы представления рисунка в виде матрицы и применения к нему пороговой обработки. Разработка интерфейса программы загрузки и фильтрации изображения с выбранным порогом.

    курсовая работа [2,0 M], добавлен 12.11.2012

  • Описание технологического процесса выделения фракции ароматических углеводородов из бензола. Протоколы межуровневого взаимодействия интегрированной системой управления. Описание прикладного программного обеспечения, алгоритмов и интерфейса оператора.

    дипломная работа [3,8 M], добавлен 21.10.2012

  • Описание программного, информационного обеспечения спортивного магазина "Мегаспорт". Пути совершенствования действующей системы обработки данных. Разработка программы по учету товаров. Экономическая эффективность внедрения проекта и промышленная экология.

    дипломная работа [2,4 M], добавлен 24.03.2014

  • Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.

    курсовая работа [890,9 K], добавлен 07.12.2013

  • Общий алгоритм сравнения двух изображений. Метод максимальных площадей. Метод гистограмм. Подготовка изображения к распознаванию. Моделирование многомерной функции. Распределение векторов. Деформируемые модели. Реализация программного обеспечения.

    дипломная работа [384,2 K], добавлен 29.09.2008

  • Разработка программного обеспечения, предназначенного для изменения характеристик исходного звукового сигнала с целью изменения характеристик его звучания. Алгоритмы обработки и фильтрации звукового сигнала, редактирование его, изменение темпа и уровня.

    дипломная работа [1,8 M], добавлен 08.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.