Комплексная защита типовой локальной вычислительной сети

Типовые сети, используемые в организациях мелкого и среднего масштаба. Обеспечение защищенности информации при сбоях и отказах отдельных компьютеров и их компонентов. Рекомендации по установке источников бесперебойного питания, безопасность сетей.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 24.11.2010
Размер файла 825,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

18

  • Вступление

На сегодняшний день мелкие и средние фирмы при проектировании своих сетей часто не задумываются о необходимости их защиты. Такие сети, как правило, насчитывают до двухсот компьютеров и не имеют реальной необходимости в защите от атак профессионалов, поэтому в таких сетях требования к защите не являются очень высокими. При этом основными угрозами для них являются:

Неумышленные действия и ошибки собственных сотрудников (по незнанию, из любопытства, случайно и т.п.);

Различные неполадки и сбои;

Стихийные бедствия;

Непрофессиональная атака со стороны конкурентов.

Основной проблемой при защите сетей небольших предприятий является необходимость изучения большого объема литературы из-за разбросанности по разным книгам различных аспектов такой защиты. Кроме того, подход большинства книг неконкретен и описывает проблему только в общем, в то время как обсуждаемые фирмы имеют сети вполне определенной конфигурации с вполне определенным программным обеспечением. Таким образом, эти фирмы нуждаются в конкретных инструкциях, затрагивающих все аспекты безопасности небольших сетей, не разбросанных по разным источникам и не затрагивающих особо широкий спектр вопросов.

большое количество документации и хорошая техническая поддержка.

Такая типовая сеть состоит из следующих компонентов: до 200 рабочих станций, соединенных с использованием топологии “звезда”; один или несколько концентраторов или коммутаторов; главный и резервный контроллеры домена Windows NT. Для соединений используется витая пара 5 категории, т.е. сеть строится по технологии 10BaseT или 100BaseT.

Организации среднего масштаба обычно имеют выделенный канал связи с сетью Интернет, для обеспечения работы с которым устанавливается прокси-сервер. Также, в случае наличия выделенного канала организация обычно имеет Web-сервер и почтовый сервер.

При небольшом количестве компьютеров нет смысла использовать модель сети с несколькими доменами Windows NT, поэтому все компьютеры входят в один домен.

В этой типовой сети можно выделить несколько направлений, по которым злоумышленник может получить несанкционированный доступ к информации либо нарушить нормальное функционирование ЛВС. Кроме злоумышленных действий, при построении сети необходимо также обезопасить ее от таких явлений, как отключения и перепады напряжения, пожары, наводнения, сбои и отказы в оборудовании и т.п.

Таким образом, в данной сети можно выделить следующие направления, имеющие значение с точки зрения защиты информации:

Защита на физическом уровне от сбоев и отказов отдельных компьютеров и их компонентов.

Защита от доступа к компьютерам пользователей, не имеющих на это права.

Защита от несанкционированного использования компьютеров, в т.ч. кражи и установки комплектующих и других устройств, а также несанкционированного копирования и съема информации с компьютера.

Защита от съема информации с кабельных соединений и защита от несанкционированного физического подключения к ЛВС.

Настройка и установка программного обеспечения в соответствии с политикой безопасности предприятия, а также для максимально возможного предотвращения ущерба в случае неожиданного поведения программ. Здесь должны учитываться как непреднамеренные (ошибки и сбои в программах), так и преднамеренные (вирусы, «троянские кони», «логические бомбы» и т.п.) случаи неожиданного поведения.

Защита с помощью политики групп. Это означает, что группы и учетные записи пользователей домена создаются и ведутся в строгом соответствии с политикой безопасности предприятия. Также в соответствии с данной политикой им даются соответствующие права, т.е. используется разграничение доступа на уровне пользователей.

Правильная настройка Web- и Mail-серверов для минимизации возможностей злоумышленнику нарушить нормальную работу сети или получить несанкционированный доступ к информации, используя «дыры» в ПО этих серверов.

Правильная настройка прокси-сервера для контроля входящих и исходящих соединений, а в итоге - для минимизации возможностей злоумышленнику получить несанкционированный доступ к локальной сети предприятия или нарушить ее нормальную работу из сети Интернет.

В последующих главах будут подробно рассмотрены все перечисленные выше пункты.

Следует еще раз заметить, что в качестве операционных систем серверов и рабочих станций нашей типовой сети, а также в качестве ПО серверов используются программные продукты фирмы Microsoft, так как их использование позволяет удовлетворить большинству потребностей предприятий среднего и малого бизнеса.

Для упрощения дальнейшего чтения материала ниже приведен список используемого в сети программного обеспечения.

В качестве ОС рабочих станций сети - MS Windows 95, MS Windows 98, MS Windows NT 4.0 Workstation + Service Pack 6 или MS Windows 2000 Professional.

В качестве ОС серверов сети - MS Windows NT 4.0 Server + Service Pack 6.

В качестве ПО Web-сервера - MS Internet Information Server 3.0.

В качестве ПО почтового сервера - MS Exchange 5.5.

В качестве ПО прокси-сервера - MS Proxy Server 2.0.

Разумеется, кроме этих программных продуктов, пользователи могут работать и с другими, но в дальнейшем изложении подразумевается, что перечисленные выше программные продукты используются обязательно.

Обеспечение защищенности информации при сбоях и отказах отдельных компьютеров и их компонентов

Потери информации в результате отказов компьютеров и их компонентов происходят довольно часто. Однако почему многие организации не обращают на это должного внимания, не предпринимая никаких усилий для предотвращения потерь в результате, например, скачков и отключений электроэнергии, пожаров и т.д.

Ниже мы рассмотрим, что следует считать обязательным для рассматриваемой нами типовой организации с точки зрения данной проблемы.

Надежность сервера

Надежность является одним из самых важных критериев выбора сервера. В серверах, по сравнению с обычными ПК, надежности аппаратных компонентов уделяется значительно большее внимание. Они проходят более тщательный отбор и тестирование, ведь выход из строя сервера приведет к прекращению работы десятков пользователей. Сейчас для серверов нередко используют технологии, которые ранее были привилегией корпоративных машин.

По данным статистики, наиболее часто выходят из строя механические детали, в первую очередь дисководы и вентиляторы. Блоки питания, микросхемы оперативной памяти, контроллеров и сетевых плат ломаются реже. Поломки центральных процессоров (если это не связано с проблемами охлаждения) случаются редко.

Следовательно, меры по повышению надежности должны быть сконцентрированы на самых уязвимых компонентах.

Для исключения проблем с охлаждением в серверах устанавливают избыточные вентиляторы. Но это характерно для машин старшего и отчасти среднего уровня. Более того, при выходе из строя вентилятора серверы солидных производителей способны генерировать сигналы тревоги. Некоторые модели серверов при превышении порогового значения температуры автоматически отключаются, чтобы не было более тяжких последствий.

Самым популярным способом повышения надежности дисковой подсистемы является применение массивов RAID с горячей заменой дисков, особенно по спецификации RAID-5 и RAID-3. Более изощренные и надежные спецификации, такие, как RAID-53, не нашли применения в системах начального и среднего уровня.

К сожалению, применение массивов RAID далеко не всегда гарантирует надежность дисковой подсистемы. Особенно это касается самых современных дисковых накопителей SCSI с частотой вращения 10 000 об/мин. Дело в том, что подобные диски очень сильно нагреваются в процессе работы (до 70 градусов Цельсия). За эту особенность их иногда называют утюгами. Если дисководы размещены в посадочных слотах близко друг от друга, то из-за плохой вентиляции они часто выходят из строя. Поэтому последние версии SCSI-дисков лучше устанавливать с зазором между ними. Некоторые, хотя далеко не все дисководы снабжаются собственными вентиляторами.

Все системы старшего уровня и многие среднего уровня допускают установку дублированных блоков питания (обычно данная опция предоставляется факультативно). Однако большинство администраторов не видит в этом необходимости. И, наверное, зря. Если к каждому блоку питания подключить собственный источник бесперебойного питания, то это значительно уменьшит для серверов возможность потери электропитания при выходе из строя как блока питания, так и ИБП.

Во многих серверах (даже начального уровня) устанавливают микросхемы оперативной памяти с коррекцией ошибок (ECC). Но реально фирменные микросхемы солидных производителей редко выходят из строя в процессе работы сервера (что привело бы к запуску механизма коррекции ошибок). Обычно микросхемы выходят из строя при перевозке или при установке в сервер, т. е. до начала его работы. К тому же память ECC слишком дорога. В большинстве своем для серверов годятся обычные микросхемы памяти с контролем четности. Но для критических применений (там, где недопустимы перерывы в работе сервера) лучше перестраховаться и использовать память ECC.

Рекомендации по выбору серверов

Как правило, выбор серверов для организации - непростая задача. Выбор зависит от функций сервера, от требуемого уровня его надежности, от финансовых возможностей организации и т.п. Тем не менее, существует несколько общих моментов с точки зрения защищенности информации, хранимой на сервере и его надежного функционирования.

Следует рассмотреть возможность покупки «фирменных» серверов таких производителей, как Compaq, Dell, IBM и т.п. Если клиентские машины могут быть дешевыми, неизвестно какой сборки, то к выбору сервера следует подойти более ответственно. Даже если сервер будет стоить в несколько десятков раз дороже типичной клиентской машины, это окупится его более высокой надежностью и производительностью. В том случае, если покупка дорогой машины невозможна, следует выбирать компоненты с повышенной надежностью, в первую очередь - жесткие диски, материнские платы, устройства бесперебойного питания.

Для файловых серверов и серверов баз данных просто необходимы устройства резервного копирования. Здесь трудно дать какие-либо конкретные рекомендации, так выбор средств резервного копирования зависит от объемов хранимых данных. Обычно резервное копирование осуществляют на магнитные ленты или МО-диски.

Для серверов желательны схемы с избыточностью компонентов. Рекомендуется применять схемы с зеркалированием или дублированием дисков, тем более что Windows NT позволяет реализовать некоторые уровни RAID программно. Для повышенных требований к скорости дублирования можно рассмотреть возможность применения аппаратных контролеров RAID. Кроме того, если в качестве сервера организация использует не обычный компьютер, то рекомендуются схемы с несколькими вентиляторами и двумя блоками питания.

Следует по возможности применять диски SCSI.

Источник бесперебойного питания для сервера просто необходим. Рекомендации по его выбору приведены ниже.

В случае, если предъявляются специальные требования, рассмотрите сервера с возможностью «горячей» замены компонентов, памятью ECC и т.п. К сожалению, Windows NT 4.0 очень слабо поддерживает возможность “горячей” замены.

Рекомендации по выбору клиентских машин

Для клиентских машин необходимо использовать сетевые фильтры типа Pilot, особенно там, где есть лазерные принтеры. Источники бесперебойного питания - еще более лучший выбор.

Частой ошибкой является покупка дешевой материнской платы. Рекомендуется брать платы среднего или высокого ценового диапазона.

Источники бесперебойного питания

Если условия подачи электричества нестабильны - например, если оборудование подвергается постоянным отключениям (12 и более раз в год) или ему больше 10 лет - сеть оказывается сильно уязвимой со стороны электропитания. В такой ситуации следует подумать о повышении степени защиты (количество и тип защищаемых компонентов сети), а также о типе развертываемых ИБП. Более высокий уровень защиты необходим также в случае, когда повседневная жизнь организации зависит в значительной степени от работы сети.

Потребность защиты станций-клиентов и других сетевых устройств зависит от характера конкретной сетевой среды. В общем случае источник питания клиентской рабочей станции обеспечивает адекватную защиту электропитания. Однако, если в клиентской среде выполняются важные приложения типа расчета платежной ведомости, мониторинга ухода за больными и учета продаж, им может потребоваться защита средствами ИБП, особенно если программное обеспечение клиента локально запоминает в оперативной памяти данные, используемые для последующей обработки. При решении вопроса о защите концентраторов и коммутаторов выясните, насколько критичен каждый компонент для общего функционирования сетевой структуры. Если уж вам нужно защищать клиентов, то следует также защитить и сетевую магистраль для сохранения взаимодействия между клиентами и сервером. Даже если вы решите не защищать клиентов, все равно стоит обдумать возможность установки ИБП для обеспечения электропитания магистрали, тем более, если серверам необходимо сопряжение посредством сети. Но предположим, вы сочли, что острой нужды в защите станций-клиентов и устройств на магистрали сети средствами ИБП все-таки нет, - тогда, по крайней мере, обеспечьте их защиту с помощью предохранителей и регуляторов напряжений.

Как только вы определили, какие компоненты следует защищать, нужно также принять решение о типах развертываемых ИБП. Для выбора имеются три типа устройств: автономные, интерактивные или линейно-интерактивные. Все типы ИБП обеспечивают базовые функции защиты, однако более изощренные интерактивные и линейно-интерактивные системы предоставляют средства для компенсации отклонений напряжения. Повторимся, тип выбираемого ИБП зависит от капризов электропитания конкретной среды и чувствительности компонентов сети и циркулирующей в ней информации.

Автономные ИБП обеспечивают минимальную защиту сетевых устройств только на случай отключения питания. Исчезновение напряжения приводит к активизации батарей автономного ИБП, тем самым обеспечивая работу оборудования до исчерпания заряда аккумуляторов. Являясь, по сути дела, только резервным источником питания, эти устройства дешевле двух других типов ИБП. Если электропитание оборудования хорошего качества, то автономные ИБП способны предоставить необходимый уровень защиты.

Автономный ИБП защищает аппаратные компоненты только от исчезновения напряжения, при этом питание осуществляется от батарей ИБП. Продолжительность времени, в течение которого ИБП может обеспечивать работу защищаемого оборудования, зависит от емкости батареи. Интерактивные ИБП - наиболее дорогие устройства бесперебойного питания - защищают критически важное оборудование посредством непрерывной регенерации синусоидальной волны источника питания. Эта операция аналогична функции, выполняемой повторителем, получающим и регенерирующим цифровые сигналы перед дальнейшей их отправкой по каналу связи. По существу, эти устройства "очищают" напряжение, подаваемое компонентам сети. Интерактивные ИБП обеспечивают питание защищаемых ими устройств при любых условиях и непрерывно перезаряжают свои батареи; они всегда готовы среагировать на проблемы, связанные с подачей питания. Интерактивные ИБП также улучшают качество источника питания за счет регулировки напряжения, что необходимо в случае, если планируется использовать резервные генераторы.

Интерактивные ИБП, наилучшим образом приспособленные для поддержки особо важных компонентов сети, подают энергию защищаемым устройствам при всех условиях и "очищают" электрический ток путем постоянной регенерации синусоидальной волны источника питания.

Линейно-интерактивный ИБП представляет собою гибрид интерактивных и автономных ИБП. При нормальной работе инвертор фильтрует ток в цепи, подаваемый на вход защищаемого устройства, и поддерживает батареи в полностью заряженном состоянии. Если напряжение пропадает, инвертор выполняет обратную операцию, преобразовывая постоянный ток батареи в переменный. Линейно-интерактивные модели ИБП лучше всего приспособлены для поддержки не особенно важных элементов сети, например файловых и принт-серверов.

Линейно-интерактивные ИБП сохраняют свои батареи в заряженном состоянии посредством фильтрации тока в цепи защищаемых устройств. Когда напряжение пропадает, инвертор ИБП преобразует постоянный ток в переменный, обеспечивая подачу резервного напряжения к защищаемым компонентам.

Если ИБП больше десятка, то эффективный способ их контроля и управления насущно необходим. К счастью, большинство производителей ИБП предоставляет вместе со своими системами управляющее ПО. Управляемые источники бесперебойного питания обычно называются интеллектуальными (smart). Подобные устройства могут регистрировать события, непрерывно контролировать качество энергоснабжения, сообщать о состоянии батарей и выполнять другую диагностику. Они также автоматически выгружают с сервера операционную систему в случае, когда продолжительность отсутствия напряжения превышает время автономной работы ИБП. С помощью управляющего ПО при отключении питания работу сети можно автоматически свертывать. При продолжительных перерывах в питании программное обеспечение должно автоматически оповещать пользователей и технический персонал, сохранять открытые файлы и закрывать приложения до остановки пострадавшего сервера.

В зависимости от производителя программное обеспечение управления питанием выдает предупреждения в виде звуковых сигналов, электронной почты и пейджинга. Некоторые пакеты позволяют перепрограммировать сообщения, посылаемые пользователям и/или техническому персоналу. Чтобы эти системы работали правильно, программное обеспечение управления питанием должно быть полностью совместимым с вашей сетевой ОС. Большинство производителей поддерживают системы NetWare и Windows NT.

Ниже рассмотрен список критериев, которые следует учитывать при определении требований и выборе конкретного ИБП.

Величина нагрузки. Наиболее простым критерием выбора ИБП является величина нагрузки (мощность), измеряемая в киловольт-амперах (kVA). Этот показатель представляет собой количество энергии, необходимое защищаемому устройству для нормальной работы. Мощность устройства можно грубо оценить, используя следующую формулу: кВА = вольты·амперы/1000. Вольты обозначают величину напряжения, требуемого для работы устройства (например, 110 вольт); амперы обозначают величину постоянного тока, указанную в паспорте устройства. Чем выше значение кВА, тем более мощный и дорогой ИБП вам необходим. Надежный ИБП - тот, у которого значение мощности (кВА) выше вычисленного значения на 20-50%.

Время работы батареи. Этот показатель обозначает период времени, в течение которого ИБП обеспечивает электропитание (при определенной величине нагрузки) защищаемого устройства. В общем случае время работы батареи следует принять равным, по крайней мере, 15 минутам. Иначе гарантировать работу компонентов сети в течение периода, превышающего обычную продолжительность отключения питания, весьма проблематично. Если этого недостаточно, выберите ИБП с возможностью наращивания емкости батарей - и рассмотрите возможность приобретения резервного генератора. Требования к качеству питания. В случае отключения энергоснабжения все ИБП обеспечивают питание от батарей в течение непродолжительного периода времени. Однако убедитесь в том, что ИБП надлежащим образом улучшают характеристики напряжения переменного тока в случае подачи питания от электросети. Если шум линий имеет место, выбранный ИБП должен содержать блок подавления шума; если напряжение подвержено спадам, ИБП должен обеспечивать регулировку напряжения. В любом случае встроенная защита от скачков напряжения для ИБП обязательна. Даже если выбросы напряжения, происходящие по вине обслуживающей коммунальной компании, в вашей практике редкость, позаботиться о защите от скачков напряжения все-таки стоит, поскольку при возникновении скачков оборудование может сгореть.

Рекомендации по выбору и установке источников бесперебойного питания

Рекомендуется составить план сети и с его помощью определить, какие из компонентов нуждаются в источниках бесперебойного питания. Для нашей типовой схемы следует установить их на сервера, на коммутаторы (концентраторы), на устройство сопряжения с сетью Интернет. Если необходимо, следует установить ИБП на клиентские машины, где обрабатываются важные данные, на компьютеры руководителей.

Рекомендуется выбирать однотипные ИБП. Желательным условием является наличие ПО, способного удаленно управлять и контролировать разбросанные по зданию источники питания. Необходимо настроить ПО ИБП на посылку предупреждений администратору при отключении питания электросети и разряде батарей, а также на автоматическое корректное завершение работы ОС при разряде батарей.

Организационная защита

Организационная защита является очень эффективным методом обеспечения сохранности информации. Под ней понимается довольно широкая область, однако для рассматриваемых нами типовых организаций можно выделить несколько ключевых моментов.

Ограничение доступа в здание и помещение

Рекомендуется пост охраны на входе, использование пропускной системы.

Помещения должны запираться и иметь сигнализацию. Сигнализация должна быть установлена на двери и окнах, возможно применение датчиков движения.

Ограничение свободного доступа к серверам и коммутационному оборудованию

Это обеспечивается использованием таких мер, как ограничение доступа в помещения, где находятся компьютеры с наиболее ценной информации. Как правило непосредственная защита путем ограничения доступа организуется для сервера. Если невозможно размещение сервера в отдельном помещении, то используются шкафы или запираемые корпуса.

Доступ к серверам должен быть возможен только администратору, руководителю, оператору резервного копирования.

Защита от кражи и подмены оборудования

В тех случаях, где эта проблема актуальна, лучше использовать для компьютеров специальные корпуса. Если это невозможно, корпус компьютера должен быть опечатан. Рекомендуется также проверять целостность оборудования при сдаче рабочего места.

Обычно такая проблема возникает при необходимости предоставлять доступ к компьютерам внештатных сотрудников, гостей, командированных и т.д. Здесь крайне важно отсутствие так называемой «обезлички», т.е. должно быть известно кто последний работал на данном компьютере. Обычно это достигается применением специальных программ либо записью в журнале.

Периодически необходимо проверять соответствие комплектующих, серийные номера. Кстати, в компьютер могут быть установлены специальные устройства, записывающие и передающие информацию. Так как такое оборудование довольно дорого, это может означать, что за вашей организацией ведется направленный шпионаж.

Защита от несанкционированного съема информации с экрана дисплея.

Это пункт обеспечивается также использованием организационных мер. Необходимо правильное планирование размещения компьютерной техники. Мониторы, по возможности, разворачиваются от окон, дверей.

Также используются программные средства. Основная проблема безопасности заключается в том, что человек отходя от своего рабочего места оставляет компьютер не заблокированным. Для снижения вероятности получения информации таким методом необходимо использование заставок "save-screen" с паролем. Т.е. после включения заставки получить доступ к компьютеру можно только введя пароль. Данная операция не требует от пользователя сложных действий.

Резервное копирование

Данная операция также должна быть отнесена к организационной защите.

Для ее проведения необходим план резервного копирования. Наиболее распространенным является полное резервное копирование раз в неделю и инкрементирующее каждый день. Носители, на которые производится полное резервное копирование, следует чередовать в течение некоторого времени, обычно месяца. Для применения инкрементирующего копирования в течение недели применяют разные носители на каждый день недели.

Хранить носители резервного копирования следует в несгораемых сейфах. Рекомендуется хранить их в другом здании.

Перед началом применения регулярного резервного копирования следует попытаться восстановить резервные данные и убедиться, что в случае потери информации ее это можно будет сделать без труда.

Для рассматриваемой нами типовой сети следует производить копирование основного контроллера домена (PDC) Windows NT, информация почтового сервера, возможно - Web-сервера. Рекомендуется сохранять важную информацию с серверов баз данных и файловых серверов.

Обычно в такой небольшой сети операцию резервного копирования производит администратор. Однако при большом объеме работы или его сильной загруженности этим может заниматься и оператор резервного копирования. В любом случае ситуация с резервным копированием должна быть под контролем сетевого администратора.

Парольная защита

Как известно, наиболее популярная система разграничения доступа - паролирование. Система Windows NT позволяет довольно гибко настраивать ограничения на выбор пароля, однако организационные меры здесь еще более важны.

Самой большой проблемой здесь является выбор простых и легко угадываемых паролей. Как защититься от этого программными средствами, рассказано ниже, организационные же меры здесь рекомендуются следующие:

Следует провести с каждым пользователем небольшой ликбез, объяснив для чего нужен пароль, какие пароли являются надежными, как выбирать надежный легко запоминаемый пароль, зачем их периодически нужно менять.

Следует постоянно проверять наличие у рабочих мест свободно лежащих бумажек с паролями. Для злостных нарушителей следует предусмотреть меры воздействия и наказания.

Администратор должен периодически проверять наличие быстро вскрываемых паролей и предупреждать об этом пользователей.

Другие организационные моменты

При приеме на работу каждый служащий должен подписать соглашение о неразглашении коммерческой тайны, которое может быть включен в контракт или трудовой договор.

Часто администратор ЛВС сталкивается с непониманием со стороны пользователей, которые не выполняют требования по защите информации. Здесь необходимо проявлять жесткость. Руководитель предприятия должен поддерживать в этом сетевого администратора.

При требовании выполнения организационных мер хорошим приемом является ссылка на вышестоящие организации или руководство, которые «обещают уволить и администратора, и служащего при малейшем нарушении».

Защита кабельных соединений

Кабель типа «витая пара»

Кабель типа «неэкранированная витая пара» для сетей состоит из четырех пар проводов 24-го сортамента. По проводам пары передаются сигналы противоположной полярности, поэтому для каждой пары суммарная передаваемая мощность равна нулю. Это позволяет снизить потери за счет электромагнитного излучения и свести к минимуму наводки (перекрестные помехи) от соседних проводов. На принимающем конце сигнал, идущий по «отрицательному» проводу, инвертируется и суммируется с сигналом, идущим по «положительному» проводу. При этом сигнал получается максимальным.

Кабели типа «витая пара» подразделяются на несколько категорий в зависимости от их пропускной способности. Пропускная способность витой пары зависит от точности соблюдения производственной технологии и строгости контроля степени скручивания проводов в процессе производства. Витая пара излучает радиосигналы, длина волны которых кратна длине одного витка. Пара, имеющая виток длиной 10 см, будет излучать первичные интерференционные волны с периодом 10 см.

Если различные пары в составе одного кабеля свиты одинаково, то их излучения будут интерферировать. Поэтому желательно, чтобы разные пары в кабеле имели витки такой длины, которая не приводила бы к образованию гармоник. В этом случае можно снизить помехи, наводимые парами друг в друге. Витые пары подразделяются на следующие категории:

Категория 1. Провода для передачи звуковой информации.

Категория 2. Новый тип проводов для передачи звука и последовательных данных.

Категория 3. Скорость передачи данных достигает 10 Мбайт/с (этого достаточно для сетей типа Ethernet или Token Ring с пропускной способностью 4 Мбайт).

Категория 4. Скорость передачи данных достигает 20 Мбайт/с (этого достаточно для сетей Token Ring с пропускной способностью 16 Мбайт).

Категория 5. Скорость передачи данных достигает 100 Мбайт/с (этого достаточно для сетей типа Fast Ethernet или CDDI).

Категория 6 (перспективная). Скорость передачи данных достигает 155 Мбайт/с (этого достаточно для сетей типа ATM-155).

Неэкранированные витые пары категорий 3 - 5 конструктивно спроектированы так, что не создают помехи друг в друге, но подвержены помехам от внешних источников. Кроме того, данные с них легко считываются с помощью других устройств. Сигналы в проводах витой пары принимаются расположенными вблизи от проводов индукционными усилителями или путем считывания наведенного сигнала (перекрестной помехи) с неиспользуемых пар. Декодирование данных, считанных с проводов, с помощью сетевых анализаторов представляет собой несложную задачу.

Экранированная витая пара довольно надежно защищена от помех, создаваемых внешними источниками, подобно витой паре категории 4. Однако для них актуальной является проблема перекрестных помех, поскольку степень скручивания в них проводов слабо контролируется в процессе производства. Из-за более высокой стоимости экранированная витая пара не очень широко используется в США, но пользуется большим спросом во многих европейских странах.

Политика применения кабелей типа «витая пара»

Рекомендуется все кабели типа «витая пара», находящиеся вне распределительных шкафов и не помещенные под фальшполами или подвесными потолками, протягивать внутри резиновых или пластиковых труб или пластиковых сетевых магистралей (кабельгонов). Стыки труб и магистралей целесообразно изолировать контровочной лентой или краской, нарушение которых должно указывать на попытки получения доступа к кабелям.

Закрашивайте швы между панелями подвесных потолков так, чтобы любое их несанкционированное вскрытие было заметно. После планового вскрытия нужно сразу же снова закрашивать их.

Рассмотрите возможность прокладки всех сетевых кабелей в потолочных кабельгонах, которые могут быть закрыты или опечатаны.

Все распределительные щиты и коробки должны быть заперты так же, как и помещения, в которых установлены компьютеры.

Сетевая топология типа «звезда»

Данные сети - самые распространенные на сегодняшний день. В сетях с топологией «звезда» каждый кабель подключается непосредственно к компьютеру и к концентратору. С этой точки зрения звезда представляет собой совокупность двухточечных соединений. По каждому из кабелей идет обмен только с одним компьютером (хотя иногда для разветвления сети в разрывы кабеля могут подключаться концентраторы).

Основные проблемы звездообразных сетей связаны с незащищенностью портов концентратора и возможностью скрытого подключения концентратора вместо компьютера. В обоих случаях к сети без ведома администратора может быть подключен полнофункциональный компьютер. Эту проблему можно частично решить, обезопасив распределительные устройства. Однако выявить несанкционированное подключение концентраторов можно либо с помощью программного обеспечения мониторинга, либо путем прекращения работы всех сетевых компьютеров и последующего мониторинга потерь в каналах связи. На рисунке 2 показан вариант скрытого подключения концентратора в том месте, где должен быть компьютер.

Рисунок 2

Политика применения сетей типа «звезда»

Надежно перекройте доступ к распределительным шкафам и устройствам.

Поскольку посторонний может просто подключиться к одному из неиспользуемых Ethernet-портов концентратора, необходимо защищать эти порты либо аппаратным путем, либо путем установки сигнальных систем, контролирующих изменение состояния порта SNMP.

Защита неиспользуемых портов необязательно должна быть реализована на самом концентраторе. При изменении конфигурации сети без присмотра обычно остаются сетевые коннекторы. Необходимо внимательно следить, чтобы к таким коммутационным устройствам в незапертых помещениях не подключился никто из посторонних.

Следует всегда отключать неиспользуемые порты коммутатора для физических устройств. При переносе компьютера следует убедиться, что соответствующая сетевая магистраль отключена от концентратора.

Безопасность сетей на основе Windows NT

Общие сведения о сетях на основе Windows NT

Для функционирования системы защиты информации от несанкционированного доступа требуется механизм идентификации каждого пользователя. Поэтому в операционной системе Windows NT и построенных на ее основе доменах обязателен процесс входа в систему (logon).

Пользователь, как правило, вводит информацию о себе только раз -- при входе в систему, получая после этого доступ к ресурсам, расположенным как в том домене, где он зарегистрирован, так и в других доменах Windows NT. При этом может показаться, что после входа пользователя в систему проверка подлинности больше не производится. Это впечатление обманчиво, и за кажущейся простотой обращения к ресурсам сети Windows NT скрывается сложный механизм постоянной проверки регистрационной информации о пользователе, срабатывающий каждый раз, когда он пытается получить доступ к ресурсам любого Windows NT-компьютера (и даже компьютера с операционной системой Windows 95, если доступ к его ресурсам контролируется доменом).

Естественно, такая система проверки требует постоянной передачи по сети информации об именах и паролях пользователей. Поэтому для грамотного обеспечения защиты сетей на базе Windows NT необходимо четко представлять процессы, лежащие в основе механизма проверки подлинности пользователей, и то, какая, когда и в каком виде регистрационная информация передается по сети.

Интерактивный и удаленный вход

Пользователь начинает работу в сети с интерактивного входа: он должен ввести свое имя и пароль, зарегистрированные в базе данных домена. Пользователь, вошедший в домен с Windows NT-компьютера, по завершении проверки подлинности получает из соответствующей базы данных уникальный идентификатор безопасности (SID), однозначно определяющий этого пользователя при работе с ресурсами того компьютера с Windows NT, с которого он вошел в систему. При входе в домен с компьютера с другими операционными системами, такими как Windows 95, пользователю, подлинность которого проверена контроллером домена, разрешается войти в сеть с определенным уровнем полномочий.

Удаленный вход имеет место, когда пользователь уже вошел в систему интерактивно и пытается установить связь по сети с другим Windows NT-компьютером. Это случается, например, при подключения к общему ресурсу через диалоговое окно Map Network Drive или по команде net use, при открытии совместно используемой папки на удаленном компьютере с помощью программы Windows NT Explorer или через диалоговое окно Run. При этом сервер, к которому подключается пользователь, вновь проверяет подлинность, а затем создает для него маркер доступа к ресурсам данного сервера.

Служба Net Logon

На любом компьютере с Windows NT, входящем в домен, работает служба NetLogon, одна из задач которой -- обеспечение проверки подлинности пользователей при входе в домен. На компьютере с Windows NT Workstation или отдельном сервере с Windows NT Server служба Net-Logon принимает запросы на вход с локального компьютера и передает их контроллеру домена. На контроллере домена служба NetLogon обрабатывает эти запросы и передает ответ компьютеру, с которого пользователь входит в домен.

Служба NetLogon отвечает за:

установление безопасного канала между Windows NT-компьютером, входящим в домен, и контроллером домена, а также между контроллерами доменов, связанных доверительными отношениями;

сквозную проверку подлинности, т.е. передачу регистрационной информации пользователя на тот контроллер домена, где хранится учетная запись пользователя.

Обнаружение

Проверка подлинности пользователей в домене -- задача контроллеров домена (основного или дополнительных). Поэтому компьютер, с которого пользователь входит в домен, должен сначала найти в сети контроллер домена. Этот процесс называется обнаружением (discovery).

При запуске компьютер с Windows NT пытается обнаружить в сети контроллер своего домена. Если запускается резервный контроллер домена, он пытается обнаружить основной контроллер домена. Наконец, основной контроллер домена должен найти контроллеры всех доверяемых (trusted) доменов.

Клиенты других операционных систем Microsoft проводят обнаружение, только если нужна проверка подлинности пользователей домена.

Установление безопасного канала

Когда Windows NT-компьютер обнаружит контроллер домена, начинается установление безопасного канала (secure channel). Здесь безопасный канал -- это соединение между Windows NT-компьютером и контроллером домена, устанавливаемое, только когда эти два компьютера «знают» друг друга и проверили подлинность каждого. По этому каналу затем передается регистрационная информация о пользователях домена.

Служба NetLogon пытается установить безопасный канал после запуска компьютера и завершения процесса обнаружения, если это не удается, попытки повторяются каждые 15 минут или если возникнет необходимость в проверке подлинности.

Учетные записи компьютеров и доменов

При установлении безопасного канала службы NetLogon компьютеров с Windows NT посылают друг другу «вызовы» и «ответы», чтобы произвести взаимную проверку подлинности. При этом используются учетные записи домена и зарегистрированных в домене Windows NT-компьютеров. Существует три типа таких записей:

учетная запись доверия рабочей станции (WORKSTATION_TRUST_ ACCOUNT) -- для проверки подлинности входящего в домен компьютера с Windows NT Workstation или отдельного сервера с Windows NT Server;

учетная запись доверия серверу (SERVER_TRUST_ACCOUNT) -- для проверки подлинности резервных контроллеров домена;

учетная запись доверия между доменами (INTERDOMAIN_TRUST_ACCOUNT) -- для проверки подлинности доверительных отношений между доменами Windows NT.

Эти учетные записи хранятся в базе данных SAM в разделе реестра HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users и в базе данных соответствующего Windows NT-компьютера (рабочей станции, резервного контроллера домена или контроллера доверяющего домена) -- в разделе реестра HKEY_LOCAL_MACHINE\Security\Policy\Secrets.

Учетные записи компьютеров, как и пользователей, включают имя и пароль. Для компьютеров имя учетной записи -- это всегда имя компьютера со знаком доллара ($) на конце. Первоначальные пароли учетных записей рабочей станции с операционной системой Windows NT или отдельного сервера в домене устанавливаются такими же, как и имена этих компьютеров (в нижнем регистре и, если нужно, усеченные до 14 символов). Первоначальный пароль для учетной записи доверия между доменами задается в диалоговом окне Add Trusting Domain программы User Manager for Domains при установлении доверительных отношений со стороны доверяемого домена. Эти пароли работают до момента активизации членства соответствующего компьютера с Windows NT в домене или активизации доверительных отношений между доменами, после чего меняются автоматически каждую неделю. Процедуру смены пароля можно отключить как со стороны контроллера домена, так и со стороны рабочей станции.

Обмен сообщениями при образовании безопасного канала

Обмен сообщениями при образовании безопасного канала происходит следующим образом.

Windows NT-компьютер (клиент) устанавливает сеансы TCP/IP и NetBIOS с соответствующим контроллером домена (сервером), способным проверять пользователей при входе в домен.

Открывается анонимный доступ к ресурсу IРС$. Для этого сначала согласуется диалект протокола SMB командой SMB_COM_NEGO-TIATE. Далее открывается анонимный сеанс SMB, т.е. в запросе SMB_COM_SESSION_SETUP_ANDX указывается пустое имя пользователя и пароль, и, наконец, командой SMB_COM_TREE_CON-NECT подключается дерево с именем IРС$.

Клиент, используя команду SMB_COM_CREATE_ANDX протокола SMB, создает на контроллере домена именованный канал (named pipe) с именем NETLOGON. Передаваемая по нему информация будет обрабатываться службой NetLogon контроллера домена.

Используя именованный канал NETLOGON, клиент инициирует установление связи по механизму удаленного вызова процедур (RPC Bind), передавая серверу номера и версии интерфейсов, один из которых -- Abstract Interface UUID = 12345678-1234-ABCD-EFOO-01234567CFFB -- требуется самому клиенту, а другой -- Transfer Interface UUID = 8A885D04-1CEB-11C9-9FE8-08002B104860 -- нужен серверу для передачи. Интерфейс представляет собой обозначение некоторой библиотеки процедур, исполнение которых может быть вызвано с удаленного компьютера. Сервер подтверждает существование запрошенного интерфейса. Подтверждение содержит, в частности, имя службы, с которой устанавливается взаимодействие -- в данном случае это \PIPE\lsass, т.е. подсистема локального администратора безопасности сервера.

Далее идет собственно образование безопасного канала, включающее удаленный вызов двух процедур. Первой клиент вызывает процедуру NetrServerReqChallenge. В качестве параметров в запросе передается имя сервера, с которым устанавливается безопасный канал, имя клиента (в данном случае имя компьютера) и «вызов клиента» -- последовательность из 8 случайных байтов. Возвращаемый сервером клиенту результат работы процедуры -- «вызов сервера», тоже последовательность из 8 случайных байтов, отличная от «вызова клиента». Используя оба «вызова» и хешированный пароль данного компьютера, и клиент, и сервер вычисляют так называемый ключ сеанса (session key), применяемый впоследствии для проверки подлинности передаваемой по безопасному каналу информации.

После этого клиент рассчитывает свой мандат (credentials), дважды шифруя свой «вызов» ключом сеанса по алгоритму DES. Мандат -- 8 байтов, призванных доказать серверу, что клиент знает свой «вызов» и ключ сеанса, -- посылается как один из параметров при удаленном вызове процедуры NetrServerAuthenticate2. Другие параметры этой процедуры -- имена сервера, самого Windows NT-компьютера и его учетной записи в домене.

Если принятая сервером информация совпадает с рассчитанной им самим (напомним, что сервер уже знает и ключ сеанса, и «вызов клиента»), он отвечает клиенту подтверждением успешного выполнения RPC. Одновременно клиенту для проверки подлинности передается мандат сервера, рассчитанный теперь уже на основе «вызова» сервера. Клиент проверяет эту информацию, сравнивая полученные 8 байтов с рассчитанными им самим, и в случае совпадения процедура организации безопасного канала успешно завершается. Важное примечание: мандаты клиента и сервера сохраняются и в дальнейшем служат для проверки подлинности учетных записей как пользователей при их входе в домен, так и Windows NT-компьютеров -- например, при смене пароля рабочей станции в домене.

Взаимная проверка подлинности Windows NT-компьютера и контроллера домена -- обязательное условие последующего входа пользователей с этого компьютера в домен.

Сквозная проверка подлинности

Сквозная проверка подлинности (pass-through authentication) происходит, когда компьютер не может идентифицировать пользователя, привлекая свою локальную базу данных учетных записей, а именно:

При интерактивном входе в систему на рабочей станции с Windows NT Workstation или на отдельном сервере Windows NT Server, если в поле Domain диалогового окна Logon Information указано имя домена или доверяемого домена. При этом компьютер по безопасному каналу передает запрос на проверку подлинности контроллеру своего домена. Контроллер проверяет введенное имя домена и, если оно совпадает с именем его собственного, сам проверяет подлинность с помощью своей базы учетных записей и возвращает идентификационную информацию компьютеру входа. Если указанное в поле Domain имя не совпадает с именем домена, к которому он принадлежит, контроллер проверяет, не совпадает ли данное имя с именем доверяемого домена. При совпадении устанавливается безопасный канал с контроллером доверяемого домена, и ему передается запрос на проверку подлинности данного пользователя. Контроллер доверяемого домена обрабатывает этот запрос, сверяя полученную информацию с той, что храниться в его базе данных, и посылает идентификационные данные исходному контроллеру домена, который в свою очередь передает их компьютеру входа. Если учетная запись пользователя не найдена, попытка входа завершается неудачей.

Вход в домен с Windows NT - компьютеров

Интерактивный вход на компьютере с операционной системой Windows NT начинается после того, как пользователь, нажав комбинацию клавиш Ctrl+Alt+Delete, вызывает диалоговое окно Logon Information и вводит свою регистрационную информацию. При этом в поле Domain выбирается либо имя домена, либо имя доверяемого домена, либо имя компьютера, где зарегистрирован этот пользователь (если компьютер не является членом домена, поле Domain просто не появляется в диалоговом окне Logon Information).

После щелчка кнопки ОК компьютер проверяет имя домена. Если имя, введенное в поле Domain, совпадает с именем компьютера, подлинность пользователя проверяется на основании информации из локальной базы данных. Это просто вход в компьютер с операционной системой Windows NT, а не в домен. Если же имя в поле Domain отличается от имени компьютера, т.е. это имя либо своего, либо доверяемого домена, компьютер входа посылает введенные данные контроллеру своего домена. Контроллер анализирует имя домена, а затем либо сам проверяет подлинность введенной пользователем информации, либо передает ее для проверки контроллеру доверяемого домена.

При удаленном входе в компьютер с Windows NT регистрационная информация о пользователе передается от клиента к серверу по протоколу SMB. Однако если сервер не является контроллером домена, то идет такая же процедура сквозной проверки подлинности, что и при интерактивном входе. Полученные Windows NT-компьютером по протоколу SMB сведения (в частности, зашифрованный с помощью хешированного пароля пользователя «вызов» сервера) передаются между компьютерами Windows NT с помощью запроса RPC NetrLogonSamLogon. При этом дополнительное шифрование ключом, согласованным при установлении безопасного канала, не производится.

Кэширование информации о пользователе на компьютере с Windows NT

При первом входе пользователя в домен с какого-либо компьютера контроллер домена передает проверенную информацию о нем на компьютер входа. Эта информация кэшируется компьютером в локальном реестре в разделе HKEY_LOCAL_MACHINE\SECURITY\Policy\Secrets и в дальнейшем может служить для проверки подлинности пользователей, когда ни один контроллер домена не доступен.

Таким образом, даже если все контроллеры домена выключены, несколько (по умолчанию 10) пользователей, которые последними интерактивно регистрировались в домене с данного компьютера, смогут войти в домен с помощью кэшированных данных. Регистрационная информация о пользователях, входивших в компьютер, а не в домен, также хранится в локальной базе данных этого Windows NT-компьютера.

Вход в домен с клиентских компьютеров, отличных от Windows NT

Клиентские компьютеры, работающие под управлением Windows 95, Windows for Workgroups, MS-DOS, Macintosh или LAN Manager 2.x, могут взаимодействовать с доменами. Их принципиальное отличие от Windows NT-компьютеров в том, что они не регистрируются в базе данных каталога домена. С точки зрения защиты, эти клиенты заметно уступают клиентам с операционной системой Windows NT и, естественно, представляют собой намного большую угрозу системе безопасности сети.

И все же пользователи этих компьютеров могут иметь учетные записи в базе данных домена. Их вход в домен с клиентских компьютеров управляется контроллером домена.

Компьютеры клиентов не получают регистрационной информации о пользователе, которая могла быть кэширована на рабочей станции и впоследствии задействована для доступа к ресурсам. Поэтому, если при входе с компьютера указанных выше клиентов контроллер домена недоступен, пользователь не сможет работать с сетевыми ресурсами.

Указанные клиенты не имеют возможности выбрать имя доверяемого домена при входе в систему, поскольку такие компьютеры жестко привязаны к определенному домену. Однако эти пользователи могут соединяться с Windows NT-компьютерами как своего, так и других доменов. При этом учетные данные пользователя обрабатываются в таком порядке (до момента успешной регистрации): сначала самим компьютером, затем контроллером домена, к которому компьютер принадлежит, и -- при соединении с компьютером доверяющего домена -- контроллером доверяемого домена.

Кэширование паролей на клиентских компьютерах, отличных от Windows NT

Вход в домен Windows NT с компьютеров, управляемых Windows 95, Windows for Workgroups, MS-DOS (c Microsoft Network Client v3.0) и др., требует ввода двух паролей: одного -- соответствующей операционной системы и другого -- для входа в домен Windows NT. При первом входе запрашиваются оба пароля, а в дальнейшем, если были указаны одинаковые пароли, только первый. По умолчанию информация о всех паролях сохраняется в файле с расширением .PWL, создаваемом для пользователя на локальном компьютере.

Конечно, для пользователей такая система существенно упрощает процедуру входа в домен и другие сети. Однако она заметно ослабляет защищенность сети, поскольку регистрационная информация пользователя домена в момент работы хранится как в памяти клиентского компьютера с такой операционной системой, так и в соответствующем PWL-файле на локальном жестком диске, откуда ее может извлечь злоумышленник.

Для улучшения безопасности сети можно отменить кэширование паролей клиентов такого типа.

Возможные атаки

Перехват пароля при входе программой-имитатором

Одним из способов получения регистрационной информации о пользователе с целью проникновения в сеть является загрузка с дискеты операционной системы MS-DOS и запуск программы, имитирующей поведение операционной системы Windows NT. Задача такой программы -- вывести на экран диалоговое окно Logon Information, получить информацию о имени и пароле пользователя, передать ее по сети на компьютер злоумышленника в локальной сети или в Интернете, затем выдать некоторую правдоподобную по диагностике «ошибку», и остановить компьютер. Естественно, после перезагрузки вход в систему протекает нормально, и неопытный пользователь может не заметить подвоха.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.