Машинные коды, системы счисления, кодировка информации

Команды вычислительной машины, которые интерпретируются микропроцессором или микропрограммами. Правила для записи чисел цифровыми знаками. Способы кодирования информации. Практическое применение машинных кодов, систем счисления, кодировки информации.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 15.03.2015
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Машинные коды, системы счисления, кодировка информации

1.1 Машинные коды

1.2 Системы счисления

1.3 Кодировка информации

2. Практическое применение машинных кодов, систем счисления, кодировки информации

2.1 Практическое применение машинных кодов

2.2 Практическое применение систем счисления

2.3 Практическое применение кодировки информации

Заключение

Список использованной литературы

Приложение

Введение

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана с получением, накоплением и обработкой информации. Что бы человек ни делал: читает ли он книгу, смотрит ли он телевизор, разговаривает, он постоянно и непрерывно получает и обрабатывает информацию.

За годы существования ЭВМ их характеристики сильно изменились: если первые машины могли совершать несколько сотен операций в секунду и «помнить» тысячу чисел, то для современных компьютеров доступно быстродействие в десятки и сотни операций в секунду, а их память вмещает объемы информации, исчисляемые десятками и сотнями мегабайт.

При быстрой смене поколений ЭВМ общие принципы хранения и обработки информации в машине, принципы управления работой компьютера почти не изменились.

Любой живой организм, в том числе человек, является носителем генетической информации, которая передается по наследству. Генетическая информация хранится во всех клетках организма в молекулах ДНК (дезоксирибонуклеиновой кислоты). Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т.д.

Человек воспринимает окружающий мир, т.е. получает информацию, с помощью органов чувств. Чтобы правильно ориентироваться в мире, он запоминает полученные сведения, т.е. хранит информацию, человек принимает решения, т.е. обрабатывает информацию, а при общении с другими людьми - передает и принимает информацию. Человек живет в мире информации.

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Этот процесс имеет специальное название - кодирование информации.

В нашей работе мы рассмотрим вопросы по практическому применению машинных кодов, систем счисления, кодированию информации.

1. Машинные коды, системы счисления, кодировка информации

1.1 Машинные коды

Машинный код (также употребляются термины собственный код, или платформенно-ориентированный код, или родной код, или нативный код -- от англ. native code) -- система команд конкретной вычислительной машины, которая интерпретируется непосредственно микропроцессором или микропрограммами данной вычислительной машины.

Каждая модель процессора имеет свой собственный набор команд, хотя во многих моделях эти наборы команд сильно перекрываются. Говорят, что процессор A совместим с процессором B, если процессор A полностью «понимает» машинный код процессора B. Если процессор A знает несколько команд, которых не понимает процессор B, то B несовместим с A.

«Слова» машинного кода называются машинными инструкциями. Каждая из них описывает элементарное действие, выполняемое процессором, такое как «переслать байт из памяти в регистр». Программа -- это просто длинный список инструкций, выполняемых процессором. Раньше процессоры просто выполняли инструкции одну за другой, но новые суперскалярные процессоры способны выполнять несколько инструкций за раз. Прямой поток выполнения команд может быть изменён инструкцией перехода, которая переносит выполнение на инструкцию с заданным адресом. Инструкция перехода может быть условной, выполняющей переход только при соблюдении некоторого условия.

Также инструкции бывают постоянной длины (у RISC, MISC-архитектур) и диапазонной (у CISC-архитектур; например, для архитектуры x86 команда имеет длину от 8 до 120 битов).

В компьютере все арифметические операции над числами сводятся к операциям арифметического сложения и сдвигу кодов.

Прямой код целого числа полностью совпадает с записью самого числа в разрядной сетке компьютера. Прямой код отрицательного целого числа отличается от прямого кода соответствующего положительного числа содержимым знакового разряда.

В системе прямых кодов существует два различных представления ноля:

00000000 - положительный 0;

10000000 - отрицательный 0.

Оба представления совершенно равноправны.

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код.

Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2k-|m|, где k - количество разрядов в ячейке.

Как уже было сказано, при представлении неотрицательных чисел в беззнаковом формате все разряды ячейки отводятся под само число. Например, запись числа 243=11110011 в одном байте при беззнаковом представлении будет выглядеть следующим образом:1 1 1 1 0 0 1 1

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше. Поэтому, если приведённое выше состояние ячейки рассматривать как запись целого числа со знаком, то для компьютера в этой ячейке записано число -13 (243+13=256=28).

Но если это же отрицательное число записать в ячейку из 16-ти разрядов, то содержимое ячейки будет следующим: 1111111111110011.

Замена операции вычитания (алгебраического сложения) на арифметическое сложение в компьютере осуществляется с помощью обратного и дополнительного кодов.

Дополнительный и обратный коды положительного числа совпадают с прямым кодом.

Единицу в старшем разряде суммы можно просто зачеркивать, что равносильно сдвигу кода.

Дополнительный код получается путём добавления единицы к младшему разряду обратного кода.

В дополнительном коде ноль имеет единственное представление. Для данной длины разрядной сетки дополнительным кодом представляется на единицу больше отрицательных чисел, чем положительных.

Алгоритм получения дополнительного кода отрицательного числа.

Модуль числа представить прямым кодом в k двоичных разрядах.

Значения всех бит, кроме знакового, инвертировать: все ноли заменить на единицы, а единицы на ноли (таким образом, получается k-разрядный обратный код исходного числа); К полученному обратному коду, прибавить единицу к младшему разряду с учетом переносов.

1.2 Системы счисления

Система счисления (далее СС) - совокупность приемов и правил для записи чисел цифровыми знаками.

Наиболее известна десятичная СС, в которой для записи чисел используются цифры 0,1,9. Способов записи чисел цифровыми знаками существует бесчисленное множество. Любая предназначенная для практического применения СС должна обеспечивать:

- возможность представления любого числа в рассматриваемом диапазоне величин;

- единственность представления (каждой комбинации символов должна соответствовать одна и только одна величина);

- простоту оперирования числами;

В зависимости от способов изображения чисел цифрами, системы счисления делятся на непозиционные и позиционные. Непозиционной системой называется такая, в которой количественное значение каждой цифры не зависит от занимаемой ей позиции в изображении числа (римская система счисления). Позиционной системой счисления называется такая, в которой количественное значение каждой цифры зависит от её позиции в числе (арабская система счисления). Количество знаков или символов, используемых для изображения числа, называется основанием системы счисления.

Позиционные системы счисления имеют ряд преимуществ перед непозиционными: удобство выполнения арифметических и логических операций, а также представление больших чисел, поэтому в цифровой технике применяются позиционные системы счисления.

Запись чисел может быть представлена в виде:

(1)

где A(D) - запись числа A в СС D;

Di - символ системы, образующие базу.

По этому принципу построены непозиционные СС.

В общем же случае системы счисления: A(B)=a1B1+a2B2 +...+anBn. Если положить, что Bi=q*Bi-1, а B1=1, то получим позиционную СС. При q=10 мы имеем дело с привычной нам десятичной СС.

На практике также используют другие СС.

Таблица 1. Системы счисления

q

Название системы счисления

Цифры

2

двоичная

0,1

3

троичная

0,1,2

8

восьмеричная

0,...,7

16

шестнадцатеричная

0,...,9,A,...,F

Каждая СС имеет свои правила арифметики (таблица умножения, сложения). Поэтому, производя какие-либо операции над числами, надо помнить о СС, в которой они представлены.

Если основание системы q превышает 10, то цифры, начиная с 10, при записи обозначают прописными буквами латинского: A,B,...,Z. При этом цифре 10 соответствует знак 'A', цифре 11 - знак 'B' и т.д.

В позиционной СС число можно представить через его цифры с помощью следующего многочлена относительно q:

A=a1*q0+a2*q1+...+an*qn (2)

Выражение (2) формулирует правило для вычисления числа по его цифрам в q-ичной СС. Для уменьшения количества вычислений пользуются т.н. схемой Горнера. Она получается поочередным выносом q за скобки:

A=(...((an*q+an-1)*q+an-2)*q+...)*q+a1 (3)

результат вычисления многочлена будет всегда получен в той системе счисления, в которой будут представлены цифры и основание и по правилам которой будут выполнены операции.

1.3 Кодировка информации

машинный код счисление информация

История кодирования информации начинается в доисторической эпохе, когда первобытный человек выбивал в скале образы известных ему объектов окружающего мира.

Кодирование информации необычайно разнообразно. Указания водителю автомобиля кодируются в виде дорожных знаков. Музыкальное произведение кодируется с помощью знаков нотной грамоты, для записи шахматных партий и химических формул созданы специальные системы записи. Любой грамотный компьютерный пользователь знает о существовании кодировок символов. Географическая карта кодирует информацию о местности. Необходимость кодирования речевой информации возникла в связи с бурным развитием техники связи, особенно мобильной связи. Людьми были придуманы специальные коды: Азбука Брайля, азбука Морзе, флажковая азбука. Таких примеров можно приводить очень много. Известно, что одну и ту же информацию мы можем выразить разными способами.

Например, каким образом вы можете сообщить об опасности?

Если на вас напали, вы можете просто крикнуть: “Караул!!” (англичанин крикнет “Неlр me!”).

Если прибор находится под высоким напряжением, то требуется оставить предупреждающий знак (рисунок).

На оживленном перекрестке регулировщик помогает избежать аварии с помощью жестов.

В театре пантомимы вся информация передается зрителю исключительно с помощью мимики и жестов.

Если ваш корабль тонет, то вы передадите сигнал “SОS” (...- - -...).

На флоте помимо азбуки Морзе используют также семафорную и флажковую сигнализацию.

Набор знаков, в котором определен их порядок, называется алфавитом.

Существует множество алфавитов.

Алфавит кириллических букв (А, Б, В, Г, Д, Е,...)

Алфавит латинских букв (А, В, С, D, Е, F,...)

Алфавит десятичных цифр(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Алфавит знаков зодиака и др.

Имеются, однако, наборы знаков, для которых нет какого-то общепринятого порядка:

Набор знаков азбуки Брайля (для слепых);

Набор китайских идеограмм;

Набор знаков планет;

Набор знаков генетического кода (А, Ц, Г, Т).

Особенно важное значение имеют наборы, состоящие всего из двух знаков:

Пара знаков (+, -);

Пара знаков “точка”, “тире” (., -)

Пара цифр (0, 1).

Пара ответов (да, нет).

Таким образом, кодирование информации - это процесс формирования определенного представления информации. Значимость кодирования возросла в последние десятилетия в связи с внедрением ЭВМ.

C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Основными атрибутами кодирования являются:

Код - это набор знаков, упорядоченных в соответствии с определенными правилами того или иного языка, для передачи информации.

Знак - это метка, предмет, которым обозначается что-нибудь (буква, цифра, отверстие). Знак вместе с его значением называют символом. Существует множество классификаций знаков (Приложение А).

Язык - это сложная система символов, каждый из которых имеет определенное значение. Языковые символы, будучи общепринятыми и соответственно общепонятными в пределах данного сообщества, в процессе речи комбинируются друг с другом, порождая разнообразные по своему содержанию сообщения.

Код, знак и язык позволяют передавать информацию в символическом виде, удобном для ее кодирования

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму.

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

Таблица 2. Виды информации

Вид информации

Двоичный код

Числовая

10110011

Текстовая

Графическая

Звуковая

Видео

Каждая цифра машинного двоичного кода несет количество информации равное одному биту.

Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде. В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов.

Одному и тому же двоичному коду ставится в соответствие различные символы.

Таблица 3. Кодовые таблицы

Двоичный код

Десятичный код

КОИ8

СР1251

СР866

Mac

ISO

11000010

194

6

B

-

-

T

Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы - конверторы, которые встроены в приложения.

В середине 50-х годов для больших ЭВМ, которые применялись в научных и военных исследованиях, впервые в графическом виде было реализовано представление данных. В настоящее время широко используются технологии обработки графической информации с помощью ПК. Графический интерфейс пользователя стал стандартом "де-факто" для ПО разных классов, начиная с операционных систем. Вероятно, это связано со свойством человеческой психики: наглядность способствует более быстрому пониманию. Широкое применение получила специальная область информатики, которая изучает методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, - компьютерная графика. Без нее трудно представить уже не только компьютерный, но и вполне материальный мир, так как визуализация данных применяется во многих сферах человеческой деятельности. В качестве примера можно привести опытно-конструкторские разработки, медицину (компьютерная томография), научные исследования и др.

Особенно интенсивно технология обработки графической информации с помощью компьютера стала развиваться в 80-х годах. Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета. При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах - в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, завывание ветра и шелест листьев, пение птиц и голоса людей. О том, как рождаются звуки и что они собой представляют люди начали догадываться очень давно. Еще древнегреческий философ и ученый - энциклопедист Аристотель, исходя из наблюдений, объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то разряжает, то уплотняет воздух, а из-за упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

На слух человек воспринимает упругие волны, имеющие частоту где-то в пределах от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В учении о звуке важны такие понятия как тон и тембр звука. Всякий реальный звук, будь то игра музыкальных инструментов или голос человека, - это своеобразная смесь многих гармонических колебаний с определенным набором частот.

Колебание, которое имеет наиболее низкую частоту, называют основным тоном, другие - обертонами.

Тембр - разное количество обертонов, присущих тому или иному звуку, которое придает ему особую окраску. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. Именно по тембру мы легко можем отличить звуки рояля и скрипки, гитары и флейты, узнать голос знакомого человека.

Музыкальный звук можно характеризовать тремя качествами: тембром, т. е. окраской звука, которая зависит от формы колебаний, высотой, определяющейся числом колебаний в секунду (частотой), и громкостью, зависящей от интенсивности колебаний.

Компьютер широко применяют в настоящее время в различных сферах. Не стала исключением и обработка звуковой информации, музыка. До 1983 года все записи музыки выходили на виниловых пластинках и компакт-кассетах. В настоящее время широкое распространение получили компакт-диски. Если имеется компьютер, на котором установлена студийная звуковая плата, с подключенными к ней MIDI-клавиатурой и микрофоном, то можно работать со специализированным музыкальным программным обеспечением. Условно его можно разбить на несколько видов:

1) всевозможные служебные программы и драйверы, предназначенные для работы с конкретными звуковыми платами и внешними устройствами;

2) аудиоредакторы, которые предназначены для работы со звуковыми файлами, позволяют производить с ними любые операции - от разбиения на части до обработки эффектами;

3) программные синтезаторы, которые появились сравнительно недавно и корректно работают только на мощных компьютерах. Они позволяют экспериментировать с созданием различных звуков.

А как же происходит кодирование звука? С самого детства мы сталкиваемся с записями музыки на разных носителях: грампластинках, кассетах, компакт-дисках и т.д. В настоящее время существует два основных способах записи звука: аналоговый и цифровой. Но для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал.

Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны.

Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе.

Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся.

Виниловая пластинка является примером аналогового хранения звуковой информации, так как звуковая дорожка свою форму изменяет непрерывно. Но у аналоговых записей на магнитную ленту есть большой недостаток - старение носителя. За год фонограмма, которая имела нормальный уровень высоких частот, может их потерять. Виниловые пластинки при проигрывании их несколько раз теряют качество. Поэтому преимущество отдают цифровой записи.

В начале 80-х годов появились компакт-диски. Они являются примером дискретного хранения звуковой информации, так как звуковая дорожка компакт - диска содержит участки с различной отражающей способностью. Теоретически эти цифровые диски могут служить вечно, если их не царапать, т.е. их преимуществами являются долговечность и неподверженность механическому старению. Другое преимущество заключается в том, что при цифровой перезаписи нет потери качества звука.

На мультимедийных звуковых картах можно найти аналоговые микрофонный предусилитель и микшер.

Цифро-аналоговое и аналого-цифровое преобразование звуковой информации.

Кратко рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком

Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) - устройство, которое переводит сигнал в цифровую форму.

В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды.

Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала как бы снимается отпечаток или образец, являющийся цифровой моделью колебаний напряжения в аудиотракте. Если это изобразить в виде схемы, то эта модель представлена в виде последовательности столбиков, каждый из которых соответствует определенному числовому значению. Цифровой сигнал по своей природе дискретен - то есть прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала.

Семпл (Sample - англ.)- это промежуток времени между двумя измерениями амплитуды аналогового сигнала.

Дословно Sample переводится с английского как «образец». В мультимедийной и профессиональной звуковой терминологии это слово имеет несколько значений. Кроме промежутка времени семплом называют также любую последовательность цифровых данных, которые получили путем аналого-цифрового преобразования. Сам процесс преобразования называют семплированием. В русском техническом языке называют его дискретизацией.

Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

2. Практическое применение машинных кодов, систем счисления, кодировки информации

2.1 Практическое применение машинных кодов

Приведем несколько примеров.

Пример 1. Прямой код чисел Х=110112 и Y=-110112 в восьмиразрядной сетке имеет вид:

[Xпк]=00011011

[Yпк]=10011011

Дополнительный код отрицательного числа

Пример 2. А=9510, В=4310, n=2. Найти С=А-В.

[

-Bдк]=100 - 43 = 57

С = 95 + [-Bдк] - 100 = 95 + 57 - 100 = 152 - 100 = 52

Пример 3.

Дано отрицательное целое десятичное число

M= -20. Необходимо представить число в машинном коде в 16-разрядной сетке в двоичной и 16-ричной системах счисления.

М= -20= -101002

[Mпк]2=1.000 0000 0001 0100

[M ок]2=1.111 1111 1110 1011

[M дк]2=1.111 1111 1110 1100

[M дк]16=FFEC

Возникает вопрос: с какой целью отрицательные числа записываются в виде дополнительного кода и как получить дополнительный код отрицательного числа?

Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к их поразрядному сложению.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией сложения.

Положительные числа в прямом, обратном и дополнительном коде изображаются одинаково - двоичными кодами с цифрой 0 в знаковом разряде.

Пример 4, число 12.

Прямой код

0

0

0

0

1

1

0

0

Обратный код

0

0

0

0

1

1

0

0

Дополнительный код

0

0

0

0

1

1

0

0

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа - двоичный код его абсолютной величины.

Обратный код получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы - нулями.

Дополнительный код получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду.

Пример 5, число -12

Прямой код

1

0

0

0

1

1

0

0

Обратный код

1

1

1

1

0

0

1

1

Дополнительный код

1

1

1

1

0

1

0

0

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

2.2 Практическое применение систем счисления

Двоичная система, по крайней мере, в своей комбинаторной ипостаси, по существу была известна в Древнем Китае. В классической книге «И цзин» («Книга перемен») приведены так называемые «гексаграммы Фу-си», первая из которых имеет вид, а последняя (64-я) - вид, причем они расположены по кругу и занумерованы в точном соответствии с двоичной системой (нулями и единицами соответствуют сплошные и прерывистые линии). Китайцы не поленились придумать для этих диаграмм специальные иероглифы и названия (например, первая из них называлась «кунь», а последняя - «цянь», сплошной линии сопоставляется мужское начало янь, а прерывистой линии - женское начало инь).

Каждая гексаграмма состоит из двух триграмм (верхней и нижней), им тоже соответствуют определенные иероглифы и названия. Например, триграмме из трех сплошных линий сопоставлен образ-атрибут «небо, творчество», а триграмме из трех прерывистых линий сопоставлен образ-атрибут «земля, податливость, восприимчивость». Их также принято располагать циклически, но этот цикл не является кодом Грея.

«Книга перемен» очень древняя, возможно, одна из древнейших в мире, и кто ее написал - неизвестно. Она использовалась ранее, и используется в настоящее время, в том числе и на Западе, для гадания. В Европе с аналогичной целью используются карты Таро.

Способ гадания по «Книге перемен» в кратком изложении таков. Бросается шесть раз монета (или лучше пуговица, деньги в гадании применять не рекомендуется), и по полученным результатам (орел или решка) разыскивается подходящая гексаграмма (для этого надо заранее сопоставить орлу и решке янь или инь). По гексаграмме разыскиваете соответствующий раздел «Книги перемен» и читаете, что там написано.

Сэмюель Морзе известен, однако, не только изобретением азбуки. Он был и художником-портретистом (его картина «Генерал Лафайет» до сих пор висит в нью-йоркском Сити-Холле), и одним из первых фотографов в Америке (учился делать дагерротипные фотографии у самого Луи Дагерра), и политиком (он балатировался в 1836 году на пост мэра Нью-Йорка), но самое главное его достижение - изобретение телеграфа (а азбука Морзе понадобилась ему для использования телеграфа). Заодно он изобрел устройство, которое называется реле. Именно из реле спустя сто лет после Морзе были построены первые компьютеры.

Начал свои работы в этом направление он в 1832 году, запатентовал свое изобретение в 1836 году, но публичная демонстрация телеграфа произошла только 24 мая 1844 года. По телеграфной линии, соединяющей Вашингтон с Балтимором, была успешно передана фраза из Библии.

Точка и тире оказались самыми элементарными символами, которые мог передавать его телеграф. Они соответствовали коротким и длинным импульсам электрического тока, передаваемым по телеграфным проводам. Длина импульса определялась нажатием руки телеграфиста на ключ телеграфа. Прием сигнала осуществляло реле, которое после появления в нем импульса тока включало электромагнит, который либо заставлял стучать молоточек, либо прижимал колесико с красящей лентой к бумажной ленте, на которой отпечатывались либо точка, либо тире в зависимости от длины импульса.

Азбука Морзе сопоставляет каждой букве алфавита последовательность из точек и тире. Естественней всего использовать такие последовательности длины 6, их всего 64 и хватит даже на русский алфавит. Но Морзе понимал, что длину сообщения желательно уменьшить, насколько возможно, поэтому он решил использовать последовательности длины не более 4, их всего 2 + 4 + 8 + 16 = 30. в русском алфавите пришлось не использовать буквы «э» и «ё» и отождествить мягкий и твердый знаки. Кроме того, наиболее часто используемых буквами он предложил давать самые короткие коды, чтобы уменьшить среднюю длину передаваемого сообщения. Эту идею в наше время используют с той же целью в алфавитном кодировании.

2.3 Практическое применение кодирования информации

Стенография - это скоростное письмо особыми знаками, настолько краткими, что ими можно записать живую речь. Стенография пришла к нам из древнейших времен. Еще в Древнем Египте скорописцы записывали речь фараонов. Широкое распространение стенография получила в Древней Греции. В 1883 г. в Акрополе была найдена мраморная плита, на которой были высечены стенографические знаки. По мнению ученых, эти записи были сделаны в 350 г. до н.э. Но общепризнанным днем рождения стенографии считается 5 декабря 63 года до н.э. Тогда в Древнем Риме возникла необходимость дословной записи устной речи. Автором древнеримской стенографии считается Тирон - секретарь знаменитого оратора Цицерона.

В современном мире, несмотря на обилие средств механической фиксации слова (магнитофонов, диктофонов), владение навыками стенографии по-прежнему ценится. Мы записываем в среднем в пять раз медленнее, чем говорим. Стенография же ликвидирует этот разрыв. Она особенно полезна при конспектировании лекций, публичных выступлений, бесед, составлении докладов, подготовке статей и т. п.

Известно немало случаев, когда стенография оказывала неоценимую помощь людям разных профессий.

В России используется закрытая десятизначная нумерация. Это значит, что любой полный телефонный номер с кодом региона или мобильной сети должен иметь 10 цифр. Это называется Национальный телефонный номер. При звонке на телефон с отличным от “домашнего” кодом региона понадобится дополнительно набирать код выхода на междугороднюю связь (“8”).

В последнее время очень актуален вопрос о персональных данных. Персональные данные человека записаны в его паспорте.

Под фотографией в паспорте на просвет просматриваются магнитные метки с записанной информацией, которая считывается только электронным способом и недоступна владельцу документа. Подписываясь под этой графой в паспорте (пока не заполняемой по техническим причинам), человек дает согласие на присвоение ему кода вместо имени, т.е. производится замена имени числом (Приложение Б).

С развитием информационной техники, широким внедрением средств вычислительной техники во многие сферы деятельности все острее встает вопрос быстрого и надежного ввода информации. Ручной ввод кода изделия требуют больших затрат ручного труда, времени, часто приводит к ошибкам.

В настоящее время в России и за рубежом ведутся большие работы по созданию автоматизированных систем обработки данных с применением машиночитаемых документов (МЧД), одной из разновидностей которых являются документы со штриховыми кодами. К машиночитаемым относятся товаросопроводительные документы, ярлыки и упаковки товаров, чековые книжки и пластиковые карточки для оплаты услуг, магнитные носители. В связи с этим появились термины “электронные ведомости”, “электронные деньги” и т. д.

Наиболее перспективным и быстроразвивающимся направлением автоматизации процесса ввода информации в ЭВМ является применение штриховых кодов.

Штриховой код представляет собой чередование темных и светлых полос разной ширины (Приложение В).

По мнению специалистов, системы штрихового кодирования имеют перспективу и дают возможность решить одну из самых сложных компьютерных проблем - ввод данных.

В настоящее время штриховые коды широко используются не только при производстве и в торговле товарами, но и во многих отраслях промышленного производства.

Товарный штриховой код присваивается продукции (товару) на этапе запуска его в производство. Штрих-коды получили широкое практическое применение почти во всех сферах деятельности человека (Приложение В.1).

Компьютерный диалект используется в основном для неформального общения её членов, поэтому возникла необходимость передачи эмоций и даже мимики пишущего. В обычном тексте сделать это достаточно сложно, из-за чего и появились специфические знаки препинания (так называемые смайлики). Для их чтения лучше всего немного наклонить голову влево: тогда можно увидеть стилизованный портрет компьютерщика. Интересна история создания смайлика (Приложение Г).

Смайликами (от smile - улыбка) в Интернете называют значки, составленные из знаков препинания, букв и цифр, обозначающие какие-то эмоции.

Смайлик - это лучший способ передать ваши чувства и эмоции при виртуальном общении! Маленькие забавные рожицы, которые вставляются в текст, избавляют от необходимости писать излияния о ваших переживаниях. Считается, что смайлик для Интернета - все равно, что для человечества колесо. Без него невозможно обойтись ни в одной форме виртуального общения. Он крайне прост в употреблении, информативен и при всей своей простоте дает широкий простор воображению. Неудивительно, что его переняли sms-коммуникация, реклама, дизайн, обычная почта, при обмене записками на уроках (Приложение Г.1).

Смайлики настолько прочно вошли в нашу жизнь, что перекочевали из виртуального пространства в науки. Так в психологии, смайлики используют для обозначения типов темпераментов или отслеживают настроение человека.

Заключение

Мы знаем, насколько велики возможности компьютеров, и широк спектр их применения сегодня и можем только догадываться, какие задачи смогут решать они в ближайшем будущем. Поэтому особенно остро встает вопрос о знании и понимании способов представления информации в компьютере. Нужно, чтобы люди (не только программисты-профессионалы, но и простые пользователи) имели понятие о возможностях компьютера.

Актуальность данной темы определяется необходимостью рассматривать вопросы, связанные с машинными кодами, системами счисления, кодированием информации, в виду их большой практической значимостью.

Различные системы счисления используются всегда, когда появляется потребность в числовых расчётах, начиная с вычислений младшеклассника, выполняемых карандашом на бумаге, кончая вычислениями, выполняемыми на суперкомпьютерах. А штрих-коды нашли широкое применение во многих сферах жизни.

Список использованной литературы

1. Аршинов М.Н., Садовский Л. Е., Коды и математика, М., 1983. Л. Н. Ефимов.

2. Гашков С.Б. Системы счисления и их применение -- М.: МЦНМО, 2004. -- (Библиотека «Математическое просвещение»).

3. Информатика: В мир информатики, №8 2007.

4. Информатика: Семинар, №2, №3 2006.

5. Информатика: Системы счисления: спецвыпуск, №42 1995.

6. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.

7. Решетников В.Н., Сотников А.Н. Информатика - что это? М.: Радио и связь, 1989.

8. Фомин С.В. Системы счисления. М.: Наука, 1987.

9. Яглом И. Системы счисления // Квант. -- 1970. -- № 6. -- С. 2-10.

10. http://ozpp.ru/consumer/useful/article8.html

11. http://www.ua.all.biz/guide/barcodes/

12. http://ru.wikipedia.org/wiki/%D1%EC%E0%E9%EB%E8%EA

13. http://www.internet-school.ru/Enc.ashx?item=3773

14. http://festival.1september.ru/articles/573901/

15. http://nsportal.ru/ap/nauchno-tekhnicheskoe-tvorchestvo/library/sistemy-schisleniya-i-ikh-primeneniya

Приложение

Классификация знаков

Персональные данные. Биометрический паспорт - паспорт нового поколения

Штрих - код

История создания смайлика

Вы думаете, что смайлик -- это такое же изобретение всего человечества, как и колесо? Ничего подобного. У смайлика есть автор. Впервые жёлтую улыбающуюся рожицу нарисовал американский художник Харви Бэлл (Harvey Ball).

В начале 60-х в Америке начался процесс слияния крупных страховых компаний. Процесс шёл болезненно и начал сказываться на так называемой корпоративной морали сотрудников. Иными словами, неуверенность служащих в завтрашнем дне сделала их более раздражительными, растерянными и грустными.

Представители компании State Mutual Life Assurance Cos. of America решили поднять «боевой дух» своих сотрудников, то есть «заставить» служащих улыбаться всякий раз, когда они встречаются с клиентами, подходят к телефону или работают с документами.

Для достижения поставленной цели решено было провести не совсем обычную рекламную акцию, но нужен был яркий запоминающийся символ, и в декабре 1963 года страховщики пришли к Харви Бэллу. Как позже признался Бэлл, на всю разработку у него ушло не более 10 минут.

Первый смайлик был прикреплен к булавке, то есть, сделан в виде значка и выдан служащим и клиентам компании.

Значки со смайликами имели успех. Вскоре смайлик появился на эмблемах, открытках, футболках и бейсболках -- одним словом, на всём, что может быть быстро продано.

Впервые жёлтую улыбающуюся «рожицу» нарисовал американский художник Харви Бэлл (Harvey Ball).

Размещено на Allbest.ru


Подобные документы

  • Двоичный код, особенности кодирования и декодирования информации. Система счисления как совокупность правил записи чисел с помощью определенного набора символов. Классификация систем счисления, специфика перевода чисел в позиционной системе счисления.

    презентация [16,3 K], добавлен 07.06.2011

  • Обработка информации и вычислений в вычислительной машине. Непозиционные и позиционные системы счисления. Примеры перевода десятичного целого и дробного числа в двоичную систему счисления. Десятично-шестнадцатеричное и обратное преобразование чисел.

    контрольная работа [41,2 K], добавлен 21.08.2010

  • Система счисления как способ записи информации с помощью заданного набора цифр. История развития различных систем счисления. Позиционные и непозиционные системы. Вавилонская, иероглифическая, римская система счисления. Система счисления майя и ацтеков.

    презентация [3,2 M], добавлен 05.05.2012

  • Система счисления как способ записи (изображения) чисел. История появления и развития различных систем счисления: двоичная, восьмеричная, десятичная и шестнадцатеричная. Основные принципы и правила алгоритма перевода из одной системы счисления в другую.

    курсовая работа [343,1 K], добавлен 11.11.2014

  • Понятие и классификация систем счисления. Перевод чисел из одной системы счисления в другую. Перевод правильных и неправильных дробей. Выбор системы счисления для применения в ЭВМ. Навыки обращения с двоичными числами. Точность представления чисел в ЭВМ.

    реферат [62,0 K], добавлен 13.01.2011

  • Определение понятия и видов систем счисления - символического метода записи чисел, представления чисел с помощью письменных знаков. Двоичные, смешанные системы счисления. Перевод из одной системы счисления в другую и простейшие арифметические операции.

    курсовая работа [232,6 K], добавлен 16.01.2012

  • Десятичная система счисления, ее происхождение и применение. Арифметические операции: сложение и вычитание, умножение и деление. Перевод чисел из одной системы счисления в другую. Применение систем: азбука Морзе, алфавитное кодирование, штрих-коды.

    курсовая работа [2,5 M], добавлен 12.01.2015

  • Понятие и виды систем счисления, принципы двоичной системы. Формы представления чисел в ЭВМ, виды кодирования информации. Оценка и выбор пакетов прикладных программ: преимущества операционной системы Windows, справочной системы "КонсультантПлюс".

    реферат [22,4 K], добавлен 21.06.2010

  • Сущность и история возникновения систем счисления: определение, разновидности, свойства. Символы и правила их использования при записи чисел. Вариации и обобщения; запись рациональных чисел. Отрицательные, нецелочисленные и комплексные основания.

    реферат [150,2 K], добавлен 16.10.2013

  • Сущность и характеристика цифровой и аналоговой информации. Бит как основа исчисления информации в цифровой технике. Компьютерная система счисления как способ записи (изображения) чисел. Сущность и понятие позиционных и непозиционных систем исчисления.

    доклад [15,7 K], добавлен 04.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.