Использование генетических алгоритмов для оптимизации базы правил

Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 21.06.2014
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Начальное представление систем нечеткого вывода: логический вывод, база знаний. Алгоритм Мамдани в системах нечеткого вывода: принцип работы, формирование базы правил и входных переменных, агрегирование подусловий, активизация подзаключений и заключений.

    курсовая работа [757,3 K], добавлен 24.06.2011

  • Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.

    дипломная работа [979,1 K], добавлен 30.05.2015

  • Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.

    курсовая работа [391,4 K], добавлен 20.02.2008

  • Понятие и суть нечеткой логики и генетических алгоритмов. Характеристика программных пакетов для работы с системами искусственного интеллекта в среде Matlab R2009b. Реализация аппроксимации функции с применением аппарата нечеткого логического вывода.

    курсовая работа [2,3 M], добавлен 23.06.2012

  • Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.

    курсовая работа [27,9 K], добавлен 23.07.2011

  • Решение задачи аппроксимации поверхности при помощи системы нечёткого вывода. Определение входных и выходных переменных, их термы; алгоритм Сугено. Подбор функций принадлежности, построение базы правил, необходимых для связи входных и выходных переменных.

    курсовая работа [1,8 M], добавлен 31.05.2014

  • Основные особенности эволюционных алгоритмов. Описание алгоритмов селекции, мутации, скрещивания, применяемых для реализации генетических алгоритмов. Вычисление функции приспособленности. Программная реализация. Тестирование и руководство пользователя.

    курсовая работа [1,3 M], добавлен 11.03.2014

  • Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.

    лабораторная работа [20,2 K], добавлен 03.12.2014

  • Основные этапы систем нечеткого вывода. Правила нечетких продукций, используемые в них. Нечеткие лингвистические высказывания. Определение алгоритмов Цукамото, Ларсена, Сугено. Реализации нечеткого вывода Мамдани на примере работы уличного светофора.

    курсовая работа [479,6 K], добавлен 14.07.2012

  • Методы, системы, типы и способы проводимых измерений в автоматизированных системах медицинского обеспечения безопасности на транспорте. Проектирования нечеткого алгоритма предрейсовых медицинских осмотров на основе адаптивной сети нейро-нечеткого вывода.

    дипломная работа [6,5 M], добавлен 06.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.