Разработка системы распознавания специального изображения на основе теории векторного пространства
Алгоритм реализации векторного пространства, метод фильтрации шумов на изображении. Формально-логическая модель разработки программного обеспечения, выбор инструментальных средств его реализации. Анализ точности совпадения распознанного изображения.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 13.02.2013 |
Размер файла | 2,7 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общая характеристика закона Хипса и Ципфа. Особенности ранжированного поиска. Рассмотрение примеров косинусной близости. Анализ основных способов сокращения индекса. Знакомство с основными моделями векторного пространства. Проблемы отсечения кластеров.
презентация [565,1 K], добавлен 06.01.2014Фильтрация шумов изображения. Алгоритмы его бинаризации и поворота. Формирование информативных признаков для распознавания нот. Схема программного обеспечения. Описание классов, функций, методов, реализованных в программе. Тестирование приложения.
курсовая работа [2,0 M], добавлен 17.12.2013Общий алгоритм сравнения двух изображений. Метод максимальных площадей. Метод гистограмм. Подготовка изображения к распознаванию. Моделирование многомерной функции. Распределение векторов. Деформируемые модели. Реализация программного обеспечения.
дипломная работа [384,2 K], добавлен 29.09.2008Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.
дипломная работа [6,3 M], добавлен 17.06.2012Яркость точек и гистограммы изображения. Изменение яркости и контрастности. Метод ранговой фильтрации с оценкой середины диапазона. Наложение шумов на изображение. Преобразование изображения в негатив. Получение матрицы яркостей и построение гистограмм.
курсовая работа [1,5 M], добавлен 11.12.2012Разработка с помощью пакета MATLAB ряда функций, осуществляющих сжатие речи по алгоритму векторного квантования, обеспечивающих сжатие речи до уровня 2400 бит/с и ниже, несколько ступеней сжатия. Дикторо-зависимый и дикторо-независимый режимы системы.
курсовая работа [1,1 M], добавлен 12.03.2009Общее описание разрабатываемого программного обеспечения, требования к его функциональности и сферы практического применения. Выбор инструментальных средств разработки. Проектирование структур баз данных и алгоритмов, пользовательского интерфейса.
дипломная работа [3,1 M], добавлен 19.01.2017Анализ необходимости в инструменте, который позволял бы автоматически генерировать изображение без необходимости ручной отрисовки. Основные концепции и операторы языка Postscript. Использование Postscript для генерации изображения циферблата манометра.
отчет по практике [269,3 K], добавлен 16.05.2017Понятие системы распознавания образов. Классификация систем распознавания. Разработка системы распознавания формы микрообъектов. Алгоритм для создания системы распознавания микрообъектов на кристаллограмме, особенности его реализации в программной среде.
курсовая работа [16,2 M], добавлен 21.06.2014Векторная графика как способ описания изображения при помощи прямых и изогнутых линий. Пример растрового и векторного представления листа с дерева. Редакторы векторной графики. Особенности растрового изображения. Методы сжатия с потерями и без потерь.
реферат [2,1 M], добавлен 28.09.2014