курсовая работа Решение нелинейных уравнений методом Ньютона и методом простых итераций
Способы отделения корней. Решение задачи методами Ньютона уточнения корней и простых итераций. Формула нахождения погрешностей. Геометрическая интерпретация методов. Составление блок-схем и текстов программ. Результаты их работы на тестовом примере.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.06.2013 |
Размер файла | 3,1 M |
Подобные документы
Отделение корней методом простых интеграций. Дифференцирование и аппроксимация зависимостей методом наименьших квадратов. Решение нелинейного уравнения вида f(x)=0 методом Ньютона. Решение системы линейных уравнений методом Зейделя и методом итераций.
курсовая работа [990,8 K], добавлен 23.10.2011Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа [191,0 K], добавлен 24.06.2008Нахождение с заданной погрешностью корней уравнения. Оценка скорости сходимости. Нахождение промежутка, в котором содержится какой-либо корень уравнения для методов итераций и Ньютона. Разработка текста компьютерных программ для решения данных уравнений.
лабораторная работа [253,9 K], добавлен 19.12.2012Разработка проекта по вычислению корней нелинейных уравнений методом итераций, в среде программирования Delphi. Интерфейс программы и ее программный код, визуализация метода. Сравнение результатов решения, полученных в Mathcad 14 и методом итераций.
контрольная работа [1,9 M], добавлен 10.12.2010Использование метода Зейделя для нахождения корней системы линейных алгебраических уравнений. Суть метода простых итераций. Оценка погрешности нормальной системы. Составление алгоритма, блок-схемы и кода программы. Тестовый пример и проверка в MathCad.
лабораторная работа [174,8 K], добавлен 02.10.2013Изучение методов решения нелинейных уравнений таких как: метод Ньютона, модифицированный метод Ньютона, метод Хорд, метод простых Итераций. Реализация программы для персонального компьютера, которая находит решение нелинейного уравнения разными способами.
практическая работа [321,9 K], добавлен 24.06.2012Разработка программы для нахождения корней нелинейных уравнений несколькими методами: методом хорд, касательных, половинного деления, итераций. Реализации программы с помощью системы программирования Delphi 7. Методика работы пользователя с программой.
курсовая работа [1,3 M], добавлен 11.02.2013Интерполяция функции с равноотстоящими узлами - прогнозирование в Exel. Составление программы для вычисления значений функции в заданных точках при помощи полинома Ньютона. Решение систем уравнений в Exel методом обратной матрицы и простых итераций.
контрольная работа [34,0 K], добавлен 19.03.2008Сравнительный анализ итерационных методов решения нелинейных алгебраических и трансцендентных уравнений. Простейший алгоритм отделения корней нелинейных уравнений. Метод половинного деления. Геометрический смысл метода Ньютона. Метод простой итерации.
реферат [95,0 K], добавлен 06.03.2011Этапы численного решения нелинейных уравнений заданного вида: отделение (изоляция, локализация) корней уравнения аналитическим или графическим способами, уточнение конкретного выделенного корня методом касательных (Ньютона). Решение в системе MathCad.
курсовая работа [271,6 K], добавлен 22.08.2012