Прецизионные координатные системы с линейными шаговыми двигателями
Применение линейных шаговых двигателей (ЛШД) и конструкция одного из ЛШД. Координатные столы с ЛШД. Взаимодействие сил притяжения и аэростатических сил. Статические и динамические свойства ЛШД. Модуляция зубчатой структурой магнитного сопротивления.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 31.10.2008 |
Размер файла | 102,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ
- Кафедра электронной техники и технологий
- РЕФЕРАТ
- на тему:
- «Прецизионные координатные системы с линейными шаговыми двигателями»
- Минск, 2008
- В разомкнутых системах цифрового программного управления с точным позиционированием, а также при реализации сложных двигателей по двум координатам целесообразно применение линейных шаговых двигателей (ЛШД), допускающих изменение в широких пределах числа фаз, частоты и форм напряжения на фазах.
- Разработано несколько конструкций координатных столов с ЛШД и электронными блоками управления. Предназначены они для установки в различном технологическом оборудовании производства ИЭТ, металлообрабатывающих станков с ЧПУ, медицинском оборудовании и т.д. Принципиально ЛШД представляет собой шаговый двигатель с развернутыми подвижными и неподвижными частями. Конструкция одного из вариантов ЛШД приведена на рисунке 1.
- Рисунок 1.
- Двигатель содержит якорь состоящий из двух жестко соединенных электромагнитных модулей А и В и безобмоточного зубчатого пассивного статора, выполненного из магнитомягкого материала.
- Каждый из модулей А и В состоит из двух П-образных магнитопроводов объединенных постоянным магнитом.
- Обмотки управления охватывают средние полюсы А2, А3 и соответственно В2 и В3 модулей А и В.
- Электромагнитные модули расположены со взаимным линейным сдвигом, равным , где k=0,1,2… целое число, значения которого выбирается из конструктивных соображений.
- Между первичным и вторичным элементами ЛШД имеется зазор д.
- Движение вторичного элемента (якоря) с шагом осуществляется разнополярной коммутацией обмоток модулей А и В. Порядок коммутации определяет направление движения.
- ЛШД обеспечивает перемещение координатного стола в плоскости конструктивно объединяющей по меньшей мере три ЛШД: один на одной координатной оси, два на другой.
- Необходимый рабочий зазор д между статором и якорем чаще всего обеспечивается применением аэростатических опор.
- Схематически одна из конструкций такого координатного стола показана на рисунке 1а. Подвижная каретка 1, имеющая в качестве основания парумодулей ЛШД2, предназначенных для движения по оси Х (Х-ЛШД), и две пары модулей 3 (Y-ЛШД), скользит по статору 4 на воздушной подушке. Подушка образуется струей сжатого воздуха подаваемого в которые расположены по периметру ЛШД.
- Рисунок 1 а - Координатные столы с ЛШД:
- а) конструктивная схема.
- б) координатный стол с разделенной нарезкой статора.
- в) координатный стол с совмещенной нарезкой статора.
- В варианте с разделенной нарезкой статора по координатным осям (рисунок 1б) Х-ЛШД позиция 2 обеспечивает перемещение каретки в пределах средней зоны зубцов статора. Y-ЛШД позиция 3 перемещает каретку поперек нарезки статора в крайних зонах. В варианте с совмещенной по обеим осям нарезкой зубцов статора (рисунок 1в) каретка содержит по паре Х-ЛШД-2 и Y-ЛШД позиция 3. Диапазон перемещений по осям в этом случае ограничен лишь размерами статора. При движении по оси Х коммутируются обмотки электромагнитов модулей Х-ЛШД при статическом состоянии токов в обмотках Y-ЛШД. При коммутации обмоток Y-ЛШД обеспечивается движение по координате Н.
- При одновременном перемещении по двум координатам управляют токами фаз обеих групп ЛШД.
- Зубчатые поверхности статора и якорей приготавливаются фрезерованием прецизионной групповой фрезой или химическим травлением по прецизионным фотошаблонам с последующей заливкой пазов эпоксидными компаундами с твердым немагнитным наполнителем. После этого поверхности шлифуют и притирают. Это обеспечивает высокую степень параллельности и чистоту рабочих поверхностей.
- Электромагнитное взаимодействие якоря со статором происходит в воздушном слое между кареткой и статором, поэтому постоянство зазора д сказывается на стабильности тяговых точностных характеристик координатной системы. Сама же величина зазора получается как результат уравновешивания аэростатической силы отталкивания Fa магнитной силой притяжения FM.
- Таким образом для обеспечения стабильности величины зазора д, должно быть обеспечено условие “всплывания” каретки над плоскостью статора т.е. д>0, Fа>FM. Типичный характер зависимостей FM(д) и Fa(д) из образцов координатной системы для технологических установок микроэлектроники с ЛШД показан на рисунке 2.
- Взаимодействие сил притяжения FM и аэростатических сил Fa.
- Рисунок 2 - Взаимодействие сил притяжения FM и аэростатических сил Fa.
- Величина зазора фиксируется на уровне д0 при F0. Тогда равновесие удовлетворяет условию статического равновесия
- . (1)
- В серийно-выпускаемых двухкоординатных системах сЛШД обеспечивается зазор д=10-20мкм при давлении воздуха 2-6 атм и расходе 5-6 л/мин.
- Статические и динамические свойства ЛШД определяются прежде всего характеристикой тягового усилия и способности управлять ЛШД.
- При анализе тягового усилия необходимо иметь в виду, что зубцовые зоны статора и якоря обычно выполняются так, что ширина зубца и паза одинаковы и равны , что при отношении воздушного зазора к зубцовому делению дает практически синусоидальную зависимость магнитного сопротивления зазора от перемещения якоря х с постоянной составляющей R0 и амплитудой переменной составляющей R1.
- . (2)
- Перемещение удобно измерять в единицах зубцового деления обозначив
- . (3)
- При допущении о линейности магнитной цепи и синусоидальности магнитных сопротивлений рабочих зазоров под полюсами
- . (4)
- где R0 и R1 - соответственно постоянная составляющая и амплитуда переменной составляющей магнитного сопротивления.
- Тяговое усилие всего ЛШД определяется как
- , (5)
- где , (6)
- тяговое усилие модулей А,
- (7)
- тяговое усилие модулей В,
- Rm - внутреннее магнитное сопротивление постоянных магнитов,
- FA и FB - соответственно М.Д.С. обмоток управления модулями А и В.
- Fm - М.Д.С. постоянных магнитов.
- Тяговое усилие ЛШД обратно пропорционально постоянной составляющей магнитного сопротивления воздушного зазора под полюсами электромагнитных модулей.
- Уменьшить зазор меньше 10-15 мкм затруднительно по технологическим соображениям. С другой стороны тяговое усилие пропорционально глубине модуляции магнитного сопротивления зубчатой структурой полюсов, т.е. отношению . Отношение резко возрастает при уменьшении фz, типичная зависимость показана на рисунке 3.
- Рисунок 3. Модуляция зубчатой структурой магнитного сопротивления воздушного зазора.
- Это обстоятельство наряду с технологическими сложностями изготовления зубчатых структур с малым зубцовым делением обусловлено тем фактом, что ЛШД изготавливается с фz=0,2-1мм при воздушном зазоре д=10-20мкм.
- При четырехкратной дискретной разнополярной коммутации обмоток модулей А и В, якорь перемещается с шагом равным фz/4, что в линейных размерах соответствует 0,05-0,25 мм. Для большинства прецизионных координатных систем такая дискретность недостаточна.
- Снижение величины единичного шага добивается способами управления, использующими электрическое дробление основного шага ЛШД.
- Если формировать МДС обмоток модулей по синусоидальному закону ; , то зависимость тягового синхронизирующего усилия представляется в виде:
- . (8)
- Характеристика синхронизирующего усилия имеет синусоидальную форму и в отсутствии внешней силы сопротивления по координате Х якорь ЛШД фиксируется в позиции установленной управляющими фазами токов .
- Таким образом на протяжении зубцового деления можно иметь в пределе любое число статически устойчивых положений якоря, задаваемых текущим значением аргумента управляющих синус-косинусных токов фаз.
- Обычно управляющие токи фаз ЛШД формируются с использованием цифровой техники при конечном сочетании уровней токов в фазах, что обеспечивает ряд дискретных позиций якоря в пределах зубцового деления. Синус-косинусные функции токов фаз получаются квантованными во времени.
- Особенностью ЛШД на аэростатических опорах является отсутствие внешнего демпфирования нагрузки. Поэтому возникает проблема с остановом двигателя в заданной позиции.
- Для ее решения устанавливается еще пара блоков работающих с противоположным тяговым усилием.
- Современные координатные столы для МЭ могут быть охарактеризованы следующими параметрами:
- · При дискретности перемещения 10 мкм максимальная скорость перемещения достигает 500 мм/с при максимальном ускорении до 40 м/с2. При дискретности перемещения 1 мкм максимальная скорость достигает 150 мм/c при наибольшем ускорении до 20 м/с2.
- Преимущества:
- 1. Отсутствие механических контактов.
- 2. Высокие точности позиционирования.
- 3. Высокое быстродействие.
- 4. Простота управления.
- 5. Отсутствие механических направляющих.
- Недостатки:
- 1. Затруднительная унификация.
- 2. На воздушной подушке нельзя в вакуум.
- 3. Трудности с торможением.
- ЛИТЕРАТУРА
1.Орлов П.И. Основы конструирования. Справочно-методическое пособие. В 2-х кн. Кн.1. /Под ред. П.Н.Учаева. -- 3-е изд. испр. -- М.: Машиностроение |
|
2.Конструирование приборов: В 2-х кн. /Под ред. В.Краузе; Пер. с нем. В.Н.Пальянова; Под ред. О.Ф.Тищенко. --Кн.1. М.: Машиностроение |
|
3. Конструирование приборов: В 2-х кн. /Под ред. В.Краузе; Пер. с нем. В.Н.Пальянова; Под ред. О.Ф.Тищенко. -- Кн.2. М.: Машиностроение |
|
4.Попов В.Ф., Горин Ю.Н. Процессы и установки электронно-ионной технологии:Учеб. пособие для вузов.-- М.: Высш. шк., |
Подобные документы
Модуляция - процесс преобразования одного сигнала в другой, для передачи сообщения в нужное место, ее свойства, особенности и виды. Гармонические и импульсные переносчики. Демодуляция принятого сигнала. Спектр сигнала АИМ. Модуляция случайными функциями.
реферат [124,2 K], добавлен 04.03.2011Признаки импульсно-статических триггеров. Динамические триггеры, выполненные на основе МДП-транзисторов. Процесс записи информации в триггер. Схема квазистатических триггеров. Применение триггеров в схемотехнике для построения сдвигающих регистров.
реферат [291,9 K], добавлен 12.06.2009Координатные и энергетические сигналы, их дополнительная коррекция. Выходные сигналы в гамма-камере. Завершение процесса накопления. Цифровая амплитудная селекция. Структурная схема линейной коррекции координат. Вычислитель поправок координатных сигналов.
контрольная работа [426,0 K], добавлен 14.01.2011Основные понятия теории автоматического управления; типовые динамические звенья САУ; функциональные модули. Анализ автоматических систем регулирования; статические и динамические характеристики. Обзор современных систем и микропроцессорных регуляторов.
учебное пособие [1,3 M], добавлен 18.02.2013Индуктивные датчики. Фотооптические датчики перемещений. Прецизионные датчики линейных перемещений. Накапливающие системы. Метод муаровых полос. Системы позиционирования с лазерными интерферометрами. Проблема стабилизации частоты лазерного излучения.
реферат [105,8 K], добавлен 26.01.2009Сущность и характеристика излучения, его разновидности и вычисления. Основные особенности пространственной структуры излучения. Проекции волновых векторов на координатные оси. Фазочная и амплитудно-частотная характеристика свободного пространства.
реферат [297,6 K], добавлен 28.01.2009Применение усилителей в сфере вычислительной техники и связи. Проектирование многокаскадного усилителя с обратной отрицательной связью. Статические и динамические параметры, моделирование на ЭВМ с использованием программного продукта MicroCap 9.
курсовая работа [3,2 M], добавлен 21.12.2012Динамические свойства объекта управления. Динамические свойства последовательного соединения исполнительного механизма и объекта управления. Разработка релейного регулятора, перевод объекта из начального состояния в конечное. Выбор структуры и параметров.
курсовая работа [354,6 K], добавлен 29.01.2009Основные признаки классификации триггеров. Использование последовательных регистров для сжатия считываемой информации. Свойства счетного триггера. Назначение и работа регистров. Статические и динамические классы оперативных запоминающих устройств.
лабораторная работа [215,1 K], добавлен 30.04.2014Виды счетчиков - последовательных устройств для счета входных импульсов и фиксации их числа в двоичном коде, их статические и динамические параметры. Схемотехническое моделирования TV-триггера, инвертора и буфера. Динамические характеристики вентилей.
курсовая работа [5,4 M], добавлен 04.02.2011