Проектирование функционального узла на печатной плате

Описание схемы электрической принципиальной и принципа работы узла. Обоснование выбора класса точности и способа пайки печатной платы. Элементы внешней коммуникации узла. Способы обеспечения влагозащиты платы. Расчет проводников по постоянному току.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 21.03.2013
Размер файла 989,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Техническое задание на проектирование

Введение

1. Анализ технического задания

  • 2. Анализ схемы электрической принципиальной и описание принципа работы изделия
  • 2.1 Анализ схемы электрической принципиальной
    • 2.2 Описание принципа работы узла
    • 3. Выбор элементной базы
    • 4. Обоснование выбора печатной платы
    • 4.1 Обоснование типа печатной платы
    • 4.2 Выбор класса точности печатной платы
    • 4.3 Выбор метода изготовления
    • 4.4 Выбор материала печатной платы
    • 4.5 Выбор способа пайка
    • 5. Определение основных конструктивных параметров печатной платы
    • 5.1 Определение размеров печатной платы
    • 6. Разработка конструкции узла
    • 6.1 Выбор элементов внешней коммуникации узла
    • 6.2 Варианты компоновки узла
    • 6.3 Трассировка печатной платы
    • 6.4 Маркировка печатной платы
    • 6.5 Выбор покрытий и обеспечение влагозащиты печатной платы
    • 7. Проверочный расчеты
    • 7.1 Расчет проводников по постоянному току
    • 7.2 Расчет на вибропрочность печатной платы
    • Заключение
    • Библиографический список
    • Техническое задание на проектирование

Техническое задание данной курсовой работы состоит в проектировании радиоэлектронного узла на печатной плате с учетом ограничений, накладываемых условиями эксплуатации и условиями производства, особенностями схемотехнического назначения РЭС, проведении необходимых конструктивных расчетов, оформлении комплекта конструкторской документации.

Техническое задание задается в виде шифра, который для данной курсовой работы записывается следующим образом: 615-ТС3-15

Введение

Несмотря на значительный прогресс в области совершенствования элементной базы, применение в конструкциях РЭС бескорпусных микросхем и микросборок, различных функциональных микроэлектронных устройств, разработке новых систем коммутации (керамических плат, крупноформатных оксидированных или глазурованных металлических плат), функциональные узлы на печатных платах (ФУ на ПП) по-прежнему составляют основу большинства конструкций РЭС. Причиной этого является отработанность конструкций и технологии печатного монтажа, возможность механизации и автоматизации сборки аппаратуры, повторяемость параметров от образца к образцу, невысокая стоимость монтажно-сборочных работ.

Вместе с тем, применение интегральных схем и стремление к миниатюризации устройств, приводит к повышению плотности проводящего рисунка печатного монтажа, что вызывает ряд конструктивно-технологических трудностей при реализации печатных плат. Преодоление этих трудностей и выпуск печатных плат высокого качества возможны только при комплексном учете всех особенностей процессов конструирования и производства печатных плат. Применяемый технологический процесс, с одной стороны, накладывает ограничения на точность выполнения рисунка печатного монтажа, а, с другой стороны, необходимая высокая плотность проводящего рисунка в значительной мере определяет требования к технологическому процессу изготовления плат. При этом важнейшим, узловым этапом реализации платы, являющимся итогом конструкторской проработки рисунка печатного монтажа и началом технологического процесса его получения, служит этап выполнения оригинала.

Таким образом, проектирование функциональных узлов на печатных платах требует знания, как конструктивных особенностей, так и технологических ограничений печатного монтажа. Широкое использование в настоящее время систем автоматического проектирования печатных плат позволяет существенно уменьшить затраты труда и обеспечить высокое и стабильное качество проектирования. Однако эти потенциальные возможности могут быть реализованы при условии, что разработчик печатных плат хорошо подготовлен как в области методов и средств вычислительной техники, так и в области конструирования.

1. Анализ технического задания

Конкретное конструктивное исполнение функционального узла (ФУ) на печатной плате (ПП) во многом зависит от условий эксплуатации (от уровня механических и климатических воздействий), схемотехнического назначения (вида аппаратуры, диапазона частот, рассеиваемых мощностей и т.д.), используемой элементной базы, особенностей установки ФУ в конструктивы старшего уровня, тиражности выпуска.

Основные требования вытекают из технического задания, которое задается в виде шифра, в нашем случае 615-ТС3-15.

Первый элемент обозначения указывает на тип аппаратуры. В данном случае цифра 6 означает, что аппаратура является авиационной (устанавливается на самолетах с поршневым двигателем). Такой тип аппаратуры имеет, по сравнению с аппаратурой реактивных самолетов, менее жесткие требования и должен отвечать следующим условиям:

- жесткие требования по габаритам и массе;

- требования высокой надежности;

- допустимость применения новейших комплектующих, материалов повышенной стоимости с высокими физико-механическими характеристиками;

- воздействие значительных механических нагрузок (вибрации, удары, линейные ускорения, акустический шум);

- возникновение термоударов;

- возможность работы при пониженном давлении; высокая ремонтопригодность в предстартовый период (легкосъемность, типизация, наличие контрольных точек).

Тип аппаратуры обуславливает так же уровень механических воздействий применительно к объекту установки. Для авиационной(с поршневым двигателем) аппаратуры установлены следующие требования к уровню механических воздействий:

- частота вибраций - 5…150 Гц;

- амплитуда вибраций - 0,15 мм;

- ударное ускорение - 15…30 g.

Второй элемент обозначения указывает на конструктивное исполнение. Цифра 1 означает, что аппаратура эксплуатируется в виде автономного блока (прибора, устройства). Автономный блок не требует, как правило, использования стандартных размеров плат по обеспечению их входимости в блоки и субблоки.

Третий элемент обозначения определяет условия производства. В данном случае цифра 5 указывает на крупносерийное производство с выпуском изделия в количестве 105=100000 штук в год. В зависимости от объема производства изменяются и требования к автоматизации установки элементов, способам маркировки, методам изготовления, классам точности печатных плат. В виду крупносерийности производства желательно автоматизировать процесс, применить к печатной плате минимально возможный класс точности и наиболее простой способ ее изготовления.

Четвертый и пятый элемент, буквенный код ТС и цифра 3, указывают на климатическое исполнение, т.е. на климатический район и категорию размещения. Буквенный код характеризует климатический район: ТС - тропический сухой. Цифра определяет категорию размещения: означает размещение аппаратуры в закрытых неотапливаемых помещениях с естественной вентиляцией. Значения температур окружающего воздуха для данного климатического исполнения следующие:

- верхнее значение +450 С;

- нижнее значение -100 С;

- среднее значение +270 С;

- предельный рабочий диапазон -100…+550 С.

Последнее число в шифре технического задания - это номер варианта, указывающий на схему электрическую принципиальную, для которой и требуется разработать печатный узел. В данном случае это схема фильтра низкой частоты. Его схема электрическая принципиальная представлена на рисунке 2.

Рисунок 1.

В таблице 1 также показаны обозначения всех элементов, их выполняемые функции и основные характеристики.

Таблица 1

Позиционное обозначение

Выполняемые функции и основные характеристики

DA1, DA2

ОУ общего применения

R1

Резистор 1 кОм

R2, R8

Резистор 2 кОм

R3, R5, R9

Резистор 5,1 кОм

R4, R6, R7

Резистор 10 кОм

R5

Резистор 1,5 кОм

R6, R9

Резистор именения 10 кОм

R7

Резистор 1 кОм

R8, R10

Резистор нения 5,1 кОм

VT1- VT4

n-p-n транзистор малой мощности, низкой частоты,

2. Анализ схемы электрической принципиальной и описание принципа работы изделия

2.1 Анализ схемы электрической принципиальной

При анализе схемы электрической принципиальной следует определить токи и напряжения, действующие в каждой цепи устройства. Это необходимо для оптимального подбора элементной базы для будущего функционального узла. Как видно из пункта 1, необходимо определить мощности рассеивания для резисторов, рабочие напряжения на конденсаторах. Питание выбранной микросхемы равно 12вольтам.

Вычислим мощности рассеивания резисторов, исходя из эквивалентной схемы:

Рисунок 2.

Rc=1/20*103*3900*10-12=128кОм

Найдём общее сопротивление этой цепи:

Rобщ=145,1кОм

Отсюда можно найти Iобщ:

Iобщ=U/R=1/145.1кОм=0,000006 А

Р1=I2*R=0,000006*3,9*10-3=0,00027 Вт

Р5=I2*R=0,000006*4,7*10-30,00028 Вт

В силу того, что мощность маленькая возьмем мощность рассеивания 0,125Вт

Рассчитаем мощность ,выделяемые на резисторах R4 и R8.Так как у микросхемки входной ток равен 400 нА,то получаем:

Р4=400нА*1,5кОм=0,006 Вт

Р8=400нА*1,5кОм=0,006 Вт

Таким образом, резисторы R4 и R8 необходимо брать на 0,125 Вт.Так как в этой цепи протекает очень маленький ток выбираем для остальных резисторов рассеиваемую мощность равную 0,125 Вт.

2.2 Описание принципа работы узла

Рассмотрим работу устройства. Схема фильтра низкой частоты состоит из 2 быстродействующих широкополосных операционных усилителей. В схеме звена ФНЧ при постоянной амплитуде входного напряжения и идеальном ОУ входной ток не зависит от частоты и весь протекает через цепь R1, C2. С повышением частоты уменьшается сопротивление этой цепи, а значит и напряжение на ней, равное выходному напряжению звена. Основу звена ФНЧ составляет RC-фильтр из двух ячеек С2, R1 и C6, R5. Его особенностью является подключение второго вывода конденсатора С7 не к земле, а к выводу не инвертирующего усилителя, включенного после фильтра. Благодаря этому создаётся положительная ОС, которая действует в основном в окрестностях частоты среза и увеличивает коэффициент усиления, а следовательно, резкость изгиба АЧХ, приближая изгиб к излому, т.е. к линейно-ломанной составляющей из двух полу- асимптот - горизонтальной и наклонной.

3. Выбор элементной базы

При выборе элементной базы руководствуемся ограничениями, которые накладываются условиями эксплуатации. Исходя из технического задания и пункта 1 следует, что разрабатываемый печатный узел, устанавливается в возимый на гусеничный транспорт. Таким образом, выбор варианта установки элементов на печатной плате должен обеспечивать как можно меньшую установочную площадь элемента на плате и высоую механическую прочность.

При выборе резисторов используем критерии:

? максимальная мощность рассеиваемая на резисторах;

? разброс величины сопротивления должен быть минимальным;

? использовать по возможности резисторы одного типа.

Подберем резисторы согласно расчету выделяемой мощности в пункте 2. Подойдут резисторы P1-16-резисторы металлодиэлектрические прецизионные. Основные характеристики такого резистора:

- Пределы номинального сопротивления 10Ом --1МОм

· -Номинальная мощность, Вт - 0.125

· -Типоразмер - 1206

· -Масса не более 0,05г

Отобразим основные геометрические размеры:

Рисунок 3. Внешние размеры резисторов

Представим основные геометрические размеры в виде таблицы:

Таблица 2

Тип резистора

L,mm

S,mm

W,mm

T,mm

Hmax,mm

P1-16

3,20 ±0,15

1,93 ±0,38

1,60 ±0,15

0,50 ±0,25

0,71

Посадочное место:

Рисунок 4. Размеры посадочного места резисторов

Геометрический размер посадочного места представлены в таблице 3:

Таблица 3

Тип резистора

Z,mm

G,mm

X,mm

Y,mm

C,mm

P1-16

4,4

1,2

1,8

1,6

2,8

Определим установочную площадь резисторов:

Sуст= 1,3*4,4*1,8*8 =83mm2

При подборе конденсаторов выбор достаточно велик, практически все они удовлетворяют климатическим и механическим требованиям, и поэтому особую роль играют массогабаритные и электрические параметры (отклонение номинала, рабочее напряжение и т.д.), а так же показатели надежности.

Согласно ТЗ подберем конденсаторы соответствующей емкости, рабочего напряжения, материала.

Конденсаторы С2 - 3900пф и С3 - 1500пФ имеют одинаковые геометрические размеры. Их основные характеристики:

-Тип конденсатора - К10-60

-Материал - керамический

-Типоразмер - 805

-Номинальное напряжение 16В

-Масса 0,5г

Геометрические размеры данных конденсаторов представлены в таблице 4:

Рисунок 5. Внешний вид конденсаторов С2 и С3

Таблица 4

Тип конденсаторов

L,mm

S,mm

W,mm

T,mm

H,mm

К10-60

2,00 ±0,20

0,70 ±0,40

1,30 ±0,15

0,50 ±0,25

1,1

Покажем размеры посадочного места на рисунке 6 (размеры посадочного места представлено в таблице 5)

Рисунок 6. Размеры посадочного места конденсаторов С2 и С3

электрический узел печатный плата

Таблица 5

Тип конденсаторов

Z,mm

G,mm

X,mm

Y,mm

C,mm

К10-60

3,2

0.6

1,5

1,3

1,9

Определим установочную площадь конденсаторов:

Sуст=1,3*3,2*1,5*2=13 mm2

Покажем размеры электролитических конденсаторов С1, С8 - 10мкФ

-Тип конденсатора - A

-Материал - Алюминиевые оксидно-электролитические

-Типоразмер - А

-Номинальное напряжение 16 В

-Масса 0,5 г.

Представим геометрические размеры и размеры посадочного места этих конденсаторов в таблице 6, а также представим их на рисунке 7.

Рисунок 7. Электролитический конденсаторы С1 и С8

Таблица 6

Конденсаторы

L, mm

W, mm

H, mm

Y, mm

G mm

Z mm

X, mm

С1,С8

4,3?0,2

4,3?0,2

5,5?0,5

2,6

1

6,2

1,6

Определим установочную площадь:

Оба конденсатора имеют одинаковые геометрические размеры, тогда:

Sуст=1,3*6.2*1.6*2=26 mm2

Конденсаторы С4-5, С9-10 - 0,022мкФ и С7 - 0,01мкФ и имеют одинаковые геометрические размеры.

- Тип конденсатора - К10-17

- Материал - керамический

- Типоразмер - 603

- Номинальное напряжение -15В

Представим геометрические размеры конденсатора и размеры его посадочного места (Рис. 8 и 9):

Рисунок 8. Внешний вид конденсатора C3

Рисунок 9. Разметка посадочного места конденсаторов С4-5, С9-10 и С7

Таблица 7

Конденсаторы

L, mm

S, mm

W, mm

T, mm

H mm

Z mm

X, mm

Y mm

С4-5,С9-10,С7

1,60 ±0,15

0,71 ±0,26

0,80 ±0,15

0,35 ±0,15

0,85

2,8

1

1,1

Определим установочную площадь:

Sуст=1,3*2,8*1*5=18 mm2

Конденсатору С6 подойдет также К10-17 ,но у него будут другие размеры .Типоразмер будет 805

Таблица 8

Конденсаторы

L, mm

W, mm

H, mm

Y, mm

G mm

Z mm

X, mm

С6

2,00 ±0,20

1,30 ±0,15

1,1

1,3

0,6

3,2

1,5

Определим установочную площадь:

Sуст=1,3*3,2*1,5=6 mm2

В качестве быстродействующего широкополосного операционного усилителя был выбран КФ140УД7.

-Тип корпуса-SO 8

-Iвх,нА:400

-U пит, В: 5…17

Выглядит она следующим образом:

Рисунок 10.

Покажем геометрические размеры и размеры посадочного места на рисунке 11:

Рисунок 11. Внешний вид микросхемы КФ140УД7

Представим геометрические размеры микросхемы (таблица 9):

Таблица 9

Тип микросхмы

Не, mm

E, mm

D, mm

A, mm

Z, mm

G, mm

X, mm

Y, mm

C, mm

КФ140УД7

5.8..6.2

3.8..4

8.55..8.75

1.35

7.4

3

0.6

2.2

5.2

Определи установочную площадь данной микросхемы:

Sуст=1.3*7,4*4,4*2=85mm2

4. Обоснование выбора печатной платы

4.1 Обоснование типа печатной платы

Печатная плата - изоляционное основание с нанесенным на его поверхность печатным монтажом. Их применение повышает надежность аппаратуры, обеспечивает повторяемость электрических параметров, создает предпосылки для автоматизации производства (высокая производительность и низкая себестоимость), уменьшает габариты и массу. Наиболее распространены односторонние печатные платы (ОПП) и двухсторонние печатные платы (ДПП) с основаниями из слоистого диэлектрика. Проведем их сравнение.

ОПП характеризуется: возможностью обеспечить повышенные требования к точности выполнения проводящего рисунка; установкой навесных элементов на поверхность платы со стороны, противоположной стороне пайки, без дополнительной изоляции; возможностью использования перемычек без изоляции; низкой стоимостью конструкции. В ОПП для трассировки пересекающихся цепей используют перемычки из проволоки, либо чип-перемычки (чип-резисторы с нулевым сопротивлением, например Р1-23).

К недостаткам ООП следует отнести низкую плотность компоновки, обычно не превышающую 1,5 эл/см3; низкую тепловую и механическую устойчивость контактных площадок. Во избежание отслоения печатных проводников все КМО следует монтировать без зазоров между корпусом и платой. Главным достоинством ОПП является ее низкая стоимость и простота изготовления. Применяется, главным образом, для несложных схем.

ДПП выполняется с металлизированными отверстиями, характеризуются высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного ЭРЭ с проводящим рисунком. Недостатком ДПП является более высокая стоимость по сравнению с ОПП. Применяется для схем повышенной сложности.

Учитывая несложность схемы проектируемой аппаратуры, предлагается применить ОПП. При этом будет обеспечиваться необходимая точность изготовления платы и низкая стоимость.

4.2 Выбор класса точности печатной платы

Односторонние печатные платы (ОПП) характеризуются: возможностью обеспечить повышенные требования к точности выполнения проводящего рисунка; установкой навесных элементов на поверхность платы со стороны, противоположной стороне пайки, без дополнительной изоляции; возможностью использования перемычек без изоляции; низкой стоимостью конструкции. К недостаткам ООП следует отнести низкую плотность компоновки, обычно не превышающую 1,5 эл/см3; низкую тепловую и механическую устойчивость контактных площадок.

Выполнение платы односторонней выгодно, так как требует более простого оборудования, чем оборудование для изготовления двусторонней ПП и проведения компоновочных работ на ней.

Для рассматриваемого примера выбираем одностороннюю печатную плату, изготавливаемую по 3 классу. Выбор типа обусловлен компоновочной схемой узла, выбор класса точности - плотностью электрических связей и шагом расположения выводов. В схеме используется только два элемента в корпусе SO8 с шагом расположения выводов 1,27 мм, корпуса SO8 имеют расстояние между выводами 0.63 мм.

Номинальные значения основных параметров элементов конструкции ПП для третьего класса точности берутся следующими:

? Максимальные размеры ПП, мм: 470?470;

? Минимальная ширина проводника t=0.25мм;

? Минимальная ширина зазора s=0.25мм;

? Предельное отклонение проводника с металлическим покрытием ?t= ±0,10

? Гарантийный поясок контактной площадки bmin=0,10мм;

? Допуск на отверстие диаметром до 1мм без металлизации ?d=±0,05мм;

? Допуск на отверстие диаметром >1мм без металлизации ?d=±0,10мм;

? Отношение диаметра металлизированного отверстия к толщине платы г=0,33

Коммутационная способность ПП зависит от класса точности и шага координатной сетки. Шаг координатной сетки выбираем равным 1,25 мм для третьего класса точности.

4.3 Выбор метода изготовления печатной платы

С целью повышения процента выхода годных плат, применение на предприятиях единого унифицированного технологического оборудования и снижение трудоемкости изготовления ГОСТ 24322-80 ``Платы печатные. Требования к последовательности выполнения типовых технологических процессов" ограничивает изготовление ОПП химическим методом.

Химический метод - травление фольгированного диэлектрика без металлизации монтажных отверстий. Этот метод сочетается с фотографическим и сеткографическим способами получения изображения печатного рисунка и обеспечивает высокую разрешающую способность печатных проводников. Достоинствами химического метода являются: доступность механизации и автоматизации, возможность получения высокого качества печатных плат, которые обладают высокой адгезией (прилипанием) печатных проводников к диэлектрическому основанию. Недостатками химического метода являются: наличие активного воздействия химических веществ на диэлектрическое основание ПП, повышенный расход травителей и стравливаемой меди, которая в большинстве случаев не регенерируется.

В промышленности в настоящее время широко внедряются химические методы получения проводящего рисунка печатных плат из фольгированных материалов с утонченной фольгой (5…10 мкм). В таких печатных платах удается получить узкие печатные проводники и повысить плотность печатного монтажа.

Основными методами, применяемыми в промышленности для создания рисунка печатного монтажа, являются офсетная печать, сеткография и фотопечать. Выбор метода определяется конструкцией ПП, требуемой точностью и плотностью монтажа, производительностью оборудования и экономичностью процесса.

Метод офсетной печати состоит в изготовлении печатной формы, на поверхности которой формируется рисунок слоя. Форма закатывается валиком трафаретной краской, а затем офсетный цилиндр переносит краску с формы на подготовленную поверхность основания ПП. Метод применим в условиях массового и крупносерийного производства с минимальной шириной проводников и зазоров между ними 0,3 ... 0,5 мм (платы 1 и 2 классов плотности монтажа) и с точностью воспроизведения изображения ±0,2 мм. Его недостатками являются высокая стоимость оборудования, необходимость использования квалифицированного обслуживающего персонала и трудность изменения рисунка платы.

Сеткографический метод основан на нанесении специальной краски на плату путем продавливания ее резиновой лопаткой (ракелем) через сетчатый трафарет, па котором необходимый рисунок образован ячейками сетки, открытыми для продавливания. Метод обеспечивает высокую производительность и экономичен в условиях массового производства. Точность и плотность монтажа аналогичны предыдущему методу.

Самой высокой точностью (±0,05 мм) и плотностью монтажа, соответствующими 3--5 классу (ширина проводников и зазоров между ними 0,1--0,25 мм), характеризуется метод фотопечати. Он состоит в контактном копировании рисунка печатного монтажа с фотошаблона па основание, покрытое светочувствительным слоем (фоторезистом).

Учитывая вышесказанное и принимая во внимание требования технического задания, выбираем метод изготовления печатной платы химический с получением рисунка печатного монтажа методом фотопечати.

4.4 Выбор материала печатной платы

В качестве основания печатной платы используются слоистые диэлектрики на основе бумаги (гетинаксы) и на основе стеклоткани (стеклотекстолиты). Выбор материала определяется электроизоляционными свойствами, механической прочностью, обрабатываемостью, стабильностью параметров при воздействии агрессивных сред и изменяющихся климатических условий, себестоимостью. Стеклотекстолит превосходит гетинакс практически по всем техническим и электрическим характеристикам: допустимая влажность окружающей среды для платы без дополнительной влагозащиты (85% для гетинакса и 93% для стеклотекстолита). Стеклотекстолит имеет меньший тангенс угла диэлектрических потерь (0,035 против 0,07) и меньшую диэлектрическую проницаемость (5,5 против 7,0), что уменьшает паразитную емкость; водопоглощение при толщине 1,5мм (20мг против 80мг), прочность на отслаивание фольги после кондиционирования в гальваническом растворе (3,6Н против 1,8Н), прочность на отрыв контактной площадки (60Н против 50Н) - важный показатель для плат, эксплуатируемых в жестких механических условиях.

Исходя из выше сказанного стеклотекстолит превосходит гетинакс практически по всем показателям, но стоимость его значительно выше.

Предпочтительными значениями номинальных толщин одно- и двусторонних печатных плат являются 0,8; 1,0; 1,5; 2.0 мм.

Материалы, рекомендуемые для изготовления печатных плат, приведены ниже в таблице 11 .

Таблица 11

Наименование

Марка

Толщина материала

Тип печатной платы

ГОСТ. ТУ

Гетинакс фольгированный

ГФ-1-50

ГФ-2-50

ГФ-1-35

ГФ-2-35

1,0…3.0

1,5…3.0

1,0…3.0

1,0…3.0

ОПП и ДПП

ГОСТ 10316-78

Стеклотекстолит фольгированный

СФ-1-35

СФ-2-35

СФ-1-50

СФ-2-50

СФ-1Н-50

СФ-2Н-50

0,8…3.0

0,8…3.0

0,5…3.0

0,5…3.0

0,8…3.0

0,8…3.0

ОПП и ДПП

ГОСТ 10316-78

Стеклотекстолит фольгированный повышенной нагревостойкости

СФНП-1-50

СФНП-2-50

0,5…3,0

0,5…30

ОПП и ДПП

ГОСТ 10316-78

Исходя из того, что проектируемая аппаратура является носимой и эксплуатируется при высоких значениях механических нагрузок и жестких климатических условий необходимо использовать стеклотекстолит фольгированный повышенной нагревостойкости.

Таким образом, выбираем СФНП-1-35-2 ГОСТ 10316-78 - фольгированный стеклотекстолит с повышенной нагревостойкостью, толщиной 2 мм, облицовочный с одной стороны медной электролитической фольгой толщиной 35 мкм.

4.5 Выбор способа пайки

В зависимости от конструктивной реализации узла, программы выпуска, чувствительности компонентов к нагреву, имеющегося оборудования и его производительности могут применяться пайка оплавлением дозированного припоя, пайка волной припоя, селективная пайка, ручная пайка.

Выберем пайку селективную пайку. Она обеспечивает более высокое качество пайки поверхностномонтируемых компонентов, чем групповая пайка компонентов в установке пайки двойной волной припоя, особенно при высокой плотности монтажа на плате. К тому же компоненты не погружаются в волну припоя и не подвергаются дополнительному термическому воздействию. Обеспечивается тем самым высокое качество изделий.

5. Определение основных конструктивных параметров печатной платы

5.1 Определение размеров печатной платы

Размеры печатной платы определяются исходя из площади, необходимой для размещения всех электрорадиоэлементов, элементов печатного монтажа и площади дополнительных зон.

При компоновке элементов на печатных платах оперируют понятием установочной площади элемента, которую для большинства элементов вычисляют по формуле (3):

Sуст = 1.3 BL , (3)

где В - максимальная ширина (диаметр элемента);

L - длина элемента, включая отформованные выводы (установочный размер).

Установочная площадь учитывает зазоры, которые необходимы для работы укладочного инструмента.

Расчет установычных площадей элементов производился в пункте 3.

Если печатная плата содержит краевые поля, необходимые для маркировки, установки контрольных точек, элементов фиксации и коммутации, то их площадь также включается в полную площадь печатной платы.

При определении полной площади платы вводят коэффициент ее увеличения, находящийся в пределах КS= (1,5...3):

,(1)

где N - количество компонентов на плате;

Sкп - площадь краевых полей платы.

Sуст - установочная площадь отдельных элементов

Задавшись коэффициентом увеличения 3, определим площадь печатной платы:

Sуст=3*234=702мм2 Тогда Snn=1250mm2

Масса элементов равна примерно 20 грамм.

Если печатный узел используется в составе стойки или как субблок, выбирается стандартный типоразмер печатной платы. В нашем случае проектируемый функциональный узел располагается в автономном блоке, поэтому возможно применение ПП произвольных размеров, обеспечивающих необходимую площадь. Исходя из площади печатной платы, определяем конкретные, габаритные размеры в соответствии с ГОСТ 10317-79. По техническому заданию не требуется плата оригинальной формы, поэтому выбрана прямоугольная форма печатной платы. Полученной установочной площади соответствует плата с линейными размерами 25*50мм

6. Разработка конструкции узла

6.1 Выбор элемента внешней коммутации узла

Для обеспечения электрической связи ФУ с другими узлами, блоками, выносными элементами в конструкции должны быть предусмотрены элементы контактирования - соединители.

Соединители могут быть выбраны в виде вилки навесных разъемов; сформированных печатных концевых вставок на ПП; монтажных отверстий; штырей, впаянных в монтажные отверстия; и, наконец, контактных площадок. Для обеспечения удобства монтажа и ремонта все элементы коммутации ФУ должны быть выведены на одну из сторон ПП.

Выберем разъём Mini USB 5S. Данный разъем приведен на рисунке.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Для обеспечения ремонтопригодности необходимо печатную плату крепить в корпус при помощи винтов диаметром 1,5 мм.

6.2 Варианты компоновки узла

Под компоновкой РЭС понимают часть процесса конструирования, связанного с размещением на плоскости или в объеме отдельных составных частей изделия с учетом реализации необходимых электрических связей, взаимного влияния электромагнитных и тепловых полей. При компоновке ПП электрорадиоэлементы обычно заменяют их установочными моделями, которые представляют собой проекцию элемента на плату. Вариантов компоновки может существовать очень много. На рисунке 15 представлен один из вариантов компоновки проектируемого узла.

Рисунок 15.

6.3 Трассировка печатной платы

При разработке трассировки печатной платы следует учитывать необходимость проложения печатных проводников по линиям координатной сетки или под углом 450 к ним. Это нужно для облегчения автоматизированного получения рисунка печатной платы. Для третьего класса точности шаг координатной сетки 1.25 мм. Также следует учитывать выдерживание небходимого расстояния между печатными проводниками . Для платы третьей класса точности минимальная ширина проводника t и зазора s: 0.25 мм. Для уменьшения плотности протекающего через проводник тока выберем среднюю ширину проводника t=0.3 мм. В узких местах допустимая ширина может принимать значение t=0.25 мм. Трассировка платы показана на рисунке 16.

Рисунок 16.

Вариант трассировки представлена на рисунке 16.

6.4 Маркировка печатной платы

Маркировка выполняется обычно методом проводящего рисунка (например, травлением) или же маркировочной краской. Маркировка травлением используется в основном при мелкосерийном производстве при невысокой плотности расположения проводников, когда экономически не выгодно изготовление сеточных трафаретов для маркировки краской. В нашем же случае предполагается крупносерийное производство аппаратуры. В этом случае выгоднее использовать маркировку краской. Современные технологии позволяют применять для всех видов маркировок краску и типографскую печать на твердых поверхностях. Таким образом, маркировка производится офсетным способом, который удобен при автоматизированном производстве. Маркировочная краска разрабатываемого функционального узла должна отвечать следующим требованиям:

- возможность автоматического нанесения в условиях крупносерийного производства;

- механическая прочность;

- хорошая адгезия к маркируемой поверхности;

- диапазон рабочих температур от -60 до +450 С;

- рекомендация к маркировке стеклотекстолита.

Всем этим требованиям в полной мере удовлетворяет краска ЭП-572 (ТУ6-10-1539-79). Предлагается использовать краску белого цвета. Свойства краски ЭП-572: диапазон температур от -60 до +1500 С; обладает механической прочностью, маслостойкостью, хорошей адгезией к маркируемым материалам, водостойкостью, спиртобензиностойкостью.

6.5 Выбор покрытий и обеспечение влагозащиты печатной платы

В конструкции разрабатываемой печатной платы должны использоваться различные вида покрытий, которые предназначены для улучшения паяемости, защиты участков печатных проводников от воздействия припоя, обеспечения влагозащиты платы. В качестве металлических покрытий для улучшения паяемости согласно ОСТ4.ГО.014.000. используются легкоплавкие припои, представленные в таблице 12.

Таблица 12

Припой

Олово, %

Висмут, %

Свинец, %

Кадмий, %

Температура плавления

Сплав Вуда

Сплав Розе

ПОСВ-33

ПОС-61

12,5

25

33,4

61

50

50

33,3

-

25

25

33,3

39

12,5

-

-

-

68 °С

94 °С

130 °С

190 °С

Предлагается использовать сплав Розе в виду его лучшей антикоррозийной защиты проводников по сравнению со сплавом Вуда или сплавом Липовитца, а также улучшенной способности к пайке. Его ближайшей заменой является ПОСВ-33.

Для электромонтажных соединений используется, обычно, припой марки ПОС-61. Он относится к легкоплавким припоям и предназначен для пайки выводов дискретных ЭРЭ и ИМС. Его выбор также обусловлен тем, что в изделии имеются полупроводниковые приборы, для которых недопустим перегрев.

Защита от влаги, а также от опасных механических повреждений предусматриваются в виде покрытия печатного узла после сборки лаком. Пленка лака создает барьер воздействию влаги и загрязнений на диэлектрическое основание, предохраняет тонкие проводники от повреждений, увеличивает механическую жесткость платы. Причем лак должен быть бесцветным для свободного прочтения маркировки нанесенной на плату. К покрытиям предъявляются требования хорошей адгезии, малой водопроницаемости и коррозионной стойкости.

В качестве покрытия достаточно применение лака УР-231. Он обеспечивает хорошую защиту платы и ЭРЭ от воздействия климатических факторов, а также повышает и ее механическую жесткость. При этом он дешевле лака ЭП-730.

7. Проверочные расчеты

При разработке конструкции ПП необходимо провести ряд проверочных расчетов, которые подтвердили бы правильность примененных конструктором решений. К таким расчетам относятся: определение минимального расстояния для прокладки n-го количества проводников между двумя отверстиями; расчет проводников по постоянному току; расчет электрических параметров печатных проводников; расчет механической устойчивости печатного узла.

Необходимость проведения тех или иных видов расчетов следует из технического задания и особенностей компоновки и трассировки.

Как видно из выбранного варианта трассировки (пункт 6.3), необходимость определения минимального расстояния для прокладки n-го количества проводников между двумя отверстиями отпадает в виду отсутствия прохождения проводников в узких местах между отверстиями. Расчет электрических параметров печатных проводников (паразитной емкости и индуктивности) производится, главным образом, для высокочастотных устройств. Ввиду того, что проектируемое устройство работает от постоянного напряжения, необходимость такого расчета тоже отпадает. Таким образом, производится расчет проводников по постоянному току и расчет механической устойчивости печатного узла.

7.1 Расчет проводников по постоянному току

Расчет проводников по постоянному току выполняется с целью определения нагрузочной способности печатных проводников по току, величине падения напряжения на проводниках. Критичными в этом отношении являются проводники цепей питания. Минимально допустимая ширина печатного проводника определяется по формуле (2):

t > Imax/h j, ( 2)

где Imax - максимальный ток, протекающий через проводник, в нашем случае составляет 6 мА для входной цепи;

h - толщина проводника (мм), в нашем случае 35 мкм ;

j - допустимое значение плотности тока (A/мм2), зависит от метода изготовления ПП и для химического метода при толщине фольги 35 мкм составляет 20 A/мм2.

Произведенный расчет показывает t > 0,08 мм. Таким образом, печатный проводник шириной 0,25 мм (минимальная ширина проводника для печатной платы третьего класса точности) обладает более чем достаточной нагрузочной способностью по току.

Допустимое падение напряжения для микросхемы на цепях питания не должно превышать 1-2% номинального значения подводимого напряжения, то есть 0,24 В (при напряжении питания 12 В) . Падение напряжения на проводнике определяется по формуле (12):

U=с lпр Imax/ht(3)

где с - удельное сопротивление проводника, для медной катаной фольги с = 0,017 Ом*мм22;

lпр - длина проводника, 50 мм.

Произведенный расчет показывает U=0.048 В, гораздо меньше 0,24 В.

Таким образом, проводники удовлетворяю предъявляемым требованиям.

Допустимое рабочее напряжение между проводниками печатной платы определяется по таблице 13. Как известно из пункта 2, максимальное (амплитудное) значение действующего в проектируемом устройстве напряжения 12В.

Таблица 13

Атмосферное давление Па

Материал

Напряжение, B, не более при расстоянии между проводниками, мм

0,15…0,2

0,2…0,3

0,3…0,4

0,4…0,7

0,7…1,2

1,2…2

2…3,5

Нормальное

ГФ

-

30

100

150

300

400

500

СФ

25

50

150

300

400

600

830

53600

ГФ

-

25

80

110

160

200

250

СФ

20

40

110

160

200

300

430

666

ГФ

-

20

30

58

80

100

110

СФ

10

30

50

80

100

130

160

Как видно из таблицы 13, для проектируемого функционального узла расстояние между проводниками должно быть не меньше 0,50 мм. Выбранный третий класс точности печатной платы (минимальное расстоянии между проводниками 0,25 мм) вполне удовлетворяет этому требованию.

7.2 Расчет на вибропрочность печатной платы

Вибропрочность платы определяется его собственной частотой (Гц), определяемой по формуле (4):

,(4)

где а - длина пластины, см;

h - толщина пластины, см;

с - частотная постоянная.

Значения частотной постоянной в зависимости от варианта закрепления и от отношения длин сторон платы определяются по таблице 4.1. В качестве варианта установки разрабатываемого узла будем использовать вариант установки путем закрепления винтами по углам. Схема закрепления платы приведена на рисунке 17.

Рис. 17. Вид закрепления платы

Имеет отношение длин сторон а/b=2. Тогда по таблице 4.1 [3] частотная постоянная с=114,5.

Формула (4) используется для расчёта стальных ненагруженных пластин. Если пластина изготовлена не из стали, а из другого материала, то в формулу вводится поправочный коэффициент на материал:

,(5)

где ЕСФ и сСФ - модуль упругости (3.45?105 кг/см2) и плотность (2,5 г/см3) стеклотекстолита фольгированного; Ес и сc - модуль упругости (21*105 кг/см2) и плотность (7,35 г/см3) стали.

Тогда Км=0,69.

Если пластина равномерно нагружена, то вводится поправочный коэффициент на массу элементов:

,(6)

где МЭ - масса элементов, равномерно размещенных на пластине, равна 15 г;

МП - масса пластины, при толщине 2мм и размерах 25*50 мм его масса будет около г.

Тогда Кмас=0,587.

Таким образом, формулу для определения собственной частоты колебаний равномерно нагруженной пластины можно записать в следующем виде:

=0,587*0,69*114,5*2*100000/502=3710

При подстановке данных в формулу (7) получится fc=3710 Гц. Внешняя верхняя частота из технического задания равна 2000 Гц. Так как отношение внешней частоты к собственной больше двух, то виброзащита данной платы удовлетворительна.

Заключение

В данной курсовой работе было проведено проектирование функционального узла на печатной плате. При разработке функционального узла были произведены работы по выбору элементной базы, соответствующей техническому заданию и схеме электрической принципиальной; определены необходимые тип, класс точности, метод изготовления и размеры печатной платы, а так же необходимые размеры для установки элементов. Кроме того, произведен выбор необходимых покрытий для маркировки, обеспечения влагозащиты платы и паяемости контактных площадок.

Требования технического задания были полностью учтены. Особое внимание обращалось на обеспечение высокой надежности и массогабаритные характеристики разрабатываемой печатной платы, что необходимо при разработке носимой аппаратуры. Вариант компоновки и соответствующий ему вариант трассировки являются достаточно удачным. Проведенные проверочные расчеты показали состоятельность конструктивных решений, применяемых при проектировании.

Библиографический список

1. Леухин В.Н. Выбор элементной базы по эксплуатационным и конструктивным параметрам: Справочное пособие. - Йошкар-Ола: МарГТУ, 2003.

2.Леухин В.Н. Радиоэлектронные узлы с монтажом на поверхность: конструирование и технология: Учебное пособие.- Йошкар-Ола: МарГТУ, 2006.

3. Леухин В.Н. Проектирование радиоэлектронных узлов: Учебное пособие. - Йошкар-Ола: Периодика Марий Эл, 2003.

4. Леухин В.Н. Основы конструирования и технологии производства РЭС: Учебное пособие. - Йошкар-Ола: МарГТУ, 2006.

5. Справочник для элементов монтажа на поверхности КМП 06: Электронная база данных

6. Справочник радиолюбителя. Полупроводниковые приборы и их зарубежные аналоги: Электронная база данных.

Размещено на Allbest.ru


Подобные документы

  • Анализ электрической принципиальной схемы и выбор элементной базы. Выбор резисторов, конденсаторов, транзисторов и печатной платы. Конструкторско-технологический расчет печатной платы. Конструкторские расчеты печатного узла. Расчет теплового режима.

    курсовая работа [1,4 M], добавлен 28.02.2013

  • Анализ схемы электрической принципиальной и элементной базы. Расчет элементов рисунка печатной платы, надежности функционального узла, комплексного показателя технологичности узла. Описание конструкции усилителя. Разработка технологического процесса.

    курсовая работа [175,1 K], добавлен 09.11.2011

  • Конструирование радиоэлектронной аппаратуры. Объединение электронных компонентов. Расчет элементов печатной платы. Подготовка поверхностей заготовок. Технологический процесс изготовления двухслойной печатной платы комбинированным позитивным методом.

    курсовая работа [57,7 K], добавлен 19.02.2013

  • Описание работы устройства, его внешних электрических связей. Выбор части схемы, реализованной на одной печатной плате. Конструирование печатной платы автоматического телеграфного ключа, климатическая защита. Расчет собственной частоты печатной платы.

    курсовая работа [1,3 M], добавлен 23.09.2010

  • Применение каналов сотовой связи в охранной сигнализации. Описание принципиальной электрической схемы. Анализ соответствия электронной базы условиям эксплуатации. Выбор метода изготовления печатной платы и выбор материалов. Проект функционального узла.

    курсовая работа [846,6 K], добавлен 26.01.2015

  • Конструкция печатного узла. Технология его изготовления с максимальным использованием монтажа на поверхность, что позволит провести быстрый ремонт за счет замены неисправного блока на исправный. Чертежи схемы электрической принципиальной и печатной платы.

    курсовая работа [1,2 M], добавлен 08.02.2011

  • Создание графического обозначения электрорадиоэлементов. Разработка посадочного места на печатной плате для монтажа элементов. Упаковка выводов конструктивных элементов радиоэлектронных средств. Автоматическая трассировка проводников печатной платы.

    курсовая работа [1,9 M], добавлен 27.05.2012

  • Описание схемы электрической принципиальной приёмника для радиоуправляемой игрушки. Этап проектирования и расчет надежности микросхемы. Обоснование выбора элементов: резисторов, конденсаторов. Трассировка печатной платы и компоновка печатной платы.

    курсовая работа [29,8 K], добавлен 27.01.2009

  • Принцип работы и описание цифрового измерителя емкости оксидных конденсаторов. Выбор типа электрорадиоэлементов (ЭРЭ). Выбор метода изготовления печатной платы. Расчет параметров электрических соединений. Расчет печатной платы на механические воздействия.

    курсовая работа [108,4 K], добавлен 10.06.2009

  • Анализ схемы электрической принципиальной. Расчет шага размещения интегральной схемы, размеров зоны ее расположения. Интерактивное размещение и трассировка. Создание контура печатной платы, размещение компонентов. Подготовка конструкторской документации.

    курсовая работа [1,2 M], добавлен 25.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.