Коэффициенты отражения от плоской границы раздела двух диэлектриков с потерями

Составление m-файла, позволяющего вычислять модули и фазы коэффициентов отражения от границы раздела при произвольных параметрах границы сред. Общая характеристика полного внутреннего отражения. Особенности зависимостей при отражении от частоты сигнала.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 24.01.2011
Размер файла 528,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Институт Транспорта и связи

Антенны и распространение радиоволн

Лабораторная работа 1

По теме

«Коэффициенты отражения от плоской границы раздела двух диэлектриков с потерями»

Студент: Александр Александров

Группа: 3702BD

Рига 2011г.

Цель работы

1. Написать m-файл, позволяющий вычислять модули и фазы коэффициентов отражения от границы раздела при произвольных параметрах границы сред;

2. Подробно изучить полное внутреннее отражение;

3. Посмотреть, что и как при отражении зависит от частоты сигнала

Теоретические сведения

Коэффициент отражения при параллельной поляризации:

Коэффициент отражения при перпендикулярной поляризации:

Второй закон Снелла:

M-файл

Функция принимает в качестве параметров характеристики сред е1, е2 , у1, у2.

Возвращает значение угла Брюстера, графики зависимости модулей и углов коэффициентов отражения для параллельной и перпендикулярной поляризации от угла падения, а также график зависимости угла преломления от угла падения.

function phi_br = edgereflect(eps1, eps2, sigma1, sigma2)

%EDGEREFLECT находит угол Брюстера, коэффициенты отражения и углы переломления для границы двух сред.

phi=0:.25:90; %диапазон значений угла падения

phir=phi*pi/180; %то же в радианах

f=.1e6; omega=f*2*pi; %частота падающей волны (f = 100 КГц)

eps0=.1e-8/(36*pi); %диэлектр. проницаемость свободного пространства

epsr=(eps2-i*sigma2/(omega*eps0))./(eps1-i*sigma1/(omega*eps0));

A=epsr*cos(phir); B=sqrt(epsr-sin(phir).^2);

Rpar=(A-B)./(A+B);

Rperp=(cos(phir)-B)./(cos(phir)+B);

%графики зависимости коэффициентов отражения от угла падения

figure(1);

subplot(2,2,1)

plot(phi,abs(Rpar)); grid

xlabel('\phi')

ylabel('|R_p_a_r|')

subplot(2,2,2)

plot(phi,angle(Rpar)); grid

xlabel('\phi')

ylabel('\psi _p_a_r')

subplot(2,2,3)

plot(phi,abs(Rperp)); grid

xlabel('\phi')

ylabel('|R_p_e_r_p|')

subplot(2,2,4)

plot(phi,angle(Rperp)); grid

xlabel('\phi')

ylabel('\psi _p_e_r_p')

%зависимость угла преломления от угла падения

phi_pr = asin(sin(phir).*sqrt(eps1/eps2))*180/pi;

figure(2);

plot(phi,phi_pr);

xlabel('\phi')

ylabel('\phi _o_t_r')

%угол Брюстера

phi_br = atan(sqrt(epsr))*180/pi;

Падение волны на границу воздух-почва при у2 = 0

Параметры сред (приближенные):

Воздух: е1 = 1; у1 = 0

Почва: е2 = 4; у2 = 0

Результаты вызова функции edgereflect(1,4,0,0)

Угол Брюстера: 63.435°

Зависимость коэффициентов отражения от угла падения.

Зависимость угла преломления от угла падения.

2.Падение волны на границу воздух-почва при разных у2 ? 0

у2 = 0.0001 цБР = 79.49°

у2 = 0.001 цБР = 86.94°

у2 = 0.01 цБР = 89.04°

у2 = 0.1 цБР = 89.70°

Падение волны на границу почва-воздух при разных у2 ? 0

у2 = 0.0001

у2 = 0.001

у2 = 0.01

у2 = 0.1

Падение волны на границу воздух-морская вода при разных f

Параметры сред (приближенные):

Воздух: е1 = 1; у1 = 0

Морская вода: е2 = 80; у2 = 4

f = 100 КГц цБР = 89.95°

f = 10 КГц цБР = 89.99°

f = 1 КГц цБР = 89.995

f = 100 Гц цБР = 89.998°

Падение волны на границу воздух-почва при разных f

2 = 0.0001)

f = 100 КГц цБР = 79,49°

f = 10 КГц цБР = 86,94°

f = 1 КГц цБР = 89.04

f = 100 Гц цБР = 89.70°

Выводы

При падении волны на границу воздух-почва, угол Брюстера тем больше, чем больше значение электрической проводимости, при этом коэффициент отражения растёт, то есть поглощение всё дальше от полного.

При снижении частоты угол Брюстера также растёт, вдали от него модуль коэффициента отражения всё ближе к единице. В случае подводных объектов, однако, гораздо важнее глубина проникновения в среду.


Подобные документы

  • Частотное преобразование акустического сигнала. Технические средства измерений, контроля и диагностики на основе ультразвуковых колебаний. Отражение и преломление звука. Прохождение звука через границу раздела двух сред. Разработка модуля программы.

    курсовая работа [1,0 M], добавлен 28.10.2011

  • Падение плоской волны на границу раздела двух сред, соотношение волновых сопротивлений и компонентов поля. Распространение поляризованных волн в металлическом световоде, расчет глубины их проникновения. Определение поля внутри диэлектрического световода.

    курсовая работа [633,8 K], добавлен 07.06.2011

  • Волоконный световод - тонкая кварцевая нить, по которой может распространяться свет за счет полного внутреннего отражения. Принципиальная схема волоконно-оптической системы связи со спектральным уплотнением каналов. Характеристика хроматической дисперсии.

    курсовая работа [272,6 K], добавлен 05.05.2011

  • Определение однослойного, двухслойного, трехслойного и многослойного просветляющего покрытия с минимальным коэффициентом отражения для данной длины волны. Оптические толщины, материалы напыляемых покрытий. Спектральные зависимости коэффициента отражения.

    курсовая работа [329,1 K], добавлен 18.03.2013

  • Феноменологическая модель рассеяния электромагнитных волн протяженной поверхностью. Дискретное представление и динамическая импульсная характеристика отражения поверхности. Анализ простого импульсного и оптимально согласованного с поверхностью сигналов.

    курсовая работа [5,1 M], добавлен 16.08.2015

  • Устройство для измерения абсолютных комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием. Структурная схема блока опорных частот. Смеситель сигналов 140 МГц. Фильтр нижних частот для сигнала. Система фазовой автоподстройки.

    дипломная работа [2,8 M], добавлен 20.12.2013

  • Принцип работы оптического волокна, основанный на эффекте полного внутреннего отражения. Преимущества волоконно-оптических линий связи (ВОЛС), области их применения. Оптические волокна, используемые для построения ВОЛС, технология их изготовления.

    реферат [195,9 K], добавлен 26.03.2019

  • Физика явления полного внутреннего отражения. Принцип формирования канала утечки. Места усиления действия акустических волн на волоконно-оптических сетях. Методы регистрации утечки. Оценка защищенности от утечки. Оптический рефлектометр "FOD-7003".

    курсовая работа [1,3 M], добавлен 05.01.2013

  • Предварительный усилитель промежуточной частоты, расчет его коэффициентов. Измерение зависимости коэффициента усиления ПУПЧ от включения генератора сигнала во входной контур. Графики зависимостей нормированных показателей передачи входного устройства.

    лабораторная работа [744,7 K], добавлен 05.05.2015

  • Оптические явления на границе раздела двух сред. Полное внутреннее отражение. Оптические волноводы. Особенности волноводного распространения. Нормированная переменная. Прямоугольные волноводы. Модовая дисперсия. Системы волоконно-оптической связи.

    контрольная работа [65,3 K], добавлен 23.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.