Модулированные сигналы
Характеристика амплитудной модуляции, ее применения для радиовещания на низких частотах. Изучение энергии однотонального АМ-сигнала. Рассмотрение сигналов с угловой модуляцией. Спектр прямоугольного ЛЧМ-сигнала. Модуляция символьных и кодовых данных.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 27.05.2015 |
Размер файла | 371,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Попутно заметим, что широтно-импульсная модуляция с последующим выделением постоянной составляющей может весьма эффективно использоваться (и используется) для слежения за средним уровнем сигнала и автоматического регулирования его динамического диапазона, как, например, в системах установки громкости звука и яркости цветов и изображения в целом в современных телевизионных установках.
Временная импульсная модуляция (ВИМ) представляет собой девиацию импульсов по временной оси по закону модулирующего сигнала, и по существу аналогична угловой модуляции гармонической несущей. Она также может быть фазовой (ФИМ) или частотной (ЧИМ).
Кодово-импульсная модуляция заключается в том, что в точках дискретизации модулирующего сигнала производится квантование его значений и кодирование квантованных значений, как правило, в двоичной системе исчисления. Кодированные значения затем передаются при помощи соответствующей кодовой последовательности стандартных символов.
5. Модуляция символьных и кодовых данных
В настоящее время информация передается по каналам связи в основном в цифровой форме. Числа при передаче с периодом Т поступают от источника информации и называются символами (symbol), а частота передачи символов - символьной скоростью (symbol rate)
fT=1/T.
Символьные последовательности являются дискретными квантованными сигналами, которые формируются следующим образом. Весь диапазон сигнала s(t) делится на Qs разрешенных уровней с некоторым шагом Dq. Сигнал s(t) дискретизируется с равномерным шагом, а мгновенные значения отсчетов сигнала округляются до ближайшего разрешенного уровня Qs(t). Полученный сигнал называется квантованным АИМ (КАИМ). Значения сигнала Qs(t) отличаются от s(t) на так называемый шум квантования, которым определяется погрешность восстановления исходного сигнала.
С увеличением числа уровней квантования шум квантования уменьшается. Наличие шума является недостатком цифровых методов передачи, однако она открывает и новые возможности передачи. В частности, зная всю шкалу разрешенных уровней на приеме, можно "очистить" сигнал от внешних помех, если их уровень меньше 0,5?q. Каждому из возможных символов Qs устанавливается определенный набор параметров несущего колебания, которые поддерживаются постоянными на интервале Т до прихода следующего символа. Это означает преобразование последовательности чисел в ступенчатый сигнал (кусочно-постоянная интерполяция) который используется в качестве модулирующего сигнала. Соответственно, параметры несущего колебания, на которые переносится ступенчатый сигнал, также меняются скачкообразно. Такой способ модуляции несущей называется манипуляцией (keying), и может выполняться с использованием всех рассмотренных методов модулирования.
Амплитудно-манипулированные сигналы простейшего типа представляют собой последовательности радиоимпульсов, разделенные паузами. Такие сигналы используются в радиотелеграфии и в системах передачи дискретных данных. Форма огибающей радиоимпульсов в общем случае может быть произвольной, паузы могут отличаться по длительности от радиоимпульсов.
На рис. 15.5.1. приведен пример амплитудно-манипулированного сигнала:
u(t)--=--Umcos--2pfot,
Рис. 15.5.1. АМП-сигнал.
Рис. 15.5.2. Модуль спектра АМП-сигнала.
Соответственно, в частотной области спектр АМП - сигнала образуется сверткой спектра огибающей функции (в данном случае - спектра прямоугольного импульса) со спектром косинусного колебания (дельта - функции на частоте fo).
Модуль спектральной плотности сигнала приведен на рис. 15.5.2. Спектр прямоугольного импульса довольно слабо затухает и простирается неограниченно далеко, а поэтому его использование в качестве огибающей АМП - сигнала не рекомендуется, хотя и является наиболее простым по техническому исполнению.
Рис. 15.5.3.
Рис. 15.5.4.
На рис. 15.5.3. приведен пример формы классического АМП сигнала при передаче нескольких символов, каждому из которых соответствует индивидуальная амплитуда несущей частоты при постоянной длительности интервалов посылки. Модуль спектра сигнала приведен на рис. 15.5.4 и тоже имеет достаточно большую ширину значимой части спектра вокруг несущей частоты.
Рис. 15.5.5.
Естественно, что при передаче данных частотный диапазон канала передачи данных ограничивается значимой частью спектра, ширина которого устанавливается по допустимой степени искажения приемных сигналов. Степень искажения сигналов существенно зависит от длительности посылок. Пример искажения вышеприведенного сигнала при ограничении спектра интервалом 40-60 кГц приведен на рис. 15.5.5.
Угловая манипуляция, как правило, использует частотные методы модулирования, в которых каждому возможному значению передаваемого символа сопоставляется индивидуальное значение частоты гармонической несущей. При этом в точках сопряжения интервалов посылок могут происходить скачки напряжения, с соответствующим усложнением спектра модулированного сигнала. Самый простой способ - синусоидальное начало несущей на каждом интервале с кратным количеством периодов несущей в посылке. При более сложных способах, независимых от точного сопряжения несущих частот с интервалами посылок, осуществляется управление скоростью изменения фазы несущих на границах посылок.
Демодуляция сигналов осуществляется корреляционными методами. Сущность методов - вычисление взаимной корреляции между принимаемым сигналом и набором опорных частот, используемых при модулировании, с идентификацией символов по максимумам взаимной корреляции.
Для повышения помехоустойчивости передачи данных желательно, чтобы разносимвольные посылки были некоррелированны. Если для бинарных символов 0 и 1 принять частоты посылок равными
s_(t)--=--cos--wo(t),--s1(t)--=--cos--w1(t),
то их ВКФ при нулевом временном сдвиге определится выражением:
B01(0) =s0(t) s1(t) dt = Ѕ (sin (щ1+щo)T)/(щ1+щo) + Ѕ (sin (щ1-щo)T)/(щ1-щo).
При (щ1+щo)T >> 1 первым слагаемым можно пренебречь, оно много меньше второго. А второе слагаемое обращается в нуль при (щ1+щo)T = рk, где k = 1, 2, ... - целое число.
Отсюда, минимальное значение между частотами манипуляции для некоррелированных посылок определяется выражениями:
Dщmin--=--p/T,--Dfmin--=--1/2T--=--fT/2,
где fT - символьная скорость.?
Фазовая манипуляция применяется значительно реже, в связи со значительными сложностями измерения абсолютных значений начальных фаз в посылках. Проще определяется относительный фазовый сдвиг в соседних посылках, поэтому обычно используется фазоразностная манипуляция.
Литература
1. Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.
2. Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер, 2003. - 608с.
Размещено на Allbest.ru
Подобные документы
Специфика сигналов с частотной модуляцией. Спектры сигналов различных индексов модуляции. Факторы передачи сигналов с паразитной амплитудной модуляцией. Особенности приемников частотно-модулированного сигнала. Классификация ограничителей, их действие.
презентация [306,0 K], добавлен 12.12.2011Каналы утечки речевой информации. Методы формирования и преобразования сигналов. Характеристика радиомикрофона с амплитудной модуляцией. Признаки и классификация закладных устройств. Сущность и принцип действия амплитудной модуляции гармонической несущей.
реферат [382,5 K], добавлен 21.01.2013Использование для усиления узкополосных сигналов так называемых резонансных усилителей (ламповых и транзисторных). Разработка принципиальной электрической схемы усилителя сигнала с амплитудной модуляцией. Расчет характеристики, графика выходного сигнала.
курсовая работа [168,9 K], добавлен 17.12.2009Расчет спектра сигнала и его полной энергии. Определение практической ширины спектра, интервала дискретизации и разрядности кода. Расчет автокорреляционной функции кодового сигнала. Общие сведения о модуляции. Расчет спектральных характеристик и ошибок.
курсовая работа [428,2 K], добавлен 07.02.2013Три схемы модуляции: амплитудная, угловая и импульсная. Особенности и подходы к реализации данных схем модуляции, предъявляемые к ним требования. Схемы перемножителей и направления исследования их элементов. Спектр амплитудно-модулированного сигнала.
контрольная работа [735,4 K], добавлен 13.06.2012Анализ причин использования в радиоэлектронике гармонического колебания высокой частоты как несущего колебания. Общая характеристика амплитудной, угловой, импульсной и импульсно-кодовой модуляции сигналов. Комплекс форм передачи сигналов в электросвязи.
реферат [206,6 K], добавлен 22.08.2011Модуляция - процесс преобразования одного сигнала в другой, для передачи сообщения в нужное место, ее свойства, особенности и виды. Гармонические и импульсные переносчики. Демодуляция принятого сигнала. Спектр сигнала АИМ. Модуляция случайными функциями.
реферат [124,2 K], добавлен 04.03.2011Радиотехнический сигнал: понятие и принципы реализации, классификация и разновидности, сферы практического применения. Представление сигнала и спектр. Виды модуляции радиотехнического сигнала и его основные параметры, анализ. Частотные модуляторы.
контрольная работа [710,3 K], добавлен 15.05.2012Расчёт объёма звукового файла и порядка фильтра Баттерворта как основа для приложений обработки сигналов. Спектр входного сигнала и его частота. Расчет порядка фильтра и дискретная функция передач. Амплитудная модуляция и детектирование сигнала.
курсовая работа [1,6 M], добавлен 07.05.2012Телеграфные, однополосные и частотно-модулированные сигналы радиосвязи на коротких и ультракоротких волнах. Виды модуляции, их преимущества и недостатки. Способы формирования однополосного сигнала. Назначение и принцип работы SSB/CW формирователей.
курсовая работа [1,2 M], добавлен 02.05.2015