Электронный усилитель
Разработка электронного линейного усилителя, усиливающего заданную мощность. Рассчет выходного, промежуточного и входного каскада. Конструкторский расчет: разделительных конденсаторов; мощности, рассеиваемой на резисторах; общего тока потребления.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 27.04.2010 |
Размер файла | 211,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
3
Федеральное агентство по образованию
Кафедра «Цифровые радиотехнические системы»
Пояснительная записка к курсовой работе
по дисциплине
«Схемотехника радиоэлектронных средств»
ТЕХНИЧЕСКОЕ ЗАДАНИЕ
на курсовую работу по дисциплине
«Схемотехника электронных средств»
1 Тема работы - электронный усилитель
2 Исходные данные:
Номинальная мощность в нагрузке, Вт 5
Рабочий диапазон частот, кГц 0,51-15
Сопротивление нагрузки, Ом 8
Входное сопротивление усилителя, кОм >5
Тип входа ...................................................................... дифференциальный
Нелинейные искажения, % 1,5
Частотные искажения, дБ 3,0
ЭДС источника сигнала (максимальная величина), мВ 100
Внутреннее сопротивление источника сигнала, Ом 200
3 Содержание основных разделов пояснительной записки.
- Введение, анализ технического задания.
- Эскизный расчет структурной схемы.
- Электрический расчет следующих каскадов:
1 оконечный каскад:
2 промежуточный каскад;
3 входной каскад;
- Конструкторский расчет элементов схемы.
4 Перечень обязательных чертежей
- Электрическая принципиальная схема;
- Перечень элементов;
Дата выдачи задания
Руководитель ____
Студент
Аннотация
Электронный усилитель
Список литературы - 8 наименований
Графическое приложение - 1 лист ф. А3
По заданным данным (ТЗ) был разработан электронный линейный усилитель, усиливающий заданную мощность.
Содержание
Техническое задание
Аннотация
1 Анализ технического задания
2 Эскизный расчет
3 Расчет принципиальной схемы
3.1 Расчет выходного каскада
3.2 Расчет промежуточного каскада усилителя
3.3 Расчет входного каскада
4 Конструкторский расчет
4.1 Расчет разделительных конденсаторов
4.2 Расчет мощности рассеиваемой на резисторах
4.3 Расчет общего тока потребления
Список литературы
1 Анализ технического задания
Оконечный каскад.
Выходная мощность в техническом задании равна 10 Вт, поэтому в качестве выходного каскада выберем двухтактный каскад. Так как сопротивление нагрузки 8 Ом (меньше 100 Ом), то выходной каскад будет безтрансформаторным
Промежуточный каскад.
Промежуточным каскадом выберем каскад с общим эмиттером. Для обеспечения начального напряжения смещения между базой и эмиттером включим схему делителя.
Входной каскад.
Так как заданно входное сопротивление >5 кОм в качестве входного каскада будем использовать дифференциальный каскад на полевых транзисторах.
2 Эскизный расчет
Рассчитаем основные параметры:
Номинальная мощность в нагрузке: Pн=10 Вт.
Мощность, приходящаяся на одно плечо двухтактного каскада:
P~п=10/2=5 Вт.
Максимальная рассеиваемая мощность одного плеча:
Pрас. max =0,5·P~п=0,5·5=2,5 Вт.
Максимальный ток коллектора равен:
(1)
где Rн - заданное сопротивление нагрузки, Ом.
Тогда напряжение на нагрузке:
,
где Pн- номинальная мощность в нагрузке, Rн - заданное сопротивление нагрузки.
Найдем сквозной коэффициент усиления:
,
где - напряжение на нагрузке, Eu- ЭДС источника сигнала. Множитель 1,5 взят для запаса.
Так как выходной каскад включен по схеме с общим коллектором, то коэффициент усиления по напряжению: KU ? 1. Чтобы получить необходимо в схему усилителя включить промежуточный каскад усиления с .
Пусть половина линейных искажений приходится на оконечный каскад (), а остальная часть остается на остальные каскады().
дБ;
Так как , находим ;
дБ
Так же найдем .
3 Расчет принципиальной схемы
3.1 Расчет выходного каскада
Подберем необходимый транзистор исходя из следующих условий:
PК max> Pрас. max,
IК max> IК max.
где PК max- постоянная рассеиваемая мощность коллектора, IК max- постоянный ток коллектора. (Pрас. max =1,25 Вт, IК max =1,11 А - рассчитанны в пункте 3)
Выбираем по пару комплиментарных транзисторов:
VT6 - КТ816А (p-n-p)
VT5 - КТ817А (n-p-n)
Их основные параметры:
1 Постоянный ток коллектора,Iкмах= 3 А
2 Постоянное напряжение коллектор-эмиттер, Uкэмах=25 В
3 Постоянная рассеиваемая мощность коллектора PК.MAX=25 Вт
Постоянная рассеиваемая мощность коллектора транзисторов КТ816А и КТ817А приведена при работе их с теплоотводом.
Выберем напряжение питания исходя из следующего условия:
2Uкэ.доп. Еп 2(Uост.+Uвых), (3)
где Uкэ.доп - максимально-допустимое значение напряжения коллектор - эмиттер для транзисторов КТ816А, КТ817А, Uост = 1 В - остаточное напряжение для транзисторов КТ816А,КТ817А, Uвых. - заданное выходное напряжение.
90 В Еп 19,8 В
Выбираем напряжение питания равное 40 В.
Построим нагрузочную кривую на графике выходных характеристик транзистора КТ816А.
Рисунок 1. Выходные характеристики
Нагрузочная кривая проходит через точки и
Рисунок 2 Рисунок 3
Используя входные и выходные характеристики транзистора, построим проходную характеристику.
IK, А |
0,45 |
0,75 |
1,07 |
1,32 |
|
IБ, мА |
5 |
15 |
30 |
45 |
|
UБЭ, В |
0,8 |
0,88 |
0,93 |
0,95 |
Рисунок 4
Исходя из построенной проходной характеристики, определяем:
Iк max= 1,11 А; Iк min= 0,37 А
UБЭ max=0,925 В; IБ max= 22 мА
UБЭ min=0,775 В; IБ min= 2,5 мА
Из полученных значений определяем область изменения IБ и UБЭ:
UБЭ= UБЭ max- UБЭ min=0,925-0,775=0,15 В
IБ= IБ max- IБ min=(22-2,5)·10-3=19,5 мА
Определим значение входного сопротивления:
Определим коэффициент усиления:
где UВХ=UБЭ - входное напряжение выходных транзисторов, В;
UВЫХ - заданное выходное напряжение, В.
Рассчитаем входное сопротивление и коэффициент усиления, с учетом обратной связи.
Rвхос= Rвхоэ (1+·Ки);
где - коэффициент передачи обратной связи
=1 т.к имеется 100% отрицательная обратная связь.
Найдем входное напряжение оконечного каскада:
Рассчитаем g (коэффициент формы тока):
Принимаем g=0,9.
Найдем коллекторное сопротивление транзистора VT4, используется следующее соотношение:
По стандартному ряду сопротивлений выберем R13=470 Ом.
Вычислим коллекторный ток через транзистор VT4, А:
Выберем транзистор исходя из следующих условий:
Выбираем транзистор КТ815Б (n-p-n)
Его основные параметры:
1. Постоянный ток коллектора, Iкмах= 1,5 А
2. Постоянное напряжение коллектор-эмиттер, Uкэмах=40 В
3. Постоянная рассеиваемая мощность коллектора 10 Вт
Рисунок 5
Рисунок 6
Используя входные и выходные характеристики транзистора, построим проходную характеристику по формуле:
Полученные результаты внесены в таблицу 1.
Таблица 1.
h21э |
74,5 |
75 |
75 |
71 |
73 |
72 |
|
Iб, мА |
0,5 |
0,53 |
0,66 |
0,81 |
0,95 |
1,12 |
|
Iк, мА |
38,2 |
40 |
50 |
60 |
70 |
80,8 |
|
Uбэ, В |
0,7 |
0,705 |
0,715 |
0,725 |
0,74 |
0,76 |
Рисунок 7
С помощью метода пяти ординат, рассчитаем нелинейные искажения, вносимые предоконечным каскадом:
IК max=80,8 мА; IК min=38,2 мА; I1=73 мА; I0=64 мА; I2=50 мА.
Найдем коэффициенты гармоник:
; ; .
Рассчитаем коэффициент нелинейных искажений:
По техническому заданию =1,5%. Чтобы уменьшить нелинейные искажения необходимо ввести отрицательную обратную связь, которая снизит коэффициент нелинейных искажений в глубину обратной связи (А):
Найдем глубину обратной связи:
До введения обратной связи:
где Uвых- напряжение на выходе предоконечного каскада, Uвх- напряжение на входе предоконечного каскада;
Uвх= UБЭ max-UБЭ min
Uвх =0,76-0,7=0,06 В.
Коэффициент усиления обратной связи:
;
где д - коэффициент передачи обратной связи.
Так как д·Ku>>1, то
Рассчитаем сопротивление нагрузки по переменному току для предоконечного каскада:
где RВХ.ОС- входное сопротивление оконечного каскада.
Находим сопротивление обратной связи:
По линейке номиналов подбираем R14=12 Ом.
Пересчитаем глубину обратной связи и коэффициент усиления с учетом полученного значения R14
Так как необходимо получить Kuос=5,1 увеличим глубину обратной связи
Произведем расчет с учетом новой глубины обратной связи:
По линейке номиналов подбираем R14=47 Ом
Найдем напряжение на входе предоконечного каскада:
На транзисторе VT4 и на сопротивлении обратной связи происходит падение напряжение:
UБ0=UБЭ0+UR14 ;
UR14=IЭ0·R14 ;
Так как IЭ0?IК0 , то UR14=IК0·R14=42,5·10-3·47=1,99 В.
По входной статической ВАХ транзистора определяем, что UБЭ0=0,73 В.
UБ0=0,73+1,99=2,72 В
Ток делителя выразим из предположения, что он гораздо больше тока базы:
По линейке номиналов подбираем R12=390 Ом.
По линейке номиналов подбираем R11=560 Ом.
Произведем перерасчет тока делителя с учетом выбранных номиналов резисторов R11 и R12:
Так как входное сопротивление предоконечного каскада представляет собой параллельное включение сопротивления транзистора VT4, R11 и R12.
найдем IБ - амплитуду тока базы;
IБ= IБ max - IБ min=(1,12-0,5)·10-3=0,62 мА
рассчитаем сопротивление транзистора:
с учетом обратной связи сопротивление транзистора VT4:
Обеспечение рабочей точки транзисторов оконечного каскада осуществляется с помощью диода, включенного в прямом направлении.
Выбор диода производим исходя из следующих условий:
,
где - напряжение на диоде, - напряжение смещения.
Напряжение смещения находим из проходной характеристики транзистора оконечного каскада:
В
Выбираем диоды Д229А в количестве 4шт со следующими параметрами: Uпр=0,4 В; Iобр=50 мкА; Uобр=200 В; Iпр=400 мА;
3.2 Расчет промежуточного каскада усилителя
Так как сквозной коэффициент усиления равен 134,1 а коэффициент усиления предоконечного каскада равен 4,95.
Для получения заданного коэффициента усиления нам необходим каскад предварительного усиления с коэффициентом усиления Ku=5,2 и входной каскад с коэффициентом усиления Ku?1.
Выберем транзистор КТ315В
Его основные параметры:
1. Статический коэффициент передачи тока в схеме с ОЭ, h21э=30…120
2. Постоянный ток коллектора, Iкмах= 100 мА
3. Постоянное напряжение коллектор-эмиттер, Uкэмах=40В
4. Постоянная рассеиваемая мощность коллектора 150 мВт
5. Обратный ток коллектора IК об=1 мкА
6. Напряжение насыщения коллектор-эмиттер при IК=20 мА
Uнас=0,4 В.
7. Емкость коллектора CК=7 пФ
8. Постоянная времени цепи обратной связи фОС=300 пс.
Введем ограничение по току: пусть IК max=150 мА.
Uкэmin возьмем больше Uнас=0,4. Пусть Uкэ min=0,8 В.
Выберем UR10=(0,1…0,2)·ЕП.
Пусть UR10=0,15·ЕП=0,15·40=6 В.
Тогда получаем условие:
;
где - напряжение на выходе промежуточного каскада, - обратный ток коллектора.
Так как В, получаем:
мА
Выбираем и мА.
Найдем мощность рассеяния транзистора:
Полученное значение мощности не превысило допустимое (150 мВт).
По линейке номиналов подбираем R9=1 кОм.
Рассчитаем нагрузку каскада по переменному току:
Удостоверимся в возможности этого тока:
,
.
Рассчитаем коэффициент усиления каскада по напряжению:
,
где h21Э- статический коэффициент передачи тока, h11Э- входное сопротивление транзистора.
rБЭ найдем как:
Ом
Ом
Ом
Так как нам необходимо получить усиление каскада KU=5,2 введем отрицательную обратную связь.
,
где д - коэффициент передачи обратной связи.
Исходя из неравенства, >>1, получаем
;
По линейке номиналов подбираем R10=22 Ом.
Проведем перерасчет коэффициента усиления и глубины обратной связи:
Найдем напряжение на входе каскада:
Ток базы находим из следующей формулы:
мА.
Ток делителя находим из условия
мА.
;
;
где UR10 - напряжение на резисторе обратной связи;
Так как для кремниевых транзисторов В
По линейке номиналов подбираем R8=27 Ом.
По линейке номиналов подбираем R7=7,5 кОм.
Проведем перерасчет с полученными значениями R7 и R8
Рассчитаем входное сопротивление каскада. Оно представляет собой параллельное соединение входного сопротивления транзистора VT3 и резисторов R7 и R8.
Найдем входное сопротивление транзистора VT2 с учетом обратной связи:
, где А- глубина обратной связи.
3.3 Расчет входного каскада
Так как необходимо обеспечить большое входное сопротивление, выбираем схему на полевых транзисторах.
Выберем транзистор КП307А, с параметрами:
S=4мА/В (при UСИ=10 В, UЗИ=0 В) - крутизна характеристики,
UЗИ.0ТС = 0,5В - напряжение затвор-исток отсечки,
IЗ=5мА - ток утечки затвора,
IC.НАЧ=3мА - начальный ток стока,
UСИ.МАКС=27 В , UЗС.МАКС=27 В,
PC.МАКС= 250 мВт.
Рассчитаем ток нагрузки:
Напряжение на нагрузке входного каскада:
Тогда мощность на нагрузке:
Из условия Rвх>5 кОм (по техническому заданию), выберем сопротивления R6 и R1: R1=R6=Rвх/2=8000/2=4000 Ом
Рассчитаем ток и напряжение на входе:
Найдем коэффициент усиления:
Найдем ток стока:
IC МАКС = IC НАЧ = 3 мА
IC МИН = 0,1 · IC НАЧ = 0,3 мА
мА
Найдем сопротивление R5:
По линейке номиналов подбираем R5=12 кОм
Напряжение UЗИ.0 выразим из соотношения IC0 = IC НАЧ = S·UЗИ.0 :
Определим токи на сопротивления R1 и R6:
Найдем сопротивления R2 и R4:
Найдем сопротивление R3:
Из условия получаем R3:
По линейке номиналов подбираем R3 = 62 Ом
4 Конструкторский расчет
4.1 Расчет разделительных конденсаторов
Определим величину разделительного конденсатора C5
,
где - нижняя частота работы усилителя, Мок - коэффициент частотных искажений оконечного каскада.
По промышленной линейке конденсаторов выберем: С5 = 56 мкФ.
Найдем величину разделительного конденсатора C4:
,
По промышленной линейке конденсаторов выберем С4 = 2,7 мкФ.
Определим величину разделительных конденсаторов C3 и C2:
,
где RВХ- входное сопротивление каскада предварительного усиления.
По линейке конденсаторов выберем С3=С2=2,58 мкФ.
Определим величину разделительного конденсатора C1:
,
где - входное сопротивление входного каскада.
Ближайшим значением из промышленной линейки конденсаторов является 62 нФ.
Рассчитаем напряжение на конденсаторах:
В;
В;
В
По справочнику подбираем тип конденсаторов:
Тип |
Номинальное напряжение, В |
Номинальная емкость, мкФ |
Допуск, % |
||
С1 |
|||||
С2 |
|||||
С3 |
|||||
С4 |
|||||
С5 |
4.2 Расчет мощности рассеиваемой на резисторах
Мощность, рассеиваемая на резисторах, определяется по следующей формуле:
,
где I - ток через резистор, R - сопротивление резистора.
Рассчитаем эти мощности:
мВт,
мВт,
мВт,
мВт.
мВт,
мВт,
мВт,
мВт.
мВт,
мВт,
мВт.
мВт,
При выборе резисторов, их мощность рассеяния будем брать в 1,5 - 2 раза больше полученной в расчетах.
4.3 Расчет общего тока потребления
Рассчитаем общий ток потребления усилителя. Для этого сложим токи от каждого каскада. Получаем:
мА
Вт
КПД усилителя равен:
%
Список литературы:
1. Войшвилло Г.В. Усилительные устройства: Учеб. для вузов.- 2-е изд.-М.: Радио и связь, 1983- 264 с.
2. Остапенко Г. С. Усилительные устройства: Учеб. пособие для вузов.- М.: Радио и связь, 1989.- 400 с.: ил.
3. Опадчий Ю.Ф. Аналоговая и цифровая электроника (Полный курс): Учеб. для вузов.- М.: Горячая Линия-Телеком, 2000.- 768 с.:ил.
4. Проектирование усилительных устройств: Учеб. пособие/ Под ред. Н.В. Терпугова. -М.: Высш. школа, 1982- 190 с.: ил.
5. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам./ Под ренд. Н.Н. Горюнова.- М.: «Энергия», 1997.- 744 с.: ил.
6. Лавриненко В.Ю. Справочник по полупроводниковым приборам.- 9-е изд., перераб. -К.: Техника, 1980. -464 с.: ил.
7. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА./ Под ред. Н.Н. Акимов, Е.П. Ващуков. - Мн.: Беларусь, 1994. -591 с.: ил.
8. Галкин В.И. Полупроводниковые приборы -2-е изд., перераб. и доп. - Мн.: Беларусь, 1987. -285 с.: ил.
Подобные документы
Расчет коллекторного сопротивления транзистора. Расчет выходного, входного и промежуточного каскада усилителя. Входные и выходные характеристики транзистора. Расчет разделительных конденсаторов, тока потребления и мощности, рассеиваемой на резисторах.
курсовая работа [181,8 K], добавлен 17.04.2010Разработка и расчет схемы двухтактного усилителя мощности с заданными параметрами. Расчет оконечного, промежуточного и входного каскада. Выбор цепи стабилизации тока покоя. Результирующие характеристики усилителя. Требования к мощности источника питания.
курсовая работа [617,9 K], добавлен 16.10.2011Принципиальная схема бестрансформаторного усилителя мощности звуковых частот - УМЗЧ. Расчеты: выходного каскада УМЗЧ, предоконечного каскада УМЗЧ, каскада предварительного усилителя, цепи отрицательной обратной связи, разделительных конденсаторов.
курсовая работа [333,7 K], добавлен 11.02.2008Анализ технического задания, схема усилителя. Расчёт оконечного каскада, определение площади радиатора, предоконечных транзисторов, промежуточного и входного каскада, цепи отрицательной обратной связи и конденсаторов. Проверка устойчивости усилителя.
курсовая работа [300,0 K], добавлен 29.08.2011Исследование предназначения каскада предварительного усиления. Определение коэффициентов усиления многокаскадного усилителя. Расчёт мощности на резисторах и емкостей конденсаторов. Амплитудно-частотные и фазочастотные характеристики элементов усилителя.
контрольная работа [224,1 K], добавлен 31.03.2015Блок усиления мощности нелинейного локатора (БУМ). Структурная схема усилителя. Распределение линейных искажений в области ВЧ. Расчет выходного, промежуточного и входного каскада, выходной корректирующей цепи, разделительных и блокировочных емкостей.
курсовая работа [593,6 K], добавлен 01.03.2002Разработка и расчет оконечного каскада усилителя мощности. Выбор типа транзистора. Расчет масштабирующего усилителя с инвертированием сигнала. Разработка блока питания. Расчет предоконечного и промежуточного каскадов. Выбор операционного усилителя.
курсовая работа [1,3 M], добавлен 14.10.2009Определение числа каскадов. Распределение линейных искажений в области ВЧ. Расчёт выходного каскада. Расчёт предоконечного каскада. Расчёт входного каскада. Выбор транзистора. Расчёт цепей термостабилизации. Расчёт разделительных и блокировочных ёмкостей.
курсовая работа [657,3 K], добавлен 01.03.2002Определение числа каскадов. Распределение искажений. Расчет оконечного каскада. Расчет выходной корректирующей цепи. Расчет предоконечного каскада. Расчет входного каскада. Расчет разделительных емкостей. Расчет итогового коэффициента усиления.
курсовая работа [690,2 K], добавлен 02.03.2002Определение числа каскадов. Распределение искажений амлитудно-частотной характеристики (АЧХ). Расчет оконечного каскада. Расчет предоконечного каскада. Расчет входного каскада. Расчет разделительных емкостей. Расчет коэффициента усиления.
курсовая работа [541,7 K], добавлен 01.03.2002