Усилитель мощности миллиметрового диапазона длин волн

Применение ЛБВ в радиолокационно-связной аппаратуре. Технические требования по реализации усилителя мощности, расчет основных узлов импульсного источника, обоснование проекта. Влияние на организм человека электромагнитных полей радиочастотного диапазона.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 25.06.2010
Размер файла 564,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Мостовой преобразователь напряжения

При выборе структуры будем руководствоваться следующими требованиями:

-обеспечение максимально- достижимой надежности;

-обеспечение высокого к.п.д.;

-возможность внешней синхронизации преобразователя;

-наличие высоковольтного трансформатора

-возможность пробоев высокого напряжения в нагрузке, не связанных с работой источника питания и в связи с этим способность источника сохранять работоспособность и ограничивать мощность при возникновении пробоев в нагрузке.

Преобразователь в целом состоит из схемы управления и выходного каскада.

Назначение выходного каскада - обеспечение необходимой выходной мощности с высоким кпд и высокой надежностью

Для требуемой выходной мощности (300ВА), и с учетом вышеизложенных требований, наиболее подходящей схемой для выходного каскада преобразователя будет мостовая схема (рис. 3.4), которая имеет ряд преимуществ:

-амплитуда переменного напряжения на выходе полного моста вдвое выше, чем у полумостовой схемы, что благоприятно сказывается на конструкции высоковольтного трансформатора (коэффициент трансформации уменьшается в два раза, что снижает паразитную индуктивность. частично паразитную емкость), и благоприятно сказывается на большинстве параметров высоковольтной части ИП;

-мощность потерь как статических, так и динамических равномерно распределяется между четырьмя транзисторами моста, что снижает требования к транзисторам по рассеиваемой мощности по сравнению с полумостовой схемой, а при применении таких же транзисторов повышается запас по загрузке элементов, а следовательно повышается надежность;

Рисунок 3.5 - Cтруктурная схема управления ИП на ШИМ-контроллере Т1494.

-мостовая схема преобразователя позволяет простой заменой транзисторов без переделки схемы управления увеличивать выходную мощность до нескольких киловатт, что делает схему преобразователя унифицированной и пригодной для многих применений;

-упрощается схема фильтра сетевого источника питания, ввиду отсутствия необходимости иметь расщепленный источник питания со средней заземленной точкой, необходимый для питания полумостовой схемы;

-при работе мостовой схемы с импульсами управления без паузы на нуле упрощается фильтрация выпрямленного высокочастотного напряжения - отпадает необходимость применения фильтрующих дросселей и снижаются требования к выпрямительным высоковольтным диодам, так как выходное напряжение пропорционально только числу витков вторичной обмотки и не связано с колебаниями напряжения сети и тока нагрузки, т.е. с изменением скважности.

Схема управления

Схема управления предназначена для управления выходным каскадом преобразователя, для регулировки и стабилизации выходного напряжения, формирования сигналов защиты от перегрузок по выходному напряжению и току нагрузки, мягкого запуска преобразователя, индикации и контроля работы ИП. В качестве схемы управления в настоящее время применяются специализированные интегральные микросхемы ИС, так называемые ШИМ контроллеры, выполняющие указанные выше функции. Для разрабатываемого ИП ШИМ контроллер должен удовлетворять следующим требованиям: осуществлять стандартную функцию преобразования аналог-ширина импульса, иметь возможность осуществлять внешнюю синхронизацию, иметь двухтактный выход, иметь входы для ввода сигналов обратной связи по напряжению и току, входы для управления режимами включения и выключения и другие цепи. Питание схемы управления в мощных и надежных ИП желательно осуществлять от отдельного маломощного стабилизированного источника питания, не связанного гальванически с цепями ВВИП (так называемое ”служебное питание”).

Фирмы разработчики предоставляют большой выбор ШИМ-контроллеров, задача разработчика выбрать наиболее удовлетворяющий всем требованиям технического задания, с целью наименьшего привлечения дополнительных элементов для выполнения необходимых функций.

Наиболее современные ШИМ -контроллеры. Кроме функций регулирования напряжения выполняют также функции улучшения качества электропитания. Примером современного комбинированного ШИМ-контроллера для применения в источниках питания различного назначения является ИС TDA16888-новая разработка фирмы Infineon Technologics (Siemens) в области источников питания.

Интегральная схема (ИС) TDA16888 предназначена для новых поколений источников питания с активной коррекцией коэффициента мощности (ККМ), режимом ожидания и широким диапазоном входного напряжения

TDA16888 предназначена для управления двухступенчатой топологией источника питания, включающей ККМ и ШИМ преобразователи. Внутренние интеллектуальные управляющие ИС, синхронизируют работу ККМ и ШИМ преобразователей, обладают большим количеством встроенных функций управления и контроля, что позволяет минимизировать внешние соединения без значительного ограничения гибкости разработки. ККМ преобразует выпрямленное, несглаженное напряжение сети в регулируемое напряжение промежуточной цепи. Потребляемый сетевой ток регулируется, так что его кривая приближается к форме приложенного сетевого напряжения. Всегда возможно питание постоянным напряжением. Второй ШИМ преобразователь обеспечивает передачу напряжения и потенциальную развязку цепей. Для преобразователя созданы хорошие постоянные условия работы благодаря предварительному регулированию напряжения в промежуточной цепи. В режиме ожидания, ШИМ преобразователь не активен. Топология двухкаскадного преобразователя дает высокую гибкость в пределах предъявляемых требований, мощности и КПД, а также высокий уровень надежности и стойкости по отношению к колебаниям и скачкам питающего напряжения.

Это совершенное исполнение комбинированного контроллера оптимизировано, чтобы обеспечить электромагнитную совместимость, уменьшить системные затраты, реализовать схемные решения для широкого диапазона применений. ИС разработана по правилам FMEA (эффективного анализа повреждений), которые ставят условием, что простой сбой не должен приводить к неконтролируемым выходам из строя и гарантировать риск от пожара.

В настоящее время производители электронных компонентов предлагают разработчикам большой ассортимент активных и пассивных элементов. Проблема разработчика выбрать компоненты, наиболее

Всю элементную базу для ВВИП можно разделить условно на две оптимально удовлетворяющие требованиям на разрабатываемый прибор группы:

1) элементная база низковольтной части ИП, включая электронную часть высокочастотного преобразователя;

2) элементная база высоковольтной части источника, включая

высоковольтный трансформатор преобразователя и высоковольтный выпрямитель.

Разделение на две группы по критерию напряжения (низкое, высокое) не случайно. При выборе элементной базы для низковольтной части ИП для разработчика ВВИП предоставлен широкий спектр комплектующих изделий и поэтому выбор конкретных компонентов, осуществляется, как правило, после выбора структурной схемы низковольтной части ИП. Вариант структурной схемы определяется техническими требованиями, такими как выходная мощность, характер нагрузки, диапазон изменения входного напряжения, требованиями стабильности и регулировки выходного напряжения и т.п. Выбор элементной базы для низковольтной части ИП как правило не представляет значительных трудностей.

Для высоковольтной части источника питания выбор элементной базы имеет свои особенности, и часто структура построения схемы высоковольтной части источника питания зависит от наличия и возможности применения тех или иных высоковольтных компонентов, а именно высоковольтных высокочастотных диодов, высоковольтных высокочастотных конденсаторов и других высоковольтных компонент (резисторы, транзисторы и т.п.). Наличие или отсутствие какого-либо высоковольтного элемента с необходимыми параметрами может повлечь за собой изменение схемы высоковольтной части ИП. От правильного выбора элементной базы зависит надежность источника питания. Поэтому тщательный анализ и выбор элементной базы является наиболее ответственным этапом проектирования высоковольтного источника питания.

3.3 Основные схемы построения импульсных модуляторов

Целесообразно рассмотреть различные варианты построения модуляторов.

В практике разработки УМ применение находят два способа:

- формирование мощного импульса на потенциал земли, и затем передача его на потенциал катода с помощью импульсного трансформатора, обмотки которого изолированы на полный потенциал катода;

модулирующий импульс формируется на высоком потенциале двумя ключами, которые поочередно подключают сетку к источнику смещения или превышения (так называемая схема “Тандем”), а запускающий импульс с помощью различных развязывающих устройств передается на высокий потенциал. В американской трактовке такую схему называют “плавающая платформа”, имея ввиду что сетка ЛБВ и все с ней связанные

элементы “плавают” от потенциала смещенного до потенциала превышения.

На рисунке 3.6 приведены структурные схемы.

3.6 а) - вариант с импульсным трансформатором.

3.6 б) - вариант “плавающей платформы”.

А)

Б)

Рисунок 3.6 - Варианты импульсных модуляторов.

Ф - формирователь.

Тр - импульсный трансформатор.

Uсм - источник смещения.

Uпр - источник превышения.

РУ - развязывающее устройство.

К1 - ключ U+.

К2 - ключ U -.

ПМ - подмодулятор.

Модулятор на импульсном трансформаторе

Схема модулятора приведена на рисунке 3.7.

Рисунок 3.7 - Схема модулятора.

Импульс запуска поступает на вход мощного полевого транзистора. В цепи стока включен повышающий импульсный трансформатор. Напряжение питания полевого транзистора 300В. Во вторичной обмотке формируется импульс амплитудой 1500 В. Диод D открывается и конденсатор Ср заряжается до напряжения 1700 В. При открытом диоде на нагрузке напряжение 0.7 - 1 В. После окончания импульса диод закрывается и отрицательное напряжение емкости Ср перезаряжает входную емкость ЛБВ Свх до величины 1700 В. За время между импульсами емкость Ср разряжается на 150 - 200 В, Однако при напряжениях более 1500 В ЛБВ находится в закрытом состоянии. При поступлении следующего импульса, конденсатор Свх разряжается, диод открывается и конденсатор Свх разряжается , фиксирует напряжение на уровне Uип. Резистор Rогр ограничивает ток заряда конденсатора Сн и обеспечивает прохождение тока через диод в течение всей длительности импульса. Макетирование схемы показало, что при использовании трансформатора на ферритовом сердечнике площадь которого составляла 2 квадратных сантиметра, возможно формирование импульсов со скважностью более 50. Уменьшение скважности приводит к увеличению постоянной составляющей тока через трансформатор и нарушению режима его работы. Дя обеспечения скважности 10 необходимо или устранить постоянную составляющую тока, или увеличить размеры трансформатора.

Модулятор на ключах

Ключи выполняются на лампах и транзисторах.

В российских системах преимущественно используются ламповые ключи, тогда как в зарубежных - почти исключительно транзисторные. Этому есть объяснение.

В зарубежных ЛБВ электрод, называемый сеткой, таковой и является, т.е. представляет собой ажурную мелкоструктурную конструкцию, создание которой требует исключительно высоких технологий. Моделирующее напряжение в такой системе составляет 3,5-4,5 % от Uзс. Это позволяет использовать транзисторы умеренной высоковольтности. Некоторые российские фирмы сеточные технологии освоили, другие идут более простым и надежным путем: у них сетка представляет собой достаточно массивный управляющий электрод с напряжением 7-7,5 % от Uзс, но зато не требующий принятия серьезных защитных мер. Логическим продолжением такого подхода является применение разработчиками передатчиков в качестве ключей электровакуумных ламп, также очень стойких к различным нестационарным процессам в блоке. Надо отметить, что “квазисеточные” направления исповедуют разработчики, занятые созданием достаточно массовых систем (тысячи бортов), и многолетний опыт реальной эксплуатации не отмечает проблем с такими конструкциями.

В системах с высокой частотой повторения (сотни кГц) низковольтное управление может оказаться предпочтительнее в силу квадратичной зависимости энергии перезаряда паразитных емкостей от модулирующего напряжения.

Вариант исполнения - по рисунку 3.6.б). В качестве ключей используются модуляторные лампы. Конкретный тип лампы определяется в результате расчета, но предварительно это будет либо тип, упоминающегося в разделе 2 лучевого триода, либо генераторный триод с плоской электродной системой.

Развязывающее устройство выполняется по варианту “пичковый запуск”. Функциональная схема модулятора приведена на рисунке 3.7. Работа схемы ясна из пояснений к рисунку, отметим лишь, что к “плавающей платформе” относятся: катод и сетка К1, анод К2, сетка ЛБВ, ТФ+, ИП+, вторичные обмотки Тр1, накальная цепь К1. К этим элементам предъявляются требования дополнительной электропрочности и малой емкости относительно других элементов. Достоинством ламповых модуляторов является надежность ламп при возникновение переходных процессов в высоковольтных цепях питания. К недостаткам следует отнести большие значения паразитных емкостей источников питания, необходимость создания цепей накала. Работа ламп при перезаряде емкостей с сеточными токами затрудняет использование импульсных трансформаторов для формирования управляющих импульсов большой длительности, и требует применения усилителей на входе лампы.

В качестве ключей используются полевые транзисторы.

В настоящее время допустимые напряжения сток - исток полевых транзисторов составляют 600 - 700 В. Поэтому в модуляторе необходимо последовательное включение не менее трех транзисторов. Отсутствие токов затвора упрощает формирование управляющего напряжения импульсным трансформатором. Схема требует надежной защиты транзисторов при возникновении переходных процессов в высоковольтных цепях источника питания.

Применение волоконно-оптической линии при построении модулятора.

Волоконно-оптические линии связи находят свое применение в различных областях науки и техники, так как обладают рядом достоинств; широкополосностью, малыми габаритами и весом, помехоустойчивостью, не подвержены электромагнитным влияниям. обладают возможностью электрического разделения передающего и приемного оборудования. Оптическая линия предназначена для управления высоковольтными ключами и осуществляет оптическую развязку схемы управления и импульсных ключей, предназначенных для формирования коротких высоковольтных импульсов. Структурная схема оптической линии (рис.3.8) состоит из передающего оптического модуля (ПОМ),оптического разветвителя (ОР) и 4-х приемных оптических модулей (ПрОМ).

Рисунок 3.8 - Структурная схема оптической линии.

Сигнал управления подается на передающий оптический модуль, где происходит преобразование электрического сигнала в оптический.

Рисунок 3.9 - Принципиальная схема передающего модуля

Принципиальная схема передающего модуля приведена на рисунке 3.9. Модуль выполнен на основе светодиода фирмы Неw1еtt Расkard (HFBR-1412T), который обеспечивает передачу в линию среднюю мощность-13дБм.Сигнал с уровнем ТТЛ подается на микросхему типа 1554ЛИТ ( или другую подобного типа), и затем с выход элементов D1.2...D1.4,через ограничивающие резисторы и корректирующую цепочку под R4C1 подается на светодиод который преобразует электротехнический сигнал в оптический.

Оптический сигнал подается в оптическом разветвителе, который представляет собой четыре оконцованных разъемами типа FC волоконных оптических световода с диаметром сердцевины 50 мкм, объединенных в однм соединении типа FC. Таким образом от световода , который имеет соеденитель типа FC, оптический сигнал вводится в четыре волоконных световода и подается на фотодетекторы оптических приемных модулей (ПрОМ).

Приемные оптические модули выполнены по однотипной схеме приведенной на рисунке 3.10.

Рисунок 3.10 - Приемный оптический модуль.

В качестве фотодетектора использован p-i-n фотодиод.

Преобразованный p-i-n фотодиодом оптический модуль усиливается двумя однотипными усилительными каскадами , выполненными на основе операционных усилителей с токовой обратной связью типа АД8005 и низким потреблением .

Во второй каскад введена нелинейная обратная связь, которая выполняет функции АРУ при больших входных сигналах и выполнена на диодах с барьером Шотки КД922А.

Далее сигнал формируется ключевым каскадом на транзисторе КТ371 и инвертором микросхемы 15543ЛА3.

Оптическая шина имеет следующие параметры:

Длительность входного и выходного импульса - 100...30000 нс;

Фронт нарастания и спада входного импульса не более 10нс;

Время задержки выключения не более -20 нс;

Входные и выходные уровни соответствуют уровням ТТЛ;

Ток потребляемый приемной стороной - 470мкА;

Допустимая разность потенциала между передатчиком и приемником линии не менее-50кВ.

4. Расчет электрический основных узлов источника питания

4.1 Расчет низковольтного трансформатора

Конструктивные параметры трансформаторов выбираются из условия обеспечения допустимого падения напряжения на обмотках и допустимого перегрева обмоток.

В диапазоне частот от 50 Гц до 10 кГц используются стали ,свыше 10 кГц - фериты ,от 5 кГц до сотен килогерц - сплавы.

Трансформатор содержит две первичные полуобмотки ,на которые подается напряжение U1 ,две выходные обмотки , с которых снимаются напряжения U2 и U3.

Частота принята равной 50 кГц.

Напряжение U1 на первичных полуобмотках определяется входным напряжением источника электропитания и равно 132 В

Напряжения на второй и третьей обмотках заданы с учетом падения напряжения на диодах выходных выпрямителей :U2 = 4В; U3 = 100В.

Токи второй и третьей обмоток заданы : I2 = 1.5A;I3 = 0.5 А .

Диапазон температур от -50 до +65 С.

Последовательность расчета

1. Выходная мощность трансформатора

Р2= U2 / I2 + U3 / I3 = 4 * 1.5 + 100 * 0,5 = 56 В * А. (1)

2.Принимаем КПД трансформатора на базе статистических данных = 0,99. Тогда входная мощность трансформатора

Р1 = Р2 / = 56 / 0,99 = 56.56 В*А. (2)

3. Входной ток трансформатора

I1 = Р1 / U1 = 56.56 / 132 = 0.42 А. (3)

Округляем значение входного тока: I1 = 0.5 А.

4. По значениям входной мощности P1 = 56.56 В * А и частоты f = 50 кГц выбираем из таблицы 4.2 типоразмер магнитопровода Ш12х15 марки М2000НМ1-14. Образец записи в технической документации: «Сердечник замкнутый М2000НМ1-14 ШГ2 х 15 ОЖО.707.140 ТУ».

Площадь поперечного сечения выбранного магнитопровода

Q = (12 х 15) мм = 1,8 см (4)

6. Площадь поперечного сечения провода обмотки определяется допустимой плотностью тока :

q = I / (5)

Для выбранного магнитопровода из таблицы 4.1 определяем допустимую плотность

< 4,4 А / мм.

6.1. Для первых полуобмоток принимаем = 2 А/мм. Тогда сечение провода первой обмотки

q1 = I1 / 1 = 0.5 / 2= 0.25 мм. (6)

В качестве обмоточного выбираем провод марки ПЭТВ-2 (таблица 4.1). Для увеличения коэффициента заполнения окна магнитопровода и снижения потерь мощности берем два провода с диаметрами по меди (d = 0,8 мм (сечение 0,5 мм) и по изоляции с d = 0,88мм.

6.2. Для второй обмотки принимаем 2 = 2,4 А/мм. Тогда сечение провода второй обмотки

q2 = 1.5 / 2,4 = 25 мм. (7)

Таблица 4.2 -Параметры провода ПЭТВ-2

Диаметр провода по

Меди, мм

Номинальное сечение провода, мм^

Диаметр провода по изоляции, мм

0.1

0,00785

0,128

0,112

0,00985

0,14

0,125

0,01227

0,154

0,14

0,01539

0.17

0,16

0,02011

0,198

0,18

0,02545

0,22

0,2

0,03142

0,24

0,224

0,03939

0.264

0,25

0,04909

0,3

0,28

0,06154

0,33

0,315

0,07789

0,364

0,355

0,09893

0,414

0,4

0,1256

0,46

0,45

0,15896

0,51

0,5

0,19625

0,56

0,56

0,24618

0,63

0,63

0,31157

0,7

0,71

0,39572

0,79

0,75

0,44156

0,83

0,8

0,50265

0,88

0,85

0,56716

0,937

0,9

0,63617

0,99

0,95

0,70846

1,04

1,0

0,7854

1,09

1,06

0,88203

1,15

1,12

0,9852

1,21

1,18

1,09303

1,27

1,25

1,2272

1,35

1,32

1,36778

1,42

1,4

1,5394

1,5

1,5

1,7671

1,6

1,6

2,0096

1,71

1,7

2,26865

1,81

1,8

2,5434

1,91

1,9

2,83365

2,01

2,0

3,14

2,12

2,12

3,5281

2,24

2,24

3,93882

2,36

2,36

4,37214

2,48

2,5

4,90625

2,63

Для второй обмотки выбираем ленту медную ГОСТ 1173-77 с поперечными размерами 25 х 1 мм.

6.3. Для третьей обмотки принимаем = 2,55 А/мм. Тогда сечение провода третьей обмотки

q3 = 0,5 / 2,55 = 0,196 мм2. (8)

Этому сечению соответствует провод с диаметром по меди dм3 = 0,5 мм и диаметром по изоляции dиз3 = 0,56 мм.

7. Число витков первой полуобмотки

n1 = U1 * 10/ 4 * Kф * f *B * Q (9)

где Kф -- коэффициент формы трансформируемого напряжения (для синусоиды Kф = 1,11, для меандра Kф -- 1).

Согласно табл. 4.2 индукция в выбранном магнитопроводе при частоте 50000 Гц не должна превышать 0,16 Тл. Принимаем значение индукции меньше допустимого приблизительно на 30 %: В -- 0,115 Тл.

Тогда число витков

n1 = 132 * 100000 / 4 * 1 * 50000 * 0,115 * 1,8 = 31.99

Для удобства расположения выводов первичной полуобмотки принимаем

n1 = 32,5 витка.

8. Значение напряжения, приходящегося на один виток первичной полуобмотки,

e1 = U1 / n1 = 132 / 32.5 = 4.06 B/виток (10)

Число витков второй обмотки

n2 = U2 * м2 / e1 (11)

где м2 -- коэффициент, учитывающий падение напряжения на второй обмотке.

Согласно табл. 4.2 для выбранного магнитопровода падение напряжения

U < 3 %. Принимаем U2 = 0,5 %. Для этого значения коэффициент м2 = 1,005. Тогда число витков

n2 = 4 * 1.005 / 4.06 = 0,98 витка.

Округляем полученное значение: n2 = 1 виток.

10. Число витков третьей обмотки

n3 = U3 * m3 / e1 (12)

Для третьей обмотки принимаем U3 = 0,4 % и m3 = 1,004. Тогда число витков

n3 = 100 / 1.004 = 24.7 витка.

Округляем число витков: n3 = 25 витка.

11. Число витков, размещаемых в одном ряду. Обмотки размещаются на изолирующем каркасе.

11.1. В первичной полуобмотке

b1 = Lн * Ку1 / d из1 (13)

где Lн -- размер из рис. 3.22;

Ку1 -- коэффициент укладки провода первой обмотки.

Принимаем Kу1 = 0.95

Для выбранного магнитопровода Lн = 27 мм. Тогда

b1 = 27 * 0.95 / 0.88 = 29,148 витка.

Число витков округляем в меньшую сторону: b1 = 29 витков.

11.2. Во второй обмотке согласно п. 9 имеем

b2 -- 1 виток. (14)

11.3. В третьей обмотке

b3 = Lн * Ку3 / d из3 (15)

где Ку3 -- коэффициент укладки провода третьей обмотки.

Принимаем Ку3 = 0,93. Тогда число витков в одном ряду третьей обмотки

b3 = 27 * 0.93 / 0.56 = 44.84

Принимаем b3 = 44 (округляем в сторону меньших значений).

12.Число слоев в обмотках

12.1. В первой обмотке число слоев

N1 = (n1 * Кпр / b1) * v , (16)

где v = 2 -- число полуобмоток.

Коэффициент Kпр учитывает количество параллельных проводов, используемых при изготовлении обмотки.

Согласно п. 6.1 имеем Кпр = 2. Тогда

N1 = (32.5 * 4 / 29) * 2 = 4.48

Число слоев округляем в сторону больших значений: N1= 5.

12.2. Во второй обмотке согласно п. 9 число слоев N2 = 1.

12.3. В третьей обмотке число слоев

N3 = n3 / b3 = 25 / 44 = 0.57 (17)

Третью обмотку размещаем в незаполненном слое первой обмотки с промежутком 5 мм от крайнего витка первой обмотки.

Размеры обмоток по высоте намотки

Высота i- и обмотки ; i = 1; 2; 3.

h i = [N i * d из + (Ni- 1) * i ] * Крi, (18)

где Кр -- коэффициент разбухания обмотки;

-- толщина межслоевой изоляции (табл. 3.7); г = 1; 2; 3.

13. 1. У первой обмотки

h 1 = [N 1 * d из1 + (N1- 1) * 1 ] * Кр1 , (19)

= 0,12 мм -- толщина слоя изолирующей бумаги марки К-120. Принимаем коэффициент разбухания Кр1 = 1,15. Таким образом,

h1= [5 * 0,88 + (5 - 1) * 0,12] * 1,15 = 5,612 мм.

У второй обмотки

h2 = [N 2 * d из2 + (N2- 1) * 2 ] * Кр2 , (20)

Принимаем коэффициент разбухания Кp2 =1,2 мм. Таким образом,

h2 = [1 . 1 + ( 1 - 1) . 0,12] * 1,2 = 1,2 мм.

13.3. У третьей обмотки

h 3 = [N 3 * d из3 + (N3- 1) * 3 ] * Кр3 , (21)

3 = 0,12 мм.

Принимаем коэффициент разбухания Кр3 = 1,1. Таким образом,

h3 = [1 -0,56 + (1 - 1)-0,12] * 1,1 = 0,616 мм.

Изолирующие зазоры в конструкции катушки Воздушный

зазор между магнитопроводом и каркасом составляет обычно 0,4. . .0,5 мм. Выбираем зазор равным 0,4 мм. Толщина каркаса определяется размерами магнитопровода и значением испытательного напряжения. Для приведенных выше условий она принята hк = 0,8 мм.

Межслоевая и межобмоточная изоляция выбирается в соответствии с рекомендациями, помещенными в таблице 4.3.

Между каркасом и первой обмоткой помещены два слоя изоляционной бумаги марки К-120 (толщина двух слоев 0,12 ммх2=0,24 мм) и один слой пленки марки ПЭТ-Э толщиной 0,012 мм. Так же выполнены изоляция между первой и второй обмотками и внешняя изоляция. Кроме того, дополнительно снаружи помещается слой ленты из бумаги К-120 (толщина слоя 0,12 мм).

Таким образом, суммарная толщина изоляции hк-1 между каркасом и первой обмоткой равна 0,252 мм. Такая же толщина изоляции h1-2 = 0,252 мм между первой и второй обмотками. Толщина внешней изоляции

hвн = 0,252 + 0,12 = 0,372 мм. (22)

15. Толщина катушки, включающая в себя обмотки, каркас и электроизоляционные зазоры,

h = 0,4 + 0,8 + 0,24 + 0,012 + 5,612 + 0,24 + 0,012 +1,2+ +0,24 +

0,012+0,12 = 8,888 мм. (23)

Таблица 4.3- Рекомендации по выбору межслоевой и межобмоточной изоляци и расчетных коэффициентов

Иаметр провода по изоляции с dиз,

Мм

Коэффициент укладки провода Kу

Коэффициент разбухания

Kp

Наименование межслоевой изоляции

Толщина межслоевой изоляции

Мм

ГОСТ на

Бумагу

0,07. ..0.20

0.83

1,1

Бумага конденсаторная марки КОН-2

0,022

ГОСТ

1908-88

0,21. ..0.28

0,86

1.1

0,022

0,30... 0,38

0.92

1,1

Бумага электроизоляционная намоточная марки ЭН-50

0,050

ГОСТ

1931-80

0,41.. .0,64

0,93

1,1

0,050

0.66... 0.99

0,95

1,15

Бумага кабельная марки К-120

0,120

ГОСТ 23436-83

Более 0,99

0,87

1,15

0.120

Полученное значение h меньше минимального размера окна маг-литопровода hо = 9 мм, что обеспечивает размещение катушки в окне.

16. Длины средних витков обмоток

16.1. Длина среднего витка первой обмотки

Lср1 = 2а + 2с + 2п(гк + h k-1 + h1/2) = 2 * 12,8 + 2 * 16 + 2п(1,2+ +0,252 + 5,612/2) = 84,353 мм. (24)

16.2. Длина среднего витка второй обмотки

Lср2 = 2а + 2с + 2п(гк + h k-1 + h1 + h1-2 + h2/2) = 2 * 12,8 + 2 * 16 + 2п(1,2 + 0,252 + 5,612 + 0,252 + 1,2 / 2) = 107,336 мм. (25)

Длина среднего витка третьей обмотки

Lср3 = Lср1 = 84,353 мм (26)

17. Сопротивление обмоток постоянному току при температуре окружающей среды tос = +20°С.

Сопротивление первой обмотки

R1 = * Lср1 * 2 * n1 / q1 (27)

где -- удельное электрическое сопротивление медного провода, равное 0,0175 Ом * мм2/м;

q1 -- сечение провода первой обмотки из п. 6.1 (два провода по 0,5 мм2);

R1 = 0.0175 * 84.353 * 0.001* 2 * 32.5 / 1= 0.096 Ом

17.2. Сопротивление второй обмотки

R2 = * Lср2 * n2 / q2 = 0,0175 * 107,336 * 0.001 * 1 / 25

=0.000075 Ом (28)

17.3. Сопротивление третьей обмотки

R3 = * Lср3 * n3 / q3 = 0,0175 * 84.353 * 0.001 * 2.5 / 0.196 =0.0187 Ом (29)

18. Сопротивление обмоток переменному току

R_i = K_i * Ri (30)

где K_i -- коэффициент увеличения активного сопротивления от частоты f, определяемый по i -- 1; 2; 3.

18.1. Сопротивление первой обмотки

R_1 = К_1 *R1 = 1,18 * 0,096 = 0,113 Ом, (31)

где К_ определен для d = 0,8 мм при частоте f = 50 кГц.

18 2 Сопротивление второй обмотки

R_2 = К_2 * R2 = 1,18-7,5 * 10-5 = 8,85 * 10-5 Ом, (32)

где К_определен для d = 1,0 мм. при частоте f = 50 кГц.

18.3. Сопротивление третьей обмотки

R_3 = К_3 * R3 = 1,05-0,0183 = 0,0192 Ом. (33)

Масса меди обмоток

Масса первой обмотки

M1 = Lср1 * n1 * q1 * y (34)

где y -- удельная масса медного провода, равная 8,9 г/см;

М1 = 84,353 * 0.1(2 * 32,5) - 1 - 0.01 - 8,9 = 0,0488 кг.

19.2. Масса второй обмотки

M2 = Lср2 * n2 * q2 * y = 107,336 * 0.1 * 1 * 25 * 0.01 * 8,9=

= 0,0239 кг. (35)

19.3. Масса третьей обмотки

M3 = Lср3 * n3 * q3 * y = 84,353 * 0.1 * 2,5 * 0,196 * 0.01 * 8,9 = =0,00037 кг. (36)

Суммарная масса меди обмоток

М = М1 + М2 + М3 = 0,0488 + 0,0239 + 0,00037 = 0,073 кг. (37)

20.Потери в меди обмоток

Рм = К * I * R_i (38)

где К -- температурный коэффициент сопротивления, учитывающий температуру перегрева обмотки относительно температуры окружающей среды

t ос = 20° С ; i = 1; 2; 3;

Кz = 1 + Y * Z (39)

Для меди коэффициен Y = 0,004 1/°С. Задаемся допустимым значением нагрева обмоток Zдоп = 90°С. Тогда перегрев относительно температуры окружаюіцей среды +20°С составит

Z = 90 - 20 = 70° С (40)

и температурный коэффициент

Кz = 1+0,004*70= 1,28;

Рм1 = Кz * І1 * R_1 = 1,28 * 22 * 0,113 = 0,578 Вт: (41)

Рм2 = Кz * І2 * R_2 = 1,28 * 1.5* 8,85 * 10-5 = 0,408 Вт: (42)

Рм3 = Кz * І3 * R_3 = 1,28*0,5 *0,0192=0,006 Вт. (43)

Суммарные потери в медм обмоток

Рм = Рм1 + Рм2 + Рм3 = 0,578 + 0,408 + 0,006 = 0,992 Вт. (44)

21. Потери в феррите магнитопровода .

Рф = Руд * Gф, (45)

где Руд -- удельные потерм в магнмтопроводе, определяемые по фор-муле

Руд = Ро ( t / f `) * ( Bm / Bm') (46)

где f `= 1 кГц -- базовое значение частоты;

В' = 1 Тл -- базовое значение индукции;

Ро, -- коэффициенты, полученные из экспериментальных данных ;

Gф -- масса магнитопровода, равная суммарной массе двух Ш-образных деталей:

Gф = 0,046 кг * 2= 0,092 кг.

Из табл. 4.2 находим для феррита маркм М2000НМ1 Ро = 68 Вт/кг;

Значение рабочей частоты f = 50 кГц берем из исходных данных, значение индукции Вm = 0,115 Тл -- согласно п. 7. Таким образом,

Руд = 68(50/1) (0.115/1) = 17,427 Вт/кг;

Рф = 17,427 * 0,092 = 1,603 Вт.

22. Потери в трансформаторе

Ртр = Ры + Рф = 0,992 + 1 ,603 = 2,595 Вт. (47)

23. Проверяем значение КПД на основании полученных' расчетных значений мощностей:

= Р2 / (Р2 + Ртр) = 245/(245 + 2,595) = 0,9895. (48)

Таким образом, значение КПД принято в п. 2 с достаточно хорошим приближением и изменения его не требуется.

24. Уточняем значение входного тока трансформатора. Активная составляющая тока холостого хода

Iхха = Рф / U1 = 1,603 / 132 = 0.0121 А. (49)

Реактивная составляющая тока холостого хода

Iххр = H * Lсрф / n1 (50)

где Н = В / , В = 0,115 Тл берется из п. 7;

= 4п * 10-7 Гн/м;

= 1655 -- эквивалентная магнитная проницаемость, определяемая из табл. 4.2 для магнитопровода Ш12х15;

Lсрф = 9,67 см -- длина средней линии магнитопровода Ш12х15 из табл. 4.2:

H = 0.115 / 4п * 1655 = 55,13 А /м = 0,5513 А / см ;

Iххр = 0.5513 * 9.67 / 32.5 = 0,164 А.

Ток холостого хода трансформатора

Iхх = =0,164 А. (51)

Уточненное значение входного тока

I1ут' = =1,882 А. (52)

Учитывая возможные отклонения от технологии сборки, принимаем Іхх = 0,18 А. Окончательное уточненное значение входного тока

Iут'' = 2,1 А.

25.Определяем падения напряжения на обмотках трансформатора. Падение на первой обмотке

U1 = Kz * Iут1'' * R_1 = 1,28 * 2.1 * 0,113 = 0,303 В. (53)

Падение на второй обмотке

U2 = Kz * Iут1'' * R_2 = 1,28 * 1.5 * 8,85 * 10-5 = 0,0068 В. (54)

Падение на третьей обмотке

U3 = Kz * Iут3'' * R_3 = 1,28 * 0,5 * 0,0192 = 0,0123 В. (55)

В процентном выражении:

U1% = U1 / U1* 100 % = 0.229 %; (56)

U2% = U2 / U2* 100 % =0,17%; (57)

U3% = U3 / U3* 100 % = 0,123 %. (58)

Проверяем принятые в пп.7 и 10 значения падений напряжений. Для этого определяем приведенные падения напряжения U1-2% (на обмотках 1 и 2} и U1-3% (на обмотках 1 и 3 ):

U1-2% = U1% + U2% = 0,229 + 0,17 = 0,399 %: (59)

U1-3% = U1% + U3% = 0,299 + 0,123 = 0,352 %. (60)

Полученное значение U1-2% меньше значения 0,5 %, принятого в п.9, а значение U1-3%, меньше значения 0,4 %, принятого в п.10. Таким образом, принятые значения падений напряжений и, следовательно, число витков не требуют уточнения.

5. ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

Обеспечение защиты от электромагнитных полей при эксплуатации усилителя мощности миллиметрового диапазона длин волн

5.1 Влияние на организм человека электромагнитных полей радиочастотного диапазона

В результате научно - технического прогресса широкое применение и промышленности, науке и быту в последние десятилетие получила электромагнитная энергия различных диапазонов частот. Так, энергия высоких и ультравысоких радиочастот широко применяются в радиосвязи, радиовещании, телевидении, в промышленных установках и так далее. Электромагнитная энергия сверхвысоких частот (СВЧ) получила широкое применение в радиолокации, радионавигации, радиоастрономии и так далее. Кроме того, дальнейшее совершенствование новых типов СВЧ - генераторов позволит в ближайшем будущем применять энергию СВЧ - диапазона в радарных системах транспортных средств для предупреждения столкновений, в дорожных системах сигнализации, в опорных воздушных линиях связи и линиях электропередач, в мощных системах наземной и спутниковой связи и других [8].

В связи с этим значительное влияние на электромагнитный фон Земли, который ранее формировался главным образом за счет естественных источников космического, земного и околоземного происхождения, стали оказывать искусственные источники электромагнитного поля (ЭМП). В результате уже в настоящее время практически все население земного шара в большей и меньшей степени подвергается воздействию надфоновых уровней ЭМРЦ [9].

В процессе эволюционного развития все живые существа на Земле приспосабливались к определенным изменениям природных электромагнитных полей и по мнению большинства исследователей вынуждены были вырабатывать по отношению к ним не только защитные механизмы, но н в какой-то степени включать их в свою жизнедеятельность. Поэтому увеличение или уменьшение параметров ЭМП, значительно отличающихся от адекватных, могут вызывать в организмах функциональные сдвиги, в ряде случаев перерастающие в патологические. О биологической значимости ЭМП свидетельствуют как давние наблюдения, так и экспериментальные исследования последних лет на различном уровне организации биологических систем. При этом установлено, что воздействие искусственных ЭМП на биообъекты обусловлено не только энергетическими, но и информационными его характеристиками, вызывая тепловое и нетепловое действие.

Исследования по изучению влияния ЭМП радиочастотного диапазона на организм человека выявили определенные функциональные сдвиги со стороны нервной, сердечно - сосудистой, дыхательной системы, изменения показателя крени, обмена веществ и некоторых функций эндокринных желез [10].

При обследовании больших контингентов людей в производственных условиях установлено, что количество и частота жалоб на ухудшение самочувствия возрастает с увеличением профессионального стажа, причем при хроническом облучении более ранние и более выраженные реакции обнаруживаются со стороны нервной системы. Психоневрологические симптомы появляются в виде постоянной головной боли, повышенной утомляемости, слабости, нарушения сна, повышенной раздражительности, ослабления памяти и внимания. Иногда наблюдаются приступообразная головная боль, побледнение кожных покровов и обморочное состояние. Прн длительном воздействии СВЧ - излучений могут иметь место изменения в крови, помутнение хрусталика, трофическое заболевания (выпадения волос, похудение, ломкость ногтей и так далее).

Таким образом, признанная биологическая значимость ЭМП, все возрастающая роль искусственных источников ЭМП в формировании электромагнитной обстановки в производственной и окружающей среде являются важной предпосылкой для освоения будущими специалистами и руководителями производств методик гигиенической оценки и прогнозирования обстановки в рабочей зоне и жилой территории, определения санитарно - защитных зон и других инженерно - технических мероприятий по снижению вредного воздействия ЭМП на организм человека

5.2 Технические устройства, организационные и лечебно- профилактические мероприятия

Прн выборе защиты персонала или населения от электромагнитных излучений необходимо учитывать особенности производства, условия эксплуатации оборудования, рабочий диапазон частот, характер выполняемых работ, интенсивность поля, продолжительность облучения и другое.

Согласно ГОСТУ для снижения интенсивности поля в рабочей или жилой зоне рекомендуется применять различные инженерно технические способы и средства, а также организационные и лечебно - профилактические мероприятия.

В качестве инженерно - технических методов и средств применяются: экранирование излучателей, помещений , рабочих мест; уменьшение напряженности и плотности потока энергии в рабочей или жилой зоне за счет уменьшения мощности источника и использования ослабителей мощности и согласованных нагрузок, применения средств индивидуальной защиты.

Организационные мероприятия включают в себя: требования к персоналу (возраст, медицинское освидетельствование, обучение, инструктаж), выбор рационального взаимного размещения в рабочем помещении оборудования, излучающего электромагнитную энергию, и рабочих мест; установление рациональных режимов работы оборудования и обслуживающего персонала; ограничения работы оборудования во времени; защита расстоянием; удаление рабочего места от источника ЭМП; защита временем; применение средств предупреждающей сигнализации.

Лечебно - профилактические мероприятия направлены на предупреждение заболевания, которое может быть вызвано воздействием ЭМП, а также на своевременное лечение работающих при обнаружении заболевания.

Для предупреждения профессиональных заболеваний у лиц, работающих в условиях ЭМП, применяются такие меры, как предварительный (для поступающих на работу) и периодический (не реже одного раза в год) медицинский осмотр за состоянием, а также других мер, способствующих по повышению устойчивости организма человека к действию ЭМП.

Медицинский контроль позволяет выявить людей с такими патологическими изменениями в организме, при которых работа и условиях облучения ЗМП противопоказана, и определить необходимость проведения лечения.

К мероприятиям, способствующим повышению резистентности организма человека к ЭМП, могут быть отнесены регулярные физические упражнения, рационализация времени труда и отдыха, а также использование некоторых лекарственных препаратов и общеукрепляющих витаминных комплексов.

5.3 Применение электромагнитных помещенй и замкнутых экранов для защиты от электромагнитных полей

Для локализации ЭМП внутренних источников применяются электрогерметичные помещения, аппаратные и кабины, представляющие собой замкнутые электромагнитные экраны. В таких помещениях экранируется стены, потолки, пол, оконные и дверные проемы и вентиляционные системы. Такие помещения и кабины могут использоваться для защиты и от внешних полей.

Монтаж экранов в больших помещениях производится прикреплением металлических листов (стальных, дюралюминиевых и других) непосредственно к поверхностям помещения. Размеры листов обшивки и их толщена определяются сортаментом прохода Для достижения электрической герметичности рекомендуется листы соединить внахлест, встык или в фалец.

При экранировании используются такие явления, как поглощение электромагнитной энергии материалом экрана и её отражение от поверхности экрана. Поглощение ЭМП обуславливается тепловыми потерями в толще материала и зависит от электромагнитных свойств материала экрана (электрической проводимости, магнитной проницаемости и др.). Отражение обуславливается несоответствием электромагнитных свойств воздуха и материала экрана.

Для изготовления экранов применяют либо тонкие металлические (сталь, алюминий, медь, сплавы) листы, либо металлические сетки.

Толщина экрана (D) из металлического листа выбирается, исходя из соображений механической прочности, не менее 0,5 мм, и должна быть больше глубины проникновения электромагнитных волн в толщину экрана:

(5.1)

где г- глубина проникновения поля в проводящую среду;

?-магнитная проницаемость материала, Гн/м;

?- электрическая проводимость материала, см.

Большая отражательная способность металлов, обусловленная значительным несоответствием электромагнитных свойств воздуха и металла, в ряде случаев может оказаться нежелательной, так как может увеличивать интенсивность поля в рабочей зоне и влиять на режим работы генератора (излучателя). Поэтому в подобных случаях следует применять экраны с малым коэффициентом отражения специальной конструкции, так называемые поглощающие экраны.

Металлические экраны за счёт отражения и поглощения практически непроницаемы для электромагнитной энергии радиочастотного диапазона (d??,где ?-длина волны).

Применение поглощающих нагрузок и аттенюаторов позволяет ослабить интенсивность излучения электромагнитной энергии в окружающее пространство на 60 дБ и более.

Для защиты от ЭМП при работе в антенном поле, проведении испытательных и регулировочных работ на объектах, устранении аварийных ситуаций и ремонте рекомендуется использование индивидуальных средств защиты. Для защиты всего тела применяются комбинезоны, халаты капюшоны. Их изготавливают из трёх слоев ткани. Внутренний и наружный слой делают из хлопчатобумажной ткани, а средний, защитный слой- из радиотехнической ткани, имеющей проводящую сетку. Для защиты глаз используются специальные радиозащитные очки (ОРЗ-5) из стекла, покрытого полупроводниковым оловом. Эффективность таких очков составляет 20-22 дБ.

5.4 Оценка уровня электромагнитного излучения на рабочем месте

Оценим уровень электромагнитного излучения на рабочем месте регулировщика радиоаппаратуры от генератора мощностью 0.1 Вт, работающего в диапазоне частот 3-4 ГГц, с точки зрения необходимости разработки мероприятий по защите персонала, если рабочее место удалено от источника излучения на расстояние 1м, а продолжительность пребывания персонала в условиях облучения за смену не превышает б часов.

Оценка уровня поля осуществляется сравнением значений плотности потока энергии на рабочем месте (так как генератор работает в диапазоне СВЧ) и предельно допустимым.

Плотность потока энергии на рабочем месте можно рассчитать по формуле:

ЛПЭр.м?Рист/4?, Вт/м2 (5.2)

где Рист.- мощность генератора, Вт;

ч - расстояние от излучения до рабочего места,1м.

ППЭр.м ?.0.1/(4*3,14*1)=2,35, Вт/м2.

Предельно допустимое значение плотности потока энергии, определяется по формуле:

ППЭпд=К*ЭНппз/Т,Вт/м2, (5.3 )

где К- коэффициент, равный 1, для данного условия;

Эпппз пз- максимальная энергетическая нагрузка, равна 2Вт/м2;

Т - время облучения персонала , по условиям задачи, равно бч.

ППЭпд= 1*2/6-= 0,33, Вт/м2.

Сравнивая значения ППЭ на рабочем месте (2,35 Вт/м2) и предельно допустимое (0,33 Вт/м2) делаем вывод о том, что защита персонала в данном случае необходима, так как фактическое значение ППЭ, воздействующее на регулировщика , в 3 раз превышает предельно допустимые.

Для достижения высокой эффективности экранирования рекомендуется элементы конструкции экрана сваривать непрерывным швом или применять другие сплошные соединения.

Для защиты персонала будем применять вышеописанные методы до того момента пока уровень излучения на рабочем месте не будет иметь допустимых значений.

В ряде случаев во избежание отражения энергии, образования стоячих волн и зон, где плотность ЭМП излучения может оказаться больше первоначальной плотности потока энергии создаваемой источником, стены и другие ограждающие конструкции таких помещений должны быть покрыты поглощающими материалами. В случае направленного излучения допускается применение поглощающего покрытия только тех стен, на которые направленно излучение.

При защите помещений от внешних излучений применяется склеивание стен специальными металлизированными обоями, засетчивание окон, использование специальных металлизированных штор и далее. Дпя изготовления экранных штор, чехлов и других защитных изделий, также как н для изготовления защитной одежды применяется радиотехнические ткани, в структуре которых тонкие металлические нити образуют сетку.

В качестве экранирующего материала для световых проемов, приборных панелей, смотровых окон, также как и для защитных очков применяется оптически прозрачное стекло, покрытое полупроводниковой двуокисью олова. Световые проемы или смотровые окна могут также экранироваться металлической сеткой.

При конструировании замкнутых экранов в диапазоне СВЧ иногда возникает необходимость предусматривать в них различного рода отверстий: вентиляционные окна, отверстия для проводов питания, ручек управления и так далее которые не должны нарушать электрическую герметичность экрана и снижать его эффективность.

Для ослабления излучаемой энергии через отверстия различной формы без металлических выводов через них применяются трубки предельных волноводов (по форме отверстия экрана), длины которых определяются в зависимости от необходимой величины ослабления энергии и ослабляющей способности трубки.

Коаксиальные отверстия в отличие от отверстий типа "предельный волновод " практически беспрепятственно проводят высокочастотную энергию в любом диапазоне. Один из способов ослабления излучения в коаксиальных выводах являются заполнение пространства между центральным и наружным проводниками поглощающим материалом -корбональным железом, графитом и так далее).

Просачивание высокочастотной энергии через коаксиальные отверстия можно уменьшить также путем применения специальных фильтров, простейшим из которых является фильтр, основанный на соединении встык двух коаксиальных линий с резко отличающимися волновыми сопротивлениями. Одна такая стыковка коаксиальных кабелей обеспечивается затухание по мощности более 10 дБ.

Более эффективным способом экранирования щелей в широком диапазоне частот является применением поглощающих прокладок по всей длине щели, либо обеспечение плотного электрического контакта по всему периметру щели.

6. Технико-экономическое обоснование

6.1 Характеристика технико-экономического обоснования проекта

Разрабатываемый усилитель мощности миллиметрового диапазона длин волн предназначен для усиления сигнала и передачи его на определенное расстояние. Существенным преимуществом является тот факт, что устройство работает в новом диапазоне длин волн .

Значение экономического обоснования целесообразности разработки, внедрения и использования новой техники особенно возрастает в условиях рыночной экономики.

Учитывая тот факт, что моральное старение электронной техники происходит очень быстро, следует отметить, что период производства данного изделия не должен превышать трех, четырех лет [11].

Проблем материально-технического обеспечения ресурсами всех видов (оборудование, кадры, материалы) не предполагается. При эффективном функционировании предприятия возможно производство приемо-передающего модуля на протяжении нескольких лет. В качестве расчетного периода выберем срок два года. Так как проектируемый модуль представляет собой основную часть всей системы, то технико-экономический расчет целесообразно вести для всей системы сразу.

6.2 Определение сметной стоимости НИОКР

Смета затрат на проведение научно исследовательской работы рассчитывается по следующим статьям:

материалы и комплектующие;

спецоборудование;

расходы на оплату труда;

налоги и отчисления, приравненные к материальным затратам;

командировочные расходы;

амортизация на полное восстановление основных фондов;

услуги сторонних организаций;

прочие расходы;

накладные расходы.

Расчет основной заработной платы выполним на основе длительности разработки (6 мес.), количества занятого научно-технического персонала и величины среднемесячной заработной платы (таблица 6.1).

Таблица 6.1- Расчет основной заработной платы

Исполнители

Количество, чел

Длительность разработки, мес.

Среднемесячная ЗП, тыс. руб.

Сумма основной ЗП, тыс. руб.

Научный руководитель проекта

1

6

150

900

Ответственный исполнитель проекта

1

6

130

780

Инженер

2

6

100

1200

Техник

1

6

75

450

Всего

5

3330

Полная смета затрат на проведение НИОКР и договорная цена разработки приведены в таблице 6.2.

Таблица 6.2 - Смета затрат разработки

Статьи затрат

Методика расчета

Сумма,
тыс. руб.

1

2

3

Основная зарплата (Зо)

3330

Дополнительная зарплата (Зд)

20% от Зо

666

Отчисления в фонд социальной защиты населения (Зос)

36% от (Зо + Зд )

2637.36

Командировочные расходы (Рком)

4% от Зо

133.2

Прочие расходы (Рпр)

10% от (Зо + Зд + Зос + Рком )

1009.66

Чернобыльский налог (Рч)

4% от (Зо+ Зд )

293.04

Накладные расходы (Ркос)

150% от Зо

3956.04

Итого полная себестоимость (Сп)

Сумма вышеперечисленных статей

15355.3

Плановая прибыль (П)

30 % от Сп

4606.59

Цена предприятия (Цп)

Цп= Сп+П

10748.71

Налоги и отчисления в местный бюджет (Омб)

Омб=Цп*Нмб/(100-Нмб)

где Нмб=2%-норматив отчислений в местный бюджет

219.36

Налоги и отчисления в республиканский бюджет (Орб)

Орб=(Цп+Омб)*Нрб/

(100-Нрб)

где Нрб=2,5%- норматив отчислений в республиканский бюджет

223.83

Налог на добавленную стоимость (НДС)

НДС=(Цп+Омб+Орб)*Ндс/100

Ндс=20%

2238.38

Отпускная цена (цена реализации) (Цот)

Цот=Цп+Омб+Орб+НДС

13430.28

6.3 Определение себестоимости товара и рыночной цены

В самом общем виде в состав затрат включаются материалы, комплектующие изделия, заработная плата персонала, износ специнструментов и приспособлений, расходы по содержанию и эксплуатации оборудования [12]. Для производства представленного устройства необходимы комплектующие приведенные в таблице 6.3.

Таблица 6.3- Расчет затрат на материалы и комплектующие изделия

Нименование комплектующих

Количество, шт

Цена за ед., тыс. руб.

Сумма

1

Корпус

1

130

130

2

Ип-1

1

216

216

3

Ип-2

1

67,5

67,5

4

Ус-1

1

108

108

5

Прочие радиодетали

540

540

6

Флюс и припой

20,5

20,5

Итого:

848

Для изделий электронной техники удельные веса прямых затрат в полной себестоимости составляют:

Ум = 10%;

Уук = 75%;

Уз = 15%.

Таким образом можем определить величину затрат Рм и Рз:

Полную себестоимость изделия определим по укрупненной схеме формуле:

(6.3)

где: = 2,1 - коэффициент общих косвенных расходов;

= 0,03 - коэффициент внепроизводственных расходов, связанных с

реализацией продукции;

Нс - налоги и отчисления, приравниваемые к материальным затратам.

(6.4)

где: Рзд - величина дополнительной заработной платы

производственных рабочих (30% от Рз);

Рпк - основная и дополнительная заработная плата прочих работников

(130% от Рз + Рзд).

Рзд и Рпк определяем по формулам:

Рзд = Рз0,3 = 113.060,3 = 33.91тыс. руб.

Рпк = (Рз + Рзд)1,3 = (113.06+33.91)1,3 = 191.07тыс. руб.

Соответственно Нс равно:

Нс = (113.06+ 33.91+191.07)0,4 = 135.21тыс.руб.

Теперь рассчитываем Ц:

Ц = (169.6+ 848.8+ 113.06(1+2,1))(1 + 0,03) + 135.21= 1545.16тыс. руб.

Цену одного изделия определяем как:

Цизд = Ц + Пп + Омб + Орб + НДС (6.5)

Пп = 15% от Ц (6.6)

Oмб= (Ц + Ппмб/(100% - Нмб) (6.7)

где Нмб= 2%.

Oрб = (Ц + Пп + Омбрб/(100% - Нрб) (6.8)

где Нрб = 2,5%

НДС = (Ц + Пп + Омб + Орбдс/100% (6.9)

где Ндс = 20%.

Пп = 1545.160,15 = 231.77тыс. руб.

Oмб = 219.36 тыс. руб.

Oрб= 223.83 тыс. руб.

НДС = 2238.38 тыс. руб.

Цизд = 4458.5 тыс. руб.


Подобные документы

  • Исследование схемы с управляющим входным аттенюатором. Анализ шумовых характеристик приборов. Построение усилителей мощности на основе интегральной микросхемы. Пример расчета транзисторного полосового усилителя мощности диапазона сверхвысокой частоты.

    дипломная работа [3,2 M], добавлен 03.06.2012

  • Разработка усилителя мощности, с использованием операционных усилителей, класс работ АБ (вид и спад амплитудно-частотных характеристик не имеет значения) с заданными параметрами выходной мощности, тока нагрузки, входного напряжения, диапазона частот.

    курсовая работа [1,6 M], добавлен 16.07.2009

  • Разработка и расчет схемы двухтактного усилителя мощности с заданными параметрами. Расчет оконечного, промежуточного и входного каскада. Выбор цепи стабилизации тока покоя. Результирующие характеристики усилителя. Требования к мощности источника питания.

    курсовая работа [617,9 K], добавлен 16.10.2011

  • Построение и расчет усилителя мощности для стационарной аппаратуры второй группы сложности. Выбор, обоснование и предварительный расчет структурной схемы усилителя. Полный электрический расчет усилителя мощности и узлов предварительного усилителя.

    курсовая работа [279,9 K], добавлен 05.09.2008

  • Описание блок–схемы транзисторного двухкаскадного усилителя мощности низких частот. Вычисление мощности, потребляемой цепью коллектора транзистора от источника питания. Расчёт выходного и предварительного каскадов усилителя, фильтра нижних частот.

    контрольная работа [323,8 K], добавлен 18.06.2015

  • Назначение и принцип работы усилителя мощности и звуковых частот. Выбор, описание и обоснование метода производства печатной платы. Расчет электромагнитных помех, длины участка при емкостной и взаимоиндуктивной наводках, электромагнитного экрана.

    курсовая работа [1,4 M], добавлен 24.02.2013

  • Сущность процесса усиления - получения копии входного сигнала большей мощности. Расчет импульсного усилителя, рассчитанного на транзисторах и на базе интегральных микросхем. Расчет структурной схемы, оконечного, предоконечного, предварительного каскада.

    контрольная работа [148,2 K], добавлен 18.12.2011

  • Разнообразные усилительные устройства. Усилители тока, напряжения и мощности. Каскад предварительного усиления. Простой стереофонической усилитель мощности. Транзисторный радиовещательный или связной приемник. Номинальное сопротивление нагрузки.

    курсовая работа [941,1 K], добавлен 04.05.2011

  • Излучение непрерывного сигнала и измерение параметров отраженного сигнала. Технические характеристики радиолокационного уровнемера УРМД-01 миллиметрового диапазона длин волн для резервуарного парка углеводородного сырья и продуктов их переработки.

    отчет по практике [75,5 K], добавлен 22.05.2013

  • Расчет усилителя мощности с представлением структурной схемы промежуточных каскадов на операционных усилителях. Расчет мощности, потребляемой оконечным каскадом. Параметры комплементарных транзисторов. Выбор операционного усилителя для схемы бустера.

    курсовая работа [1,6 M], добавлен 05.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.