Дискретный регулятор мощности секционированной солнечной батареи

Разработка дискретного регулятора мощности секционированной солнечной батареи, входящего в состав энергопреобразующей аппаратуры, в части системы управления шунтирующими коммутаторами, для обеспечения требуемого качества выходного напряжения КЭП.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 27.07.2012
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(2.3)

где Uп - напряжение питания имитатора БС, Iкз - ток короткого замыкания имитатора БС, Uст - напряжение холостого хода (напряжение стабилизации стабилитрона), Iст - ток стабилизации стабилитрона.

Разделим первое уравнение системы 2.3 на второе, выразим напряжение питания и подставим значения параметров:

(2.4)

Выберем ближайшее большее значение напряжения равное 12В, тогда сопротивление резистора согласно системе уравнений 2.3 определяется из выражения:

(2.5)

Внутреннюю ёмкость имитатора согласно источнику [2] выберем равной 0.2мкФ, а внутреннее сопротивление 0.5Ом.

2.3.3 Схемная реализация основного канала управления

Для отработки схемы нужны каналы ШС (5шт), ключи в них работают в режиме ШИМ, использовать готовые блоки нет возможности, а разработка нового блока ШС выходит за рамки данной дипломной работы. В качестве ШС используем типовую схему линейного регулятора на операционном усилители и биполярном транзисторе, усилитель включен по инвертирующей схеме (рисунок 2.25). Сумматор на входе усилителя выполнен в виде резисторной звезды. На сумматор приходит: напряжение ошибки, с интегратора; производная от выходного напряжения, с дифференциатора быстрой связи; напряжение смещения; напряжение пропорциональное току транзистора.

Рисунок 2.25. Один канал ШС.

Через R45 приходит напряжение ошибки от интегратора, R47 напряжение быстрой связи, R51 - напряжение пропорциональное току транзистора, R48 напряжение смещения. Для каждого канала номинал сопротивления R48 расчитывается по формуле:

(2.6)

R39 - резистор обратной связи определяющий коэффициент передачи усилителя (добавить резистор на прямой вход операционника), C13 позволяет подобрать скорость работы узла такую же как у реального ШС. VD19 - защитный диод, не позволяющий опустится потенциалу базы транзистора ниже

-0.7В. R43 задает режим работы транзистора.

Расчет параметров шунтового стабилизатора:

Операционный усилитель выберем из имеющихся: 153УД1А, напряжение питания ±12В. Силовой транзистор выберем так же из имеющийся номенклатуры КТ819А. Но необходимо подтвердить возможность его работы в данной схеме.

Ток транзистора в данной схемы не может превышать 200мА, напряжение прикладываемое к переходу к-э не более 9В. Согласно источнику [5] (стр. 491) допускается прикладывать к транзистору напряжение до 25В, постоянный ток коллектора до 10А, постоянный ток базы до 3А, статический коэффициент передачи по току 20 - 50. Согласно этому, данный транзистор подходит по параметрам для работы в схеме.

Для К153УД1А максимальный выходной ток равен 5мА? [6], выходное напряжение 12В, следовательно сопротивление базового резистора определяется из следующего выражения:

(2.7)

Сопротивление резистора эмиттера должно быть таковым (из удобства расчета), что бы при токе 200мА падение напряжения на нем равнялось 1В. Следовательно:

(2.8)

Расчет входного резисторного сумматора:

Выражение согласно которому определяется напряжение на инвертирующем входе усилителя определяется согласно выражению 2.9:

(2.9)

где, К1 - К2 значения проводимостей в соответствующих ветвях, Uош - напряжение интегратора, Uэ - напряжение на эмиттере транзистора, Uвых - напряжение на выходе ОУ, Uсм - напряжение смещения, Uдиф - напряжение быстрой обратной связи (дифференциатора).

Из условия согласования источника и потребителя и инженерного опыта, сопротивления резистора, через который подается напряжение интегратора выберем 10КОм. Из заданной логики работы ШС, при напряжении интегратора 1В, ключ должен быть полностью открыт, т.е. напряжение эмиттерного резистора должно быть 1В, следовательно K2 = K1. В качестве опорного напряжения, выбрано -12В. Для первого канала ШС напряжение смещения равно 0, для второго канала 1В, третьего 2В, четвертого 3В, и пятого 4В. Следовательно для каждого канала коэффициент K4 определяется по выражению 2.10.

(2.10)

Согласно выражению 2.10, определим величину коэффициента K4 для каждого канала:

1 канал: (2.10.1)

2 канал: (2.10.2)

3 канал: (2.10.3)

4 канал: (2.10.4)

5 канал: (2.10.5)

На основе инженерного опыта, резистор R5 выбираем 30КОм. В процессе настройки схемы коэффициент быстрой обратной связи можно будет подобрать изменяя параметры дифференциатора.

Операционный усилитель включен по инвертирующей схеме, зададимся коэффициентом передачи -10, тогда коэффициент K3 рассчитаем согласно выражению 2.11.

(2.11)

1 канал: (2.11.1)

2 канал: (2.11.2)

3 канал: (2.11.3)

4 канал: (2.11.4)

5 канал: (2.11.5)

Таблица 2.3. Значения сопротивлений обратной связи ОУ в канале ШС.

1 канал

2 канал

3 канал

4 канал

5 канал

R3, КОм

42.9

41.4

40.0

38.7

37.5

Расчет ёмкости конденсатора обратной связи:

Постоянная времени одного канала реального ШС приблизительно равна 10-6с. Постоянная времени определяется по формуле 2.12.

(2.12)

Из формулы 2.12 можно вычислить ёмкость конденсатора ОС для каждого канала.

1 канал: (2.12.1)

2 канал: (2.12.2)

3 канал: (2.12.3)

4 канал: (2.12.4)

5 канал: (2.12.5)

Расчет балансного сопротивления, подключенного к не инвертирующему входу.

Балансное сопротивление задается равным сопротивлению параллельного соединения всех сопротивлений подключенных к инвертирующему входу.

1 канал: (2.13.1)

2 канал: (2.13.2)

3 канал: (2.13.3)

4 канал: (2.13.4)

5 канал: (2.13.5)

Таблица 2.4. Значения балансных сопротивлений ОУ в канале ШС.

1 канал

2 канал

3 канал

4 канал

5 канал

Rбал, КОм

3.9

3.8

3.6

3.5

3.4

Следующий важный узел, это интегратор ошибки (рисунок 2.26), в реальном блоки его роль выполняет прибор И100. Динамические характеристики интегратора должны бить приближены к характеристикам реального прибора.

Рис. 2.26. Интегратор ошибки с инвертирующим усилителем.

Кроме интегрирования ошибки, данный блок должен выполнять функцию сумматора, сравнивая выходное напряжение с опорным. Роль сумматора выполняет резисторная звезда R7 и R9, (необходимо добавить стабилитрон, либо использовать стабильный источник напряжения, иначе от питания будет плавать). В качестве опорного напряжения принять -12В, напряжение на шине должно быть 6В, следовательно напряжение ошибки (выходное напряжение сумматора) определяется по следующему выражению:

, (2.14)

где Uвх - напряжение на шине, а Uсм - опорное напряжение -12В.

Расчет параметров блока интегратора:

Как и в предыдущем случае, входной резистор R7 выберем 10КОм, тогда согласно выражению 2.14, сопротивление резистора смещения равно 20КОм. Важно отметить, что коэффициент передачи резисторного сумматора меньше единицы и зависит от номиналов резисторов входящих в него. Следовательно выражение 2.14 записано не корректно. В нашем случае этот факт не имеет значения так как сумматор подключен ко входу интегратора, а выход интегратора подключен к инвертору, коэффициент передачи которого будет подобран при окончательной настройке схемы.

Конденсатор C1 и резистор R10 определяют постоянную времени интегратора. Постоянная времени интегратора подбиралась в процессе моделирования исходя из устойчивости переходного процесса, при сочетании параметров R и C приведенных на схеме (рисунок 2.26), она равна:

(2.15)

Инвертирующий усилитель в составе блока интегратора нужен для подбора статического коэффициента передачи, и введении в контур обратной связи дополнительной инверсии (чтобы ОС стала отрицательной).

На начальном этапе проектирования коэффициент передачи инвертора был задан -1 (R5=10КОм, R3=10КОм), но в процессе моделирования (об этом будет подробно описано в главе моделирование) оказалось, что качество переходных процессов не приемлемое, и причина тому низкий коэффициент в контуре обратной связи. Поэтому коэффициент передачи инвертора был увеличен до -3 (R5=10КОм, R3=30КОм). Это позволило добиться требуемой статической ошибки и качества ПП.

Быстрая обратная связь состоит из дифференцирующей R11 С4 цепочки и буферного не инвертирующего усилителя (исключает взаимовлияние каналов ШС друг на друга через резисторную звезду) (рисунок 2.27). Используя методы ТАУ для анализа структурной схемы системы, можно подобрать ориентировочные значения параметров элементов входящих в неё, но из - за того, что модель не полно описывает свойства реальной системы, эти параметры при дальнейшей работе придётся уточнять. Моделируя систему в целом в Altium Disigner, исходя из качества ПП, постоянная времени дифференциатора была подобрана:

(2.16)

Коэффициент передачи также подбирался при моделировании путём изменения номинала резистора R4. Резистор R12 был задан как и в предыдущих случаях 10КОм.

Рис. 2.27. Дифференциатор усилитель быстрой ОС.

Напряжения пропорциональные токам ключей ШС поступают на вход резисторного сумматора (резисторная звезда) (рисунок 2.28). Сумма напряжений поступает на два компаратора выполненных на операционных усилителях, порог срабатывания первого выше 0.5В, порог срабатывания второго ниже 0.15В. Величина порогов влияет на устойчивость работы схемы, и зависит от числа каналов ШС, следовательно при макетировании её придётся уточнять.

Рис. 2.28. Сумматор величин токов ключей и пороговое устройство с двумя порогами срабатывания.

Номинал входных резисторов, из условия согласования источника и потребителя, был выбран 10КОм.

К выходам компараторов подключены диодные переключатели напряжения, предназначенные для формирования напряжения логической единицы и логического нуля, то есть согласования выхода операционного усилителя и входа логических микросхем серии 564 (указать тип логики и напряжение?). Данный вариант диодного переключателя отработан и широко применяется в изделиях лаборатории 630 «ОАО ИСС» номинал резистора R46 рекомендуется 20КОм, R42 = 3КОм.

Напряжения с диодных переключателей поступают на вход логической схемы, которая формирует сигнал направления переключения и сигнал разрешения переключения (рисунок 2.29).

Рис. 2.29. Схема формирователя сигнала направления переключения и разрешения переключения.

Таблица истинности и логика работы приведена в пункте 2.1. Сигнал направления переключения снимается с вывода 11 DD3:4, сигнал разрешения переключения снимается с вывода 8 DD4:3.

Для повышения быстродействия и упрощения конструкции вместо дополнительного тактового генератора (как было описано в пункте 2.1), сигнал разрешения переключения поступает на ждущий генератор, поэтому последовательность тактовых импульсов появляется сразу при возникновении условия. Схема генератора приведена на рисунке 2.30 [1].

Рис. 2.30. Схема ждущего генератора (564ТЛ1).

Рисунок 2.31. Диаграммы напряжений ждущего генератора.

Описание работы генератора (см рис 2.31): в начальный момент времени и до 0.5мс напряжение на входе 1 микросхемы равно 0, на выходе 3 равно напряжению питания, следовательно конденсатор заряжен до напряжения питания. Напряжение на выходе 4 равно логической единице. С приходом разрешающего импульса на вход 2 микросхемы (0.5мс) напряжение на выходе 3 становится равным 0 и происходит разряд ёмкости через цепь R38 VD15. Длительность импульса формируемого генератором должна составлять 100мкс. Если считать, что переходной процесс заканчивается за три постоянных времени, то постоянная времени должна быть равна 33мкс. Задавшись сопротивлением резистора R38 = 500Ом, тогда ёмкость равна:

нФ (2.16)

После того как конденсатор разрядился до уровня логического 0 происходит переключения логического элемента и на выходе 3 появляется напряжение логической единицы. Диод запирается и конденсатор заряжается до напряжения питания через резистор R37. Длительность импульса должна быть 1мс. Для данной микросхемы верхний порог срабатывания равен приблизительно половине напряжения питания. Конденсатор заряжается до половины питания примерно за 1 постоянную времени. Следовательно постоянная времени 2 тоже равна 1мс. Зная ёмкость конденсатора можно определить сопротивление резистора R37:

(2.17)

Входное сопротивление R41 зададим 5КОм.

2.3.4 Схемная реализация дополнительного канала управления.

Выходное напряжение шины подается на дифференцирующую RC цепочку с постоянной времени

(2.18)

Сопротивление резистора R24 было задано 10КОм, емкость конденсатора подобрана по виду переходного процесса при моделировании. Выходной сигнал RC цепочки подается на пороговое устройство аналогичное описанному в предыдущем разделе, пороги срабатывания +1В и -1В (рисунок 2.32).

Рис. 2.32. Схема порогового устройства с дифференциатором.

Сигналы с порогового устройства подаются на вход элемента логическое ИЛИ, собранного на элементах логическое И-НЕ (564ЛА7)(рисунок 2.33) и далее на вход одновибратора, который из коротких импульсов формирует импульсы постоянной длительности. Схема одновибратора взята из источника [1], согласно этому источнику постоянная времени одновибратора рассчитывается по формуле:

, резистор рекомендован 20КОм. Необходимая постоянная времени 200мкс. Тогда емкость конденсатора равна:

(2.19)

Однако моделирование показало, что для достижении длительности импульса в 200мкс, емкость необходимо увеличить минимум в 2 раза. В данной схеме применен конденсатор ёмкостью 40нФ.

Рис. 2.33. Элемент логическое ИЛИ и одновибратор

Рис. 2.34. Диаграммы напряжений на элементах одновибратора.

Одиночные импульсы с одновибратора подаются на вход формирователя парных импульсов (рисунок 2.35).

Рис. 2.35. Схема формирователя парных импульсов.

Рис. 2.36. Диаграммы напряжений формирователя парных импульсов.

Диаграммы напряжений формирователя, поясняющие его работу, приведены на рисунке 2.36. Номинал входных сопротивлений был задан 1КОм. Значения ёмкостей подбирались в процессе моделирования (указаны на схеме рисунок 2.35). Порядок работы. С приходом импульса напряжения первая RC, с меньшей постоянной времени, начинает заряжаться, и происходит смена состояния вывода 10 микросхемы. Вместе с первым конденсатором заряжается и второй, но его ток заряда меньше. Когда второй конденсатор заряжается до напряжения логической единицы, происходит смена состояния вывода 11 микросхемы на логический 0, это вызывает смену состояния вывода 10 на логическую единицу. В конечном итоге происходит формирование пары импульсов.

Парные и одиночные импульсы дополнительного канала управления поступают на схему выборки (рисунок 2.37). Так же в неё поступают одиночные импульсы основного канала. Схема выборки предназначена для смешивания сигнала парных импульсов дополнительного канала и одиночных импульсов основного канала, причем у парных импульсов приоритет прохождения выше. По сути, схема выборки является элементом ИЛИ, но с активацией одного из входов по сигналу от дополнительного канала. Если одиночный импульс в дополнительном канале присутствует, то на выход схемы выборки проходят парные импульсы, если отсутствует то на выход проходят одиночные импульсы из основного канала.

Рис. 2.37. Схема выборки

Сигналы тактовых импульсов (от схемы выборки) и направления переключения поступают на вход реверсивного регистра сдвига (рисунок 2.38) [1]. Логика работы и назначения элементов была описана в пункте 2.2.1.

Рис. 2.38. Схема реверсивного сдвигового регистра на 564ИР9.

Логические сигналы с выходов регистра поступают на входы силовых ключей находящихся в блоках имитаторов секций коммутаторов.

Необходимые напряжения смещения формируются отдельным узлом (рисунок 2.39).

Рис. 2.39. Схема формирователя опорных напряжений.

Расчет параметров делителя:

Схеме требуется 4 напряжения смещения. Составив схему (рисунок 2.39) для получения этих напряжений, можно рассчитать параметры сопротивлений. Резистор задающий режим стабилитрона рассчитывался в начале раздела для имитатора БС. Его целесообразно увеличить до 100Ом. Получив два стабильных напряжения +9В и -9В, можно приступить к расчету делителя. Первое напряжение +1В, опорное напряжение 9В, следовательно R74 зададим 8КОм, а сумма остальных трёх должна быть равна 1КОм. Аналогичным образом из напряжения -9В получим напряжение -1В. Следующее напряжение +0.5В. Это означает, что R73=0.5КОм, а сумма двух оставшихся сопротивлений так же 0.5КОм. Что бы найти значения последних двух сопротивлений составим систему уравнений:

(2.20)

Из системы 2.20 сопротивление R75=115Ом, а R72=330Ом.

Окончательная принципиальная схема устройства приведена в приложении 2.4, перечень элементов приведен в приложении 2.5.

2.4 Моделирование

Работу всех функциональных элементов в отдельности мы рассмотрели в предыдущих глава. Теперь рассмотрим работу всей системы в целом.

На первом этапе необходимо обеспечить устойчивую работу шунтового стабилизатора, при допустимых для него нагрузках. Принципиальная схема ШС приведена в приложении 2.6 (обозначен блок ШС).

Наладка ШС сводится к подбору коэффициента усиления интегратора (от него зависит статическая ошибка и время регулирования), и подбору постоянной времени дифференциатора и его коэффициента передачи. Остальные параметры схемы были определены в предыдущем разделе.

Переходные процессы возникающие в системе приведены на рисунке 2.40.

Красный график на рисунке 2.40 - выходное напряжение ШС, верхний зеленый график - ток нагрузки, синий график - напряжение на выходе интегратора, нижний зеленый график - напряжение на выходе дифференциатора быстрой ОС.

Рис. 2.40. Переходные процессы (выходное напряжение ШС).

На рисунке 2.40 показано изменение выходного напряжения при изменении нагрузки. В момент времени 1мс происходит увеличение тока нагрузки на 350мА. Такая нагрузка не превышает нагрузочную способность пяти канального ШС, поэтому, выходное напряжение восстанавливается до номинального. Переходной процесс без перерегулирования, время регулирования 200мкс. В момент времени 4мс нагрузка увеличивается еще на 180мА. Такая нагрузка превышает возможности ШС, поэтому выходное напряжение опускается ниже номинала, а пороговое устройство формирует сигнал разрешения подключения дополнительных секций (рисунок 2.41).

Рис 2.41. Сигналы порогового устройства.

На рисунке 2.41 верхний график: сиреневая диаграмма - верхний порог переключения, зеленая - нижний порог переключения, бирюзовая - сумма токов ключей. Второй сверху график: напряжения на выходе диодного переключателя, зеленая диаграмма - нижний порог, красная диаграмма верхний порог. Третий сверху график - сигнал направления переключения. Нижний график - сигнал разрешения переключения.

Как видно на рисунке 2.41, в момент когда нагрузка превышает возможности ШС, формируется сигнал разрешения подключения дополнительных секций. Когда нагрузка уменьшается, формируется сигнал на отключение секций.

На втором этапе отладки, в схему ШС добавляется блок коммутатора, но без схемы выборки и дифференциатора с пороговым устройством. Схема для моделирования приведена в приложении 2.6. Переходные процессы приведены на рисунках 2.42 - 2.44.

Рис. 2.42. Выходное напряжение и ток нагрузки.

Рис. 2.43. Сигнал суммы токов ШС, сигнал направления переключения и тактовый сигнал.

Рис. 2.44. Токи через 1 - 4 ключи коммутатора.

На рисунке 2.43 видно, что при срабатывании порогов, происходит формирование тактовых импульсов. Тактовые импульсы (в зависимости от уровня сигнала направления переключения), вызывают смену состояний выходов регистра и коммутацию соответствующих ключей (рисунок 2.44).

Третий этап - моделирование всей системы в целом. В схему добавляется второй канал управления коммутатором и схема выборки. На рисунке 2.45 приведен график выходного напряжения и тока нагрузки.

Рис. 2.45. Выходное напряжение модели СЭП.

Рис. 2.46. Сигнал на выходе схемы выборки, сигнал на выходе дифференциатора коммутатора и токи ключей коммутатора.

На рисунке 2.46 видно, что при превышении производной выходного напряжения установленных порогов происходит формирование двойных тактовых импульсов, и переключение коммутатора происходит не на одну позицию, а на две.

Выводы по главе

Моделирование принципиальной схемы завершено успешно, разработана последовательность отработки макета, определены параметры всех элементов и т.д.

2.5 Макетирование

Отладка макетной платы будет производится в той же последовательности, что и отладка модели, описанная в пункте (подразделе) 2.4.

Правильно собранная схема в настройки не нуждается, и начинает правильно работать после включения, необходимо подстроить напряжения смещения каналов, что бы они работали по очереди, и подобрать соотношение входных резисторов интегратора, что бы выходное напряжение было 6В. Для проверки схемы подключаем на выходную шину балластное нагрузочный переменный резистор 100Ом и балластный резистор 5Ом (что бы сопротивление нагрузки было не менее 5Ом).

2.5.1 Порядок сборки и наладки схемы

Во избежание порчи радиоэлектронных компонентов, сборка изделия осуществляется по функциональным узлам и последующей проверкой каждого узла в отдельности, совместно с другими блоками и всего изделия в целом (согласно принципам ОКР для спутника).

На первом этапе собирается блок имитаторов секций БС, в данном блоке контролируется напряжение холостого хода каждой секции и ток короткого замыкания. (напряжение холостого хода должно быть в пределах от 8.0В до 9.0В, ток короткого замыкания 180мА - 220мА).

На втором этапе на специально изготовленной печатной плате собираются 5 шунтовых стабилизаторов напряжения (без силовой части). После этого подаётся питание, на шину сигнала ошибки подаётся напряжения изменяющиеся от -Uп до +Uп и с помощью многоканального осциллографа (осциллографов) контролируются напряжения на выходах ОУ. Если напряжение ошибки больше 0, то напряжение на выходах ОУ должно быть меньше 0, при понижении входного напряжения и переходе его через 0 в отрицательную область напряжения на выходах ОУ должны стать больше 0, причем из за разных напряжений смещения выходные напряжения ОУ должны возрастать по очереди (от первого до пятого).

Далее монтируется силовая часть, к ней подключаются имитаторы БС и переменная нагрузка от 5Ом до 100ОМ. Выставив максимальное сопротивление нагрузки, контролируют изменение напряжения на нагрузки в зависимости от напряжения ошибки. Если логика работы схемы верная, то на плату монтируют интегратор и подают питание. Изменяя соотношение резисторов входного делителя интегратора добиваются того, что бы при минимальной нагрузки выходное напряжение было 6.0В. После настройки интегратора питание снимается, на плату монтируется дифференциатор и дополнительная нагрузка сопротивление которой должно изменяться скачком от бесконечности до 14Ом. На схему подается питание, а с помощью осциллографа контролируется устойчивая работа схемы (отсутствие автоколебаний напряжения шины 6В), при плавном изменении нагрузки и ступенчатом. При подключении нагрузки с сопротивлением менее 10Ом выходное напряжение должно понижаться, так как такая нагрузка выходит за пределы диапазона регулирования ШС.

На следующем этапе на плату монтируются: сумматор токов ключей, пороговое устройство, схема формирования сигналов управления коммутатором, ждущий генератор и формирователь опорных напряжений. Подается питание. Изменяя сопротивление нагрузки, осциллографом контролируется правильность формирования сигнала направления переключения (согласно схеме) и возникновение последовательности импульсов на выходе генератора.

Далее собираются: второй дифференциатор, пороговое устройство, одновибратор, формирователь парных импульсов и схема выборки. Подаётся питание, и при скачкообразном изменении нагрузки проверяется осциллографом сначала срабатывание на заданных порогах, потом формирование одиночных импульсов, затем парных импульсов и прохождение их на выход схемы выборки.

На этом плата ШС считается собранной и полностью работоспособной.

На четвёртом этапе собирается сдвиговый регистр с выходными инверторами, подаётся питание, и изменяя сопротивление нагрузки контролируются изменения выходных состояний инверторов, согласно величины нагрузки (логика работы описана в предыдущих разделах). Если схема работает правильно, то собирается силовая часть коммутатора, подключаются имитаторы БС. На схему подается питание и всё изделие проходит завершающий комплекс испытаний описанный далее.

2.5.2 Порядок проведения испытаний

1) Подключить к выходной шине нагрузку 100Ом и вольтметр. Подать питание ±12.0В. Напряжение на шине должно быть 6.0 ±0.1В. Отключить питание.

2) Подключить к выходной шине переменное сопротивление (диапазон изменения 100Ом до 6Ом). Подключить параллельно нагрузки измерительный канал осциллографа и вольтметр. Подать питание ±12.0В. Плавно изменяя нагрузку от минимума до максимума контролировать выходное напряжение по вольтметру (6.0 ±0.1В), и убедиться в отсутствии автоколебаний (по осциллографу) в схеме во всех режимах нагружения. Отключить питание.

3) Подключить к выходной шине переменное сопротивление (диапазон изменения 100Ом до 6Ом). Подключить параллельно нагрузки измерительный канал осциллографа, второй измерительный канал подключить к выходу сумматора токов ключей, а третий к опорному напряжению 200мВ (узел формирования опорных напряжений). К выходам инверторов подключить через балластные резисторы (1.2КОм) светодиоды (любой марки с током потребления не более 10мА). Подать питание на схему. Плавно изменяя нагрузку от минимума до максимума убедиться, что при понижения суммы токов ниже нижнего порога срабатывания, происходит подключении секции и один из светодиодов гаснет, а сумма токов ключей ШС возрастает. Отключить питание.

4) Подключить постоянную нагрузку 30Ом и нагрузку 26Ом через ключ. Подключить параллельно нагрузки измерительный канал осциллографа, переключить его в режим захвата по спаду. Так же необходимо подключить измерительные каналы к выходу сигнала направления переключения и тактового сигнала. Подать на схему питание. Замкнуть ключ, зафиксировать на осциллографе переходной процесс. При данной нагрузки должен формироваться один импульс переключения. Разомкнуть ключ, зафиксировать переходной процесс. В обоих случаях ПП должен быть апериодический, амплитуда не должно превышать 1В, длительность не более 200мкс. Снять питание.

5) Подключить постоянную нагрузку 30Ом и нагрузку 19Ом через ключ. Каналы осциллографа подключены как в предыдущем пункте. Замкнуть ключ, зафиксировать на экране осциллографа переходной процесс. В тактовом канале должны формироваться парные или тройные импульсы. Разомкнуть ключ зафиксировать переходной процесс для отчета. В обоих случаях ПП должен быть апериодический, амплитуда не должно превышать 1В, длительность не более 200мкс. Закоротить входной резистор дифференциатора (формирователя парных импульсов). Замкнуть ключ зафиксировать переходной процесс. Парные импульса не должны возникать, а длительность переходного процесса должна увеличиться в несколько раз по сравнению со случаем, когда дифференциатор работает. Отключить питание.

2.5.3 Результаты испытаний изделия

В первом испытании к шине 6В была подключена нагрузка 100Ом по показаниям вольтметра MY62 напряжение при этом равнялось 6.03В. При увеличении нагрузки напряжение снизилось, и при 5Ом составило 5.99В, при этом все 8 секций коммутатора были подключены к нагрузки, а ШС нагружен до предела (остался минимальный регулировочный ресурс одного канала) (приложение 3.1 и 3.2).

В приложении 3.2 видно, что с ростом нагрузки сумма токов ключей ШС уменьшается, и когда она доходит до нижнего порога происходит подключение дополнительной секции коммутатора, сумма токов ключей ШС при этом возрастает.

Светодиодные индикаторы, подключенные к выходам инверторов коммутатора, позволяют увидеть, без помощи осциллографа, как с ростом нагрузки подключаются, по очереди, секции коммутатора.

Во втором испытании к шине 6В была подключена постоянная нагрузка 30Ом, а дополнительная нагрузка 26Ом подключалась параллельно через ключ. При коммутации такой нагрузки не происходит формирование парных тактовых импульсов. Графики переходных процессов приведены в приложении 3.3. Длительность переходного процесса 40мкс, амплитуда ПП 1.0В. На графике видно, как по иссечению некоторого времени (определяемого периодом работы ждущего генератора), формируется импульс подключающий дополнительную секцию.

В следующем эксперименте сопротивление коммутируемой ключом нагрузки было уменьшено до 19Ом. Это привело к формированию двойных тактовых импульсов при коммутации (на графиках в приложении 3.4 это хорошо видно). Так же на графике видно, что формируется третий импульс переключения, он формируется ждущим генератором, так как условие переключения еще не снято. Длительность основного переходного процесса 200мкс, амплитуда 1.5В. Если отключить формирователь парных импульсов, то длительность ПП увеличивается примерно в 2 раза, при таком же набросе нагрузки (приложение 3.9 и 3.10).

В третьем испытании сопротивление нагрузки коммутируемой ключом было уменьшено до 9Ом. Сделано это было с целью увидеть, как отрабатывает переходные процессы коммутатор (приложение 3.5). Из-за того, что скважность импульсов ждущего генератора была выбрана около 20 (что бы не допустить возможной неустойчивой работы системы), то переходные процессы оказываются затянутыми, так как ШС не в состоянии самостоятельно скомпенсировать такую нагрузку. Длительность переходного процесса 2.8мс, амплитуда 2В, и в отличии от предыдущих случаев есть перерегулирование 0.5В длительностью 400мкс

Так же в процессе испытаний производился подбор коэффициента передачи интегратора и дифференциатора. С ростом коэффициента передачи дифференциатора длительность ПП уменьшается, но при большом коэффициенте система начинает работать неустойчиво. В данной схеме рациональный (с точки зрения длительности ПП) коэффициент передачи дифференциатора равен 2. Коэффициент передачи интегратора влияет на амплитуду переходного процесса. Его увеличением амплитуда ПП уменьшается, а скорость отработки увеличивается, однако при значении больше 12 амплитуда перестаёт уменьшаться, а переходной процесс становится колебательным. На основании этого коэффициент передачи интегратора в данной схеме был установлен 12.

Выводы по макетированию:

При моделировании амплитуда переходного процесса была 4В, а длительность 200мкс (рис 2.45). При макетировании амплитуда ПП 1В, длительность 100мкс (приложение 3.3). Испытания макета подтвердили работоспособность предложенной идеи. Алгоритмы заложенные на этапе теоретического проектирования оказались верными, а расчетные параметры элементов подходящими и для макета.

3. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

3.1 Описание производственного участка

Разработка и изготовление опытного образца регулятора будет выполняться в лаборатории. Разработка выполняется в два этапа: 1 этап - моделирование системы на ПК в специальном ПО; 2 этап - изготовление действующего макета и его испытание. Инженер - конструктор будет использовать два рабочих места, находящихся в одном помещении. Одно рабочее место оборудовано персональным компьютером, второе рабочее место оборудовано паяльной станцией (HAKKO 702B ), цифровым осциллографом (TDS3014B ), источником питания (Актаком ATH2031) и мультиметром (MASTECH MY62). Рабочее помещение (Рис 3.1) оборудовано кондиционером (KENTATSU) и рассчитано на работу 5 человек. Длинна помещения 9м, ширина 4м, высота 3.5м. В помещении есть одна входная дверь и одно окно, ориентированное на север.

Рис. 3.1. Схема производственного помещения.

1 - дверь; 2 - окно; 3 - шкафы, сейфы, кассы для хранения оборудования, комплектующих и ЭРИ; 4 - офисный стул; 5 - ЖК монитор; 6 - клавиатура и мышь ПК; 7 - системный блок ПК; 8 - офисный стол; 9 - лабораторное оборудование (осциллограф, паяльная станция, измерительные приборы, источники питания); 10 - настольная бестеневая лампа VKG L51 с увеличивающей линзой; 11 - кондиционер KENTATSU; 12 - специальный монтажный стол VIKING; 13 - телефон; 14 - принтер; 15 - лабораторное оборудование (стойки с измерительными приборами, источниками питания, АСК, БИН).

3.2 Анализ опасных и вредных производственных факторов

При работе с компьютером и измерительными приборами человек подвергается воздействию электромагнитных полей, инфракрасного и ионизирующего излучений, шума и вибрации, статического электричества, испытывает высокое зрительное и умственное напряжение.

В процессе пайки радиоэлементов оператору приходится работать с припоями и флюсами, кроме этого при нагревании платы могут выделяться вредные вещества, накопленные в ней в процессе изготовления. Пайка выполняется вручную, поэтому оператор может получить ожёг при соприкосновении с нагретыми частями оборудования и изделия. При электроиспытаниях оператор работает с мощными источниками электрической энергии и может получить поражение электрическим током.

В таблице 3.1 приведены опасные и вредные производственные факторы действующие на оператора.

Таблица 3.1. ОПАСНЫЕ И ВРЕДНЫЕ ПРОИЗВОДСТВЕННЫЕ ФАКТОРЫ

№ п/п

Опасные и вредные производственные факторы

Количественная оценка

факт

норма

1

Физические

1.1

повышенная или пониженная температура воздуха рабочей зоны

х.п.г.: 18-22°С

х.п.г.: 22 - 24°С

т.п.г.: 18 - 24°С

т.п.г.: 23 - 25°С

1.2

повышенный уровень шума на рабочем месте

-

50дБА

1.3

повышенная или пониженная влажность воздуха

60- 40%

60 - 40%

1.4

повышенная или пониженная подвижность воздуха

0 - 0,1 м/с

0,1 м/с

1.5

повышенная или пониженная ионизация воздуха

-

600< ро(-) ?15000

0,4?У?1,0

1.6

повышенный уровень ионизирующих излучений в рабочей зоне

-

1 мкЗв/час

(100 мкР/час)

1.7

повышенное значение напряжения в электрической цепи, замыкание которой может произойти через тело человека

220 В

50 Гц

1.8

повышенный уровень статического электричества

-

500В

1.9

повышенный уровень электромагнитных излучений

-

1.10

повышенная напряженность электрического поля

-

25 В/м

1.11

повышенная напряженность магнитного поля

-

250 нТл

1.12

отсутствие или недостаток естественного света

-

1,5%

1.13

недостаточная освещенность рабочей зоны

-

300 лк

1.14

повышенная яркость света

-

200 кд/м2

1.16

прямая и отраженная блесткость

1.17

повышенная пульсация светового потока

-

5%

2

Психофизиологические

2.1

физические перегрузки

2.1.1

статические

2.2

нервно-психические перегрузки

2.2.1

умственное перенапряжение

2.2.2

монотонность труда

Примечание: х.п.г. - холодный период года; т.п.г. - теплый период года; ро - концентрация аэроионов; У - коэффициент униполярности.

Параметры микроклимата (температура, относительная влажность и скорость движения воздуха) нормируются СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений». Работа инженера-конструктора относится к категории Iа (работы, производимые сидя и сопровождающиеся незначительным физическим напряжением). Оптимальные величины параметром определены по табл. 1 СанПиН 2.2.4.548-96

Предельно допустимые уровни шума на рабочих местах нормируется СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки». Категория тяжести трудового процесса - легкая физическая нагрузка. Категория напряженности трудового процесса - напряженный труд 2 степени.

Минимально и максимально допустимые значения нормируемых показателей аэроионного состава воздуха приведены в СанПиН 2.2.4.1294-03 «Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений»

Максимальная мощность экспозиционной дозы мягкого рентгеновского излучения в любой точке на расстоянии 0,05 м от экрана и при любых положениях установлена в СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы»

Временные допустимые уровни электромагнитных полей, создаваемых ПЭВМ, приведенный в табл. 3 Приложения 1 к СанПиН 2.2.2/2.4.1340-03.

Требования к освещению на рабочих местах, оборудованных ПЭВМ, приведены в СанПиН 2.2.2/2.4.1340-03 и СанПиН 2.2.2.542-96 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы».

3.3 Мероприятия по обеспечению безопасных условий труда

3.3.1 Техника безопасности

Электропитание ПК, лабораторных источников и измерительных приборов осуществляется переменным током частотой 50 Гц и напряжением 220 В, что превышает предельно допустимые значения напряжений прикосновения, указанных ГОСТ 12.1.038-82 (2001) «Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов».

Спроектируем способы и средства защиты людей, при взаимодействии их с электроустановками. Руководящий документ - ГОСТ 12.1.019-79 (2001) «Электробезопасность. Общие требования и номенклатура видов защиты».

В соответствии с ГОСТ 12.1.019-79 «Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты» предусматриваются технические средства защиты:

- применение устройства аварийного отключения;

- изоляция токопроводящих частей;

- защитное заземление и зануление оборудования (ГОСТ 12.1.030-81 2001г «Система стандартов безопасности труда. Электробезопасность. Защитное заземление. Зануление»).

Случайное прикосновение к токоведущим частям исключено, т.к. применена изоляция токоведущих частей, корпуса приборов заключены в защитную оболочку. Прикосновение к задней панели системного блока, источников питания и паяльной станции при включенном питании, самостоятельное вскрытие и ремонт оборудования ЗАПРЕЩАЕТСЯ, согласно инструкции по охране труда для пользователей и операторов ПЭВМ и ВДТ.

Производственное помещение относится к помещениям без повышенной опасности. Для обеспечения защиты от поражения электрическим током при прикосновении к металлическим нетоковедущим частям, которые могут оказаться под напряжением в результате повреждения изоляции, применим защитное заземление. Согласно Правилам устройства электроустановок, сопротивление защитного заземления, для электроустановок 380В с заземленной нейтралью, должно быть не более 4Ом (ГОСТ 12.1.030-81).

Расчет заземлителя:

Определим сопротивление одного заземлителя если удельное сопротивление грунта (глина) с = 70Ом·м, длинна заземлителя Lз = 4м, расстояние между заземлителями а = 3м.

(3.1)

Исходя из максимального сопротивления (r = 4Ом) определим начальное число заземлителей: . Число вертикальных заземлителей, с учетом коэффициента экранирования зтр=0.66, . Одиночные заземлители соединяются вместе металлической полосой, её длинна определяется по следующей формуле: . Определим сопротивление растеканию электрического тока через соединительную полосу:

. (3.2)

Определим результирующее сопротивление заземляющего устройства, коэффициент экранирования соединяющей полосы зп=0.36.

(3.3)

Получившееся сопротивление оказалось меньше максимального, следовательно защитное заземление рассчитано верно.

3.3.2 Защита от электромагнитного и ионизирующего излучения

На рабочем месте установлен монитор Samsung Sync Master B2230, класс по электромагнитному излучению B (бытовое информационно-коммуникационное оборудование), согласно информации производителя. Цифровой осциллограф TDS3014B по электромагнитному излучению соответствует классу А согласно EN55011. Примерные значения создаваемые ими приведены в таблице 3.2.

Таблица 3.2 - Допустимые значения параметров неионизирующих электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96)

Наименование параметра

Фактические параметры

Допустимые значения

Напряженность электрической составляющей электромагнитногополя на расстоянии 50см от поверхности видеомонитора

10,4В/м

10В/м

Напряженность магнитной составляющей электромагнитногополя на расстоянии 50см от поверхности видеомонитора

0,3А/м

0,3А/м

Напряженность электростатического поля не должна превышать:

для взрослых пользователей

для детей дошкольных учреждений и учащихся

средних специальных и высших учебных заведений

20,5 кВ/м

20кВ/м

15кВ/м

В таблице 3.2 видно, что параметры превышают допустимые нормы. Для снижения воздействия этих видов излучения используются специальные компьютерные очки, а также соблюдаются регламентированные режимы труда и отдыха.

Напряжённость электромагнитных полей на рабочих местах и в местах возможного нахождения персонала, связанного профессионально с воздействием ЭМП, нормирует СанПиН 2.2.2.542-96 «Гигиенические требования к видео дисплейным терминалам, персональным электронно-вычислительным машинам и организации труда».

Для защиты от воздействия ЭМП используются:

* экранирование системного блока, источников питания и измерительных приборов предусмотренное их конструкциями;

* удаление рабочего места от источника ЭМП не менее чем на 500мм;

* рациональное размещение оборудования, излучающего ЭМП, для того, чтобы не попадать под перекрёстное облучение.

Для защиты аппаратуры от разрядов статического электричества применяется защитное заземление корпусов приборов, общая шина макета при пайки соединяется с заземлением, а монтажник одевает специальный заземляющий браслет. В рабочих помещениях на пол нанесены антистатические покрытия.

3.3.3 Защита от шума

Для решения вопросов о необходимости и целесообразности снижения шума необходимо знать уровни шума на рабочем месте инженера-конструктора.

Уровень шума, возникающий от нескольких некогерентных источников, работающих одновременно, подсчитывается на основании принципа энергетического суммирования излучений отдельных источников (формула 3.4), значения уровней шума создаваемых используемыми в помещении приборами приведены в таблице 3.3.

Таблица 3.3 - Уровни звукового давления различных источников.

Источник шума

Уровень шума, дБ

Системный блок

25

Монитор

7

Клавиатура

10

Принтер

36

Кондиционер

36

Лабораторный источник питания

30

Цифровой осциллограф

25

Паяльная станция (в момент включения)

35

(3.4)

Полученное значение 40дБ не превышает допустимый уровень шума для рабочего места, равный 50 дБ согласно ГОСТ 12.1.003-89. «Система стандартов безопасности труда. Шум. Общие требования безопасности». Кроме того, не все приборы используются одновременно. Следовательно мероприятия по защите от шума проводить не нужно.

3.3.4 Освещение

Освещённость помещений нормируется в соответствии с СНиП 23-05-95 «Естественное и искусственное освещение. Нормы проектирования». Наиболее приемлемым является использование в помещении, где работают операторы ПК совмещённого освещения, которое представляет собой дополнение естественного освещения искусственным. На монтажных столах освещение комбинированное (установлены настольные светильники VKG L51 с увеличивающей линзой).

- система искусственного освещения - общая

- источники света - люминесцентные лампы

Расчёт искусственного освещения осуществляется методом коэффициента использования светового потока. Данный метод предназначен для расчёта общего освещения горизонтальных поверхностей при отсутствии крупных затеняющих предметов.

Наименьший или эквивалентный размер объекта различения-0,5-1 мм

Фон -светлый

Контраст объекта различения с фоном -большой

Согласно табл. 1 СНиП 23-05-95 получим:

Характеристика зрительной работы-средней точности

Разряд зрительной работы-IV

Подразряд зрительной работы-Г

Освещенность, Ен -200 лк

Для освещения помещения с размерами A=9 м, В=4 м и высотой H=3.5 м выберем потолочные светильники типа ARS/R 418W с четырьмя лампами L18W765 (n=4). Коэффициенты отражения светового потока от потолка и пола соответственно qПОТ=70%, qПОЛ=50%. Затенения рабочих мест нет. Определим необходимое число светильников при общем равномерном освещении.

Уровень рабочей поверхности над полом составляет 0,8 м. Тогда h=H-0,8=2,7 м. У светильников ARS/R наивыгоднейшее отношение L/h=0,5. Таким образом, расстояние между рядами L?1.35 м. Располагаем светильники вдоль длинной стороны помещения. Расстояние между стенами и крайними рядами светильников принимаем равным LKP = (0,3...0,5)L. При ширине В=4 м имеем число рядов светильников n=B/L=3. Определим индекс помещения

i = S/(h*(A+B))=36/(2.7·(9+4))?1

С учетом заданных qПОТ, qПОЛ при i=1 находим коэффициент использования з = 49%. Коэффициент запаса k = 1.5, коэффициент равномерности освещения z = 1.2.

Номинальный световой поток лампы L18W765 Фл=1150 лм.. Определяем необходимое число светильников в ряду:

(3.5)

На плане помещения светильники указаны пунктиром.

3.3.5 Оздоровление воздушной среды - микроклимат

Согласно СанПиН 2.2.2/2.4.1340-03 («Гигиенические требования к персональным электронно-вычислительным машинам и организации работы») предусматривается производственной площади Sпр на одно рабочее место пользователя ПК 6 м2, объёма производственного помещения V не менее 20 м3. Площадь данного производственного помещения равна Sпр=9·4=36 м2, объём помещения

V= 9 *4*3.5=126 м3, помещение рассчитано на работу 5 человек.

Исходя из размеров помещения на одного человека приходится Sпр = 7.2 м2 площади и V= 25.2м3 объёма, это соответствует требованиям СанПиН 2.2.2/2.4.1340-03.

Так как на рабочих местах производится пайка, то каждое их них необходимо оборудовать индивидуальной вытяжкой типа HAKKO 493.

Работа оператора ПК соответствует 1-ой категории работ, лёгкой. В соответствии с СанПиН 2.2.2/2.4.1340-03 в рабочей зоне рекомендуется нормировать температуру и относительную влажность, а также скорость движения воздуха соответственно с данными, предоставленными в таблице 3.4.

Таблица 3.4 - Нормирование параметров воздушной среды

Период года

Температура, t 0C

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

опт.

доп.

опт.

доп.

опт.

доп.

Холодный

22-24

21-24

40-60

75

0,1

0,1

Теплый

23-25

22-28

40-60

75

0,1

0,1-0,2

Для обеспечения нормируемых параметров микроклимата в холодный период года предусматривается центральное отопление, при этом колебание температуры в течение суток не должно превышать 40C в соответствии с СанПиН 2.2.2/2.4.1340-03. В летнее время года используются специально предназначенные для вентиляции открываемые части окон естественная вентиляция и кондиционер.

3.4 Пожарная безопасность

Участок ЭВМ по пожарной опасности относится к категории пожароопасных и характеризуется тем, что в помещении находятся несгораемые вещества и материалы в холодном состоянии. Согласно СНиП 21-01-97 “Пожарная безопасность зданий и сооружений”, пожар на производстве может возникнуть вследствие причин неэлектрического и электрического характера.

Для тушения пожара, а также для обеспечения безопасности работников на предприятии, предусмотрены определенные средства пожаротушения.

В рабочем помещении инженера-конструктора имеется средство тушения пожара - углекислотный огнетушитель ОУ_3, который применяется для эффективного тушения пожаров электроустановок, находящихся под напряжением.

Также в целях пожарной безопасности в помещении установлены датчики системы охранно-пожарной сигнализации. Датчик системы охранно-пожарной сигнализации предназначен для круглосуточного контроля охраняемого объекта, а в частности для раннего оповещения владельца об обнаружения признаков пожара или задымления.

ППБ 01-03 правила пожарной безопасности в российской федерации; СНиП 21-01-97; СП 1.13130.2009; СП 3.13130.2009; СП 5.13130.2009; СП 9.13130.2009;

3.5 Устойчивость работы в условиях чрезвычайных ситуаций

Во время чрезвычайной ситуации инженер-конструктор должен внимательно слушать средства массовой информации и подчиняться указаниям Министерства чрезвычайных ситуаций. При необходимости выключить все электроприборы из сети и покинуть рабочее помещение.

Вывод: рабочее место соответствует всем предъявляемым к нему требованиям и не представляет опасности для персонала.

4. ЭКОЛОГИЧНОСТЬ ПРОЕКТА

4.1 Влияние на окружающую среду

В современном мире большое внимание уделяется экологической безопасности. При работе любых устройств имеет место загрязнение окружающей среды. Устройства могут оказывать влияние на гидросферу и атмосферу, выделять тепло и различного рода излучения, а также в результате работы систем могут оставаться утилизируемые и неутилизируемые отходы. Разрабатывая проект проектировщик должен стараться использовать такие материалы и технологии, которые позволят уменьшить влияние на окружающую среду. Если это сделать невозможно, то он должен разработать способы снижающие влияние изделия на окружающую среду.

4.1.1 Загрязнение атмосферы и гидросферы

Загрязнением атмосферы является изменение её химического состава, либо соотношения входящих в её состав газов. При работе программы на персональном компьютере не происходит никаких химических реакций с образованием газов, следовательно, атмосфера не загрязняется. Также функционирование персонального компьютера не предусматривает использование воды, и сбросов в бытовую и промышленную канализацию не производится, следовательно, отсутствует загрязнение гидросферы.

При пайке под действием высокой температуры из платы и ЭРИ выделяются газообразные вещества (в основном пары свинца). Для расчета массы вредных веществ, образующихся при пайке необходимо знать количество припоя, расходуемого на операции пайки. Пайка осуществляется припоем ПОСК50-18. Состав: олово - 50 %; свинец - 32 %: кадмий - 18 %.

Остановимся на оценке воздействия свинца и олова, как наиболее ядовитых веществ. Масса припоя затраченного на пайку платы равна 100г.

Исходя из полной загруженности монтажник за 1 час может затратить в среднем 4,6 г припоя. Часовая концентрация свинца и олова находится по формуле:

М= N* Мпр,

где N - процентное содержание вредного вещества

Мол=0,5*4,6=2,3 г

Мсв=0,32*4,6=1,5 г

В процессе пайки в воздухе рабочей зоны за 1 час работы выделяется от 0,02 до 0,04% массы каждого компонента. Отсюда имеем:

mОЛ=0,0004*2,3=0,92 мг

mСВ=0,0004*1,5=0,6 мг

Рабочее место монтажника организовано в виде монтажного стола. Исходя из этого находим объем рабочей зоны, а именно ширина - 1,5 м; глубина - 1 м; высота, определяющаяся высотой потолка помещения - 3.5 м. Объем рабочей зоны равен: V=1*1,5* 3.5=5.25м3.

Проверим фактическую концентрацию вредных веществ в рабочей зоне:

Кол=0,92/5.25=0,17 мг/м3

Ксв=0,6/5.25=0,11 мг/м3

ПДК свинца согласно ГОСТ 12.1.007-88 составляет 0,01 мг/м3, поэтому необходимо предусмотреть меры по снижению его концентрации. Для этого на рабочем месте используется вытяжка HAKKO 493 с угольным фильтром, который адсорбирует вредные вещества.

4.1.2 Воздействие излучения на окружающую среду

Основными опасными факторами, оказывающими влияние на окружающую среду, являются излучения, связанные с функционированием аппаратных модулей работающего компьютера. В основном это электромагнитное излучение и статическое электричество.

Статическое электричество, накапливаемое на корпусе компьютера, устраняется заземлением корпуса, при этом вреда окружающей среде не наносится.

Спектр и мощность излучения ЖК монитора соответствует классу B (бытовое информационно-коммуникационное оборудование). Для рабочего места оператора согласно требованиям и нормам СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» значения параметров электромагнитных излучений (ЭМИ) не должны превышать:


Подобные документы

  • Рассмотрение особенностей солнечных элементов и выбор типа солнечной панели. Анализ типовых схемотехнических и конструкторских решений контроллеров заряда аккумуляторной батареи. Разработка структурной и электрической схемы, конструкции устройства.

    дипломная работа [4,7 M], добавлен 10.10.2015

  • Схема солнечной фотоэлектрической установки. Выбор электродвигателя и определение передаточных функций. Моделирование системы автоматического управления средствами MATLAB. Подбор микроконтроллера, драйвера двигателя и датчика уровня освещенности.

    курсовая работа [7,0 M], добавлен 11.08.2012

  • Расчет дискретного регулятора, обеспечивающего максимальную скорость переходного процесса. Формирование интегрального квадратичного критерия. Синтез компенсатора, непрерывного и дискретного регулятора, компенсатора, оптимального закона управления.

    курсовая работа [863,9 K], добавлен 19.12.2010

  • Разработка структурной схемы регулятора напряжения для бортовой сети автомобиля. Расчет генератора прямоугольных импульсов, компаратора напряжения, датчика температуры, выходного каскада. Технологический маршрут изготовления монокристального регулятора.

    дипломная работа [735,8 K], добавлен 29.09.2010

  • Работа регулятора линейного типа, автоматического регулятора, исполнительного механизма, усилителя мощности, нормирующего преобразователя. Составление алгоритмической структурной схемы системы автоматического управления. Критерий устойчивости Гурвица.

    контрольная работа [262,6 K], добавлен 14.10.2012

  • Тенденции развития радиопередающих устройств. Разработка электрической принципиальной схемы регулятора мощности. Выбор и обоснование конструкции изделия. Расчёт печатного монтажа и стабилизатора. Формирование конструкторского кода обозначения изделия.

    курсовая работа [705,1 K], добавлен 29.05.2013

  • Расчёт и проверка структуры и параметров дискретного регулятора и дискретного компенсатора. Аналитическое конструирование регулятора с выбором его структуры и параметров. Формирование интегрального квадратического критерия и выбор весовых коэффициентов.

    курсовая работа [195,3 K], добавлен 11.02.2012

  • Расчет емкости аккумуляторных батарей. Буферная система электропитания с ВДК. Минимально допустимый уровень напряжения при разряде аккумуляторной батареи с учетом минимального уровня напряжения на одном элементе. Определение коэффициента отдачи батареи.

    контрольная работа [142,3 K], добавлен 04.04.2013

  • Синтез пропорционально-интегрально-дифференциального регулятора, обеспечивающего для замкнутой системы показатели точности и качества управления. Амплитудно-частотная характеристика, динамический анализ и переходный процесс скорректированной системы.

    курсовая работа [658,0 K], добавлен 06.08.2013

  • Алгоритм расчета фильтра во временной и частотной областях при помощи быстрого дискретного преобразования Фурье (БПФ) и обратного быстрого преобразования Фурье (ОБПФ). Расчет выходного сигнала и мощности собственных шумов синтезируемого фильтра.

    курсовая работа [679,2 K], добавлен 26.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.