Уравнения равновесия

Аналитическое исследование сетей массового обслуживания с помощью стационарного (инвариантного) распределения вероятностей состояний, его зависимость от вида функций распределения времени обслуживания. Постановка задачи, составление уравнения уравновесия.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 18.09.2009
Размер файла 165,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования РБ

Учреждение образования

« Гомельский Государственный

университет имени Ф. Скорины »

Математический факультет

Кафедра дифференциальных уравнений

Курсовая работа

«Уравнения равновесия»

Исполнитель:

Студентка группы М-41 ____________ Поляк Е. М.

Научный руководитель:

Кандидат физико-математических наук

____________ Вересович П.П.

Гомель 2006

Содержание

  • Введение 3
    • Постановка задачи 4
    • Уравнения равновесия 5
    • Решение уравнений равновесия 12
    • Заключение 16
    • Список использованной литературы 17

Введение

Актуальным направлением научно-технического прогресса является развитие и широкое использование возможностей современных высокопроизводительных компьютеров, сетей мультипрограммных ЭВМ и на этой основе - применение математических методов моделирования в научных исследованиях. Развитие вычислительной техники в Республике Беларусь приводит к необходимости создания систем и сетей ЭВМ, эффективно обслуживающих запросы различных пользователей. Благодоря задачам, связанным с математическим моделированием мультипрограммных вычислительных систем и анализом их производительности, с проектированием и анализом сетей передачи данных и сетей ЭВМ теория сетей массового обслуживания (СМО) является сравнительно новым и быстро развивающимся разделом теории массового обслуживания.

Исходным материалом для аналитического исследования СМО является стационарное (инвариантное) распределение вероятностей состояний. Ввиду сложности и многомерности случайных процессов, описывающих функционирование таких сетей, большинство аналитических результатов связано с получением стационарного распределения в форме произведения множителей, характеризующих стационарное распределение отдельных узлов сети.

Актуальным вопросом, связанным с исследованием СМО является доказательство инвариатности стационарного распределения таких сетей относительно функционального вида распределений длительности обслуживания в узлах, позволяющее при проектировании и эксплуатации реальных сетей, считать, что обслуживание в узлах имеет наиболее простое для анализа распределение - экспоненциальное.

Постановка задачи

Сеть состоит из двух приборов, на каждый из которых поступает простейший поток с параметрами и соответственно. В случае, если прибор занят, заявка, поступающая на него выбивает заявку находящуюся на приборе, и та становится в очередь на дообслуживание. После обслуживания на I приборе заявка с вероятностью уходит из сети, а с вероятностью поступает на II прибор. Аналогично, после обслуживания на II приборе заявка с вероятностью уходит из сети, а с вероятностью поступает на I прибор.

Пусть - число заявок в очереди на I приборе, - число заявок в очереди на II приборе, - функция распределения времени обслуживания -ой заявки на I приборе, - функция распределения времени обслуживания -ой заявки на II приборе. Предполагается, что

=

=

Требуется доказать, что стационарное распределение не зависит от вида функций распределения времени обслуживания . При этом можно считать, что

,

где

, ,

т.е. когда - экспоненциальны.

Уравнения равновесия

Введем случайный процесс

,

где - число заявок в очереди на I приборе в момент времени , - число заявок в очереди на II приборе в момент времени , -время, которое еще будет дообслуживаться заявка с момента , стоящая i-ой в очереди I прибора, -время, которое еще будет дообслуживаться заявка с момента , стоящая j-ой в очереди II прибора.

Пусть существует стационарное эргодическое распределение процесса и процесса , т.к. процесс - это процесс , дополненный непрерывными компонентами до того, чтобы быть марковским.

Изучим поведение процесса в устойчивом режиме. Пусть

Введем в рассмотрение событие А, состоящее в том, что

а) Предположим, что за время от до не было поступления требований. Тому, чтобы не изменило за время своего значения и при этом выполнилось событие А, отвечает выражение:

б) Тому, что за время от до на 1-ом приборе обслужена заявка и ушла из сети, отвечает слагаемое:

Тому, что за время от до на 2-ом приборе обслужена заявка и ушла из сети, отвечает слагаемое:

в) Тому, что за время от до на 1-ый прибор поступила заявка. Количество времени на дообслуживание этой заявки должно быть не больше, чем , где - определяется моментом поступления заявки внутри интервала . Этому случаю отвечает слагаемое:

Тому, что за время от до на 2-ой прибор поступила заявка. Количество времени на дообслуживание этой заявки должно быть не больше, чем , где - определяется моментом поступления заявки внутри интервала . Этому случаю отвечает слагаемое:

г) Если в интервале заявка окончила свое обслуживание на I приборе и перешла на II, то время на ее дообслуживание II прибором должно быть не больше, чем , где - определяется моментом поступления заявки внутри интервала .

Если в интервале заявка окончила свое обслуживание на II приборе и перешла на I, то время на ее дообслуживание I прибором должно быть не больше, чем , где - определяется моментом поступления заявки внутри интервала .

Наконец, остальные случаи, благодаря событию А сводятся к тому, что за время либо поступало, либо обслужено более одной заявки, или заявки поступали и обслуживались. Для простейшего входящего потока вероятность поступления двух и более заявок за время есть . Если же мы будем рассматривать слагаемые, соответствующие возможности окончания обслуживания в сочетании с поступлением заявок, то, очевидно, что эти слагаемые есть . Таким образом, приходим к следующим соотношениям:

Вводя обозначение

и учитывая, что

,

последнее соотношение перепишется в виде

Рассматривая все слагаемые в последнем соотношении как сложные функции от , разлагаем их в ряд Тейлора в окрестности 0 с остаточным членом в форме Пеано:

.

После чего приводим подобные слагаемые и устремляем к . Тогда вводя обозначение

и учитывая, что

,

,

,

получаем, что свободные члены сократились, а слагаемые, содержащие своим сомножителем образуют уравнениям равновесия.

Таким образом, приходим к уравнениям равновесия:

.

Решение уравнений равновесия

Покажем, что удовлетворяет нашим уравнениям равновесия, где - решение для случая, когда и - экспоненциальны, т.е.

,

.

Для этого распишем все частные производные функции .

.

С учетом вида функции уравнения равновесия перепишутся в виде

.

Подставив в это уравнение и, учитывая, что

приходим к выводу, что функция

.

есть неотрицательное, абсолютно-непрерывное решение исходных уравнений равновесия.

Отсюда следует, что стационарное распределение не зависит от вида функций распределения времени обслуживания и , поскольку , при этом можно считать, что

,

где

, ,

т.е. когда и - экспоненциальны.

Заключение

Таким образом, для рассматриваемой сети массового обслуживания установлена инвариантность стационарного распределения относительно функционального вида распределений длительности обслуживания в узлах, т.е. установили, что стационарное распределение не зависит от вида функций распределения времени обслуживания и , если известно, что для них выполняется следующие ограничения:

=

=

При этом, можно считать, что функции распределения времени обслуживания и имеют экспоненциальный вид.

Список использованной литературы

1. Буриков А.Д., Малинковский Ю.В., Маталыцкий М.А.//Теория массового обслуживания: Учебное пособие по спецкурсу.-Гродно: 1984г.-108с.

2. Гнеденко Б.В., Коваленко И.Н. // Введение в теорию массового обслуживания.-Москва: Наука. 1966г.-432с.


Подобные документы

  • Характеристика замкнутых сетей массового обслуживания с экспоненциальным обслуживанием в узлах и марковской маршрутизацией. Примеры замкнутых сетей с переключением режимов. Условия мультипликативности стационарного распределения состояний замкнутой сети.

    курсовая работа [199,4 K], добавлен 21.02.2010

  • Цепь Маркова и Марковские процессы. Сеть массового обслуживания. Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями обслуживания. Анализ изолированного узла. Стационарное распределение сети. Обслуживание заявок.

    курсовая работа [200,1 K], добавлен 08.01.2014

  • Многоканальная система с отказами, содержащая n каналов, каждый из которых обслуживает только одну заявку. Потоки событий, обладающие свойствами: стационарность, отсутствие последействия, ординарность. Уравнения Колмогорова для вероятностей состояний.

    курсовая работа [849,0 K], добавлен 07.08.2017

  • Устройство и принцип действия открытых систем сети массового обслуживания с простейшим входящим потоком. Понятие квазиобратимости. Сети с переключением режимов при определенном количестве заявок в узле. Примеры открытых сетей с переключением режимов.

    курсовая работа [286,6 K], добавлен 21.02.2010

  • Анализ различных дисциплин обслуживания. Модель расчета среднего времени ожидания, среднего времени пребывания в системе. Определение законов распределения времени ожидания. Взаимодействие между приоритетными функциями. Оптимизация назначения приоритетов.

    реферат [1,2 M], добавлен 21.11.2008

  • Системы цифровой радиосвязи: базовые методы и характеристики. Классификация систем массового обслуживания. Модели систем массового обслуживания. Математическое введение в теорию цепей Маркова. Системы и сети передачи информации. Стационарный режим.

    реферат [176,8 K], добавлен 22.11.2008

  • Теория массового обслуживания. Нахождение коэффициента использования сервера. Экспоненциальный закон распределения времени между соседними вызовами. Вероятность отказа в обслуживании. Среднее время ожидания и пребывания в системе. Расчет объема буфера.

    контрольная работа [775,6 K], добавлен 13.02.2015

  • Формировании оценки скрытности случайного события. Разбиение множества с соответствующим законом распределения вероятностей на два подмножества. Разработка оптимального дихотомического алгоритма поиска. Экспоненциальный закон распределения вероятностей.

    курсовая работа [134,1 K], добавлен 21.02.2009

  • Вероятностные характеристики случайных сигналов. Измерение среднего значения средней мощности и дисперсии. Анализ распределения вероятностей. Корреляционные функции. Метод дискретных выборок. Анализ распределения вероятностей методом дискретных выборок.

    реферат [74,7 K], добавлен 23.01.2009

  • Разработка стандартов для взаимодействия при передаче голосовых сигналов и доведение их до приемлемой функциональной совместимости. Три подхода к передаче голоса: ATM, FrameRelay и по ІР-сетям. Расчет времени доставки пакета для каждого вида информации.

    курсовая работа [565,2 K], добавлен 07.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.