Разработка передающего оптоэлектронного модуля для интегрирования волоконно-оптического сегмента в существующую сеть предприятия
Изучение технологий волоконно-оптической линии связи и ее компонентов, связанных с передачей информации. Оценка передающих оптоэлектронных модулей. Моделирование работы устройства после повышения характеристик, для интегрирования в сеть предприятия.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 21.06.2015 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство связи
Федеральное государственное образовательное бюджетное учреждение
высшего профессионального образования
Московский технический университет связи и информатики
Выпускная квалификационная работа бакалавра
Разработка передающего оптоэлектронного модуля для интегрирования волоконно-оптического сегмента в существующую сеть предприятия
Студентка:
Позднякова Дарья Игоревна
Руководитель:
Локтев Алексей Алексеевич
Москва 2015 г.
Аннотация
В дипломной работе подробно рассматриваются современные технологии волоконно-оптической линии связи и всех ее компонентов, связанных с передачей информации, осуществляется их сравнительный анализ. Особое внимание уделяется передающим оптоэлектронным модулям российского и зарубежного производства, так же проводится сравнение ведущих производителей, на основании которого выявляются достоинства и недостатки данных устройств. Как отдельная глава упоминаются недостатки и перспективы развития технологий волоконно-оптических линий связи в современном обществе.
В работе была поставлена задача исследовать технологии современных волоконно-оптических линий связи, сравнить имеющиеся на рынке передающие оптоэлектронные модули, смоделировать работу устройства после повышения характеристик, для интегрирования в уже существующую сеть предприятия, с целью расширения диапазона значений основных параметров, существующих на данный период рассмотрения.
Разработанный передающий модуль тестируется на примере корпоративной системы передачи данных на 36 пользователей, для обслуживания которых были задействованы локальные серверы, которые в свою очередь объединяют 6 рабочих станций.
Оглавление
Введение
1. Современные технологии ВОЛС, их сравнительный анализ
1.1 Особенности оптических систем связи
1.1.1 Физические особенности
1.1.2 Технические особенности
1.2 Оптическое волокно
1.3 Волоконно-оптический кабель
1.4 Оптические коннекторы (соединители)
1.5 Электронные компоненты систем оптической связи
2. Передающий оптоэлектронный модуль
2.1 Основные компоненты и принципы функционирования
2.2 Типы и характеристики источников излучения
2.2.1 Светоизлучающие диоды
2.2.2 Лазерные диоды
2.3 Другие характеристики
2.4 Деградация и время наработки на отказ
2.5 Основные элементы ПОМ
2.6 Волоконные световоды
2.7 Аналоги ведущих производителей
3. Моделирование работы устройства. Методы повышения характеристик
3.1 Принципиальная схема. Описание и моделирование
3.2 Расчёт мощности излучения передатчика и выбор типа излучателя
3.3 Расчёт выходного каскада
3.4 Расчет согласующего усилителя
3.5 Расчет устройства автоматической регулировки уровня оптического сигнала
3.6 Расчёт схемы термостабилизации
3.7 Расчёт источника питания одноволоконной оптической системы передачи
3.8 Выбор стабилизаторов напряжения
3.9 Расчёт диодных выпрямителей
3.10 Расчет трансформатора
3.11 Расчёт ёмкостей в схеме оптического передающего устройства
3.11.1 Расчёт эмиттерной ёмкости
3.11.2 Расчёт разделительной ёмкости
3.11.3 Расчёт ёмкостей фильтров
3.12 Номиналы элементов схемы
4. Компоновка устройства в виде отдельного блока
4.1 Размещение элементов и разработка топологии печатной платы
5. Использование устройств в волоконно-оптической корпоративной системе передачи данных
6. Расчет технико-экономических показателей передающего оптоэлектронного модуля
6.1 Выбор наилучшего элемента излучения для передающего оптоэлектронного модуля волоконно-оптической системы передачи данных методом анализа иерархий
6.2 Этапы определения приоритетов
6.3 Расчет надёжности передающего оптоэлектронного модуля
Заключение
Список использованных источников
Введение
История развития средств передачи информации является неотъемлемой частью истории развития общества, причём потребности в обмене информацией всегда превышали существующие технические возможности их удовлетворения. На протяжении всего предыдущего столетия связисты стремились повысить скорость передачи информации. Потребность в большем количестве передаваемой информации стала причиной перехода от телеграфа вначале к телефону, а затем - к радио. После этого встала задача передачи на более высоких частотах. Амплитудное модулирование позволяло передавать тысячи герц, частотное модулирование - миллионы, с развитием телевидения был освоен диапазон частот в сотни миллионов герц. Наконец в 60-х годах началось освоение микроволнового диапазона (диапазона СВЧ), характеризующегося частотой в миллиарды герц. Именно в это время ведущим поставщикам телекоммуникационных услуг стало ясно, что технология высокочастотной радиосвязи, основанная на использовании медных кабелей, устаревает и не может справиться с бурным ростом потока информации. Возникла потребность в новом виде кабеля, способного передавать больше информации при меньшем объёме самого носителя информации. У световых волн частота в 100 тысяч раз больше, чем у микроволн - впечатляющая разница! Но в то время никто еще не знал, как обуздать свет.
В 1960 году был изобретен лазер - идеальный источник света для оптической связи. Теперь ученым оставалось сделать специальные световоды для передачи оптических сигналов по кабелю. В это время в компании Corning, и начали активные исследования по созданию оптического волокна с низкими потерями. Успех пришёл в 1970-х годах, когда было создано волокно с затуханием в 16 децибел. Именно этот год считается годом начала новой информационной эпохи - эры волоконно-оптической связи.
Развитие волоконно-оптических сетей связи характеризуется очень быстрым увеличением скорости передачи информации. Скорость передачи, достигнутая экспериментально в лабораторных условиях, и скорость передачи высоконадежных коммерческих сетей растут экспоненциально, удваиваются примерно каждые 2 года. Эта тенденция обеспечивается как неуклонным ростом скорости передачи информации по одному каналу, так и ростом числа одновременно передаваемых по одному волокну каналов в системах со спектральным разделением каналов. К середине 1990-х г.г. в нескольких национальных сетях были введены в эксплуатацию системы со скоростью передачи 2.5 Гб/с.
В настоящее время широко используются системы со скоростью передачи 10 Гб/с на один канал, внедряются системы со скоростью 40 Гб/с на один канал, ведутся работы по внедрению коммерческих систем со скоростью 160 Гб/с на один канал. В лабораторных экспериментах достигнуты скорости передачи информации 640 Гб/с и более на один спектральный канал.
Большинство современных ВОЛС работает в третьем окне прозрачности (диапазон длин волн примерно 1530ч1560 нм), совпадающем с полосой усиления эрбиевых усилителей и с минимумом поглощения кварцевого волокна. Значительная часть одномодового волокна, используемого во всем мире, это так называемое обычное или стандартное волокно, длина волны нулевой хроматической дисперсии которого примерно 1300 нм. Такое волокно обладает значительной дисперсией (17 пс/км/нм) в третьем окне прозрачности. Большая величина хроматической дисперсии стандартного волокна вызывает значительные искажения световых сигналов и существенно ограничивает дальность действия систем передачи информации со скоростями более 1 Гбит/с. Так, при использовании узкополосного источника излучения с внешней модуляцией, дисперсионное ограничение дальности при скорости передачи 2,5 Гбит/с примерно равно 1000 км, а при увеличении скорости передачи информации до 10 Гбит/с дальность сокращается до 61 км.
Для ослабления влияния хроматической дисперсии разработаны специальные виды оптического волокна, обладающего малой величиной дисперсии. Некоторое время назад было создано волокно (DSF), обладающее нулевой дисперсией на длине волны в третьем окне прозрачности (~1550 нм). Однако вскоре выяснилось, что это волокно, получившее название волокна со смещенной дисперсией, не пригодно для работы в системах со спектральным разделением каналов из-за их сильного нелинейного взаимодействия, обусловленного эффектом четырехволнового смешения а также эффектами фазовой само- и кроссмодуляции. Поскольку наличия в волокне хроматической дисперсии величиной порядка нескольких пс/нм/км достаточно для эффективного подавления эффектов кроссмодуляции и четырехволнового смешения, позднее было разработано волокно (NZDSF), обладающее малой, но ненулевой хроматической дисперсией в рабочем диапазоне длин волн.
Мир вступил в третье тысячелетие, характеризующееся, с одной стороны, непрерывно растущими потребностями мирового сообщества в обмене информацией, а с другой - технической возможностью практически полностью их удовлетворить. Переход на оптические системы связи позволяет получить выдающиеся результаты в увеличении скорости передачи информации и в настоящее время происходит повсеместно. В наиболее развитых европейских странах (Швеция, Финляндия) реализуется программа "волокно в каждый дом".
Масштабы развития волоконно-оптической связи действительно поразительны. Мировое производство волоконных световодов в настоящее время составляет 60 млн. км/год, то есть каждую минуту в системах связи прокладываются более 100 км волоконных световодов. Все материки связаны между собой подводными волоконно-оптическими кабелями связи, общая длина которых достаточна, чтобы обмотать земной шар шесть раз.
Конструкция волоконно-оптического кабеля должна предусматривать защиту волокна от различных повреждений. Это значит, что при проектировании кабеля волоконный световод должен размещаться так, чтобы на него, насколько это возможно, не оказывали воздействия вышеперечисленные факторы. При этом такая конструкция должна быть пригодна для практического использования. Проведенные многочисленные исследования привели к разработке специализированных конструкций кабелей, которые используются в зависимости от различных видов применения. Ниже перечисляются стандартные виды оптических кабелей связи, отличающиеся друг от друга областью применения и способом прокладки.
Таблица 1.1
1. Кабель внутриобъектовой прокладки; |
|
2. Кабель для прокладки в канализации, в т.ч. в пластмассовом трубопроводе; |
|
3. Кабель для воздушной подвески, в т.ч. используемый в качестве провода или троса воздушной ЛЭП; |
|
4. Кабель для прокладки в грунт, как в открытую траншею, так и бестраншейным способом |
|
5. Подводный кабель, в т.ч. морской глубоководный кабель |
1. Современные технологии ВОЛС, их сравнительный анализ
1.1 Особенности оптических систем связи
Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно".
Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.
1.1.1 Физические особенности
· Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка бит/с или терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптическо,го канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
· Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
1.1.2 Технические особенности
· Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
· Оптические волокна имеют диаметр около 100 мкм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
· Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
· Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.
1. Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.
2. При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.
3. Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как
1:2N,
где N - количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.
· Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.
· Есть в волоконной технологии и свои недостатки:
· При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
· Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.
· Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.
Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.
1.2 Оптическое волокно
Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство компонентов ВОЛС, в первую очередь оптического волокна, отличает высокая степень концентрации. Большинство предприятий сосредоточено в США. Обладая главными патентами, американские фирмы (в первую очередь это относится к фирме "CORNING") оказывают влияние на производство и рынок компонентов ВОЛС во всем мире, благодаря заключению лицензионных соглашений с другими фирмами и созданию совместных предприятий.
Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое.
Свое название волокна получили от способа распространения излучения в них. Волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2.
Рис. 2.2.1. Оптические волокна: а). одномодовое волокно; б). многомодовое волокно
В одномодовом волокне диаметр световодной жилы порядка 8-10 мкм, то есть сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода).
В многомодовом волокне размер световодной жилы порядка 50-60 мкм, что делает возможным распространение большого числа лучей (много мод).
Оба типа волокна характеризуются двумя важнейшими параметрами: затуханием и дисперсией.
Затухание обычно измеряется в дБ/км и определяется потерями на поглощение и на рассеяние излучения в оптическом волокне.
Потери на поглощение зависят от чистоты материала, потери на рассеяние зависят от неоднородностей показателя преломления материала.
Рис. 2.2.2. Диапазоны передачи по волокну
Затухание зависит от длины волны излучения, вводимого в волокно. В настоящее время передачу сигналов по волокну осуществляют в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность.
Другой важнейший параметр оптического волокна - дисперсия. Дисперсия - это рассеяние во времени спектральных и модовых составляющих оптического сигнала. Существуют три типа дисперсии: модовая, материальная и волноводная.
Модовая дисперсия присуща многомодовому волокну и обусловлена наличием большого числа мод, время распространения которых различно
Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны
Волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью скорости распространения моды от длины волны.
Поскольку светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространению по волокну и тем самым порождает искажения сигналов. При оценке пользуются термином "полоса пропускания" - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км. Измеряется полоса пропускания в . Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.
Если при распространении света по многомодовому волокну как правило преобладает модовая дисперсия, то одномодовому волокну присущи только два последних типа дисперсии. На длине волны 1.3 мкм материальная и волноводная дисперсии в одномодовом волокне компенсируют друг друга, что обеспечивает наивысшую пропускную способность.
Затухание и дисперсия у разных типов оптических волокон различны. Одномодовые волокна обладают лучшими характеристиками по затуханию и по полосе пропускания, так как в них распространяется только один луч. Однако, одномодовые источники излучения в несколько раз дороже многомодовых. В одномодовое волокно труднее ввести излучение из-за малых размеров световодной жилы, по этой же причине одномодовые волокна сложно сращивать с малыми потерями. Оконцевание одномодовых кабелей оптическими разъемами также обходится дороже.
Многомодовые волокна более удобны при монтаже, так как в них размер световодной жилы в несколько раз больше, чем в одномодовых волокнах. Многомодовый кабель проще оконцевать оптическими разъемами с малыми потерями (до 0.3 dB) в стыке. На многомодовое волокно расчитаны излучатели на длину волны 0.85 мкм - самые доступные и дешевые излучатели, выпускаемые в очень широком ассортименте. Но затухание на этой длине волны у многомодовых волокон находится в пределах 3-4 dB/км и не может быть существенно улучшено. Полоса пропускания у многомодовых волокон достигает 800 , что приемлемо для локальных сетей связи, но не достаточно для магистральных линий.
1.3 Волоконно-оптический кабель
Вторым важнейшим компонентом, определяющим надежность и долговечность ВОЛС, является волоконно-оптический кабель (ВОК). На сегодня в мире несколько десятков фирм, производящих оптические кабели различного назначения. Наиболее известные из них: AT&T, General Cable Company (США); Siecor (ФРГ); BICC Cable (Великобритания); Les cables de Lion (Франция); Nokia (Финляндия); NTT, Sumitomo (Япония), Pirelli(Италия).
Определяющими параметрами при производстве ВОК являются условия эксплуатации и пропускная способность линии связи.
По условиям эксплуатации кабели подразделяют на:
· монтажные
· станционные
· зоновые
· магистральные
Первые два типа кабелей предназначены для прокладки внутри зданий и сооружений. Они компактны, легки и, как правило, имеют небольшую строительную длину.
Кабели последних двух типов предназначены для прокладки в колодцах кабельных коммуникаций, в грунте, на опорах вдоль ЛЭП, под водой. Эти кабели имеют защиту от внешних воздействий и строительную длину более двух километров.
Для обеспечения большой пропускной способности линии связи производятся ВОК, содержащие небольшое число (до 8) одномодовых волокон с малым затуханием, а кабели для распределительных сетей могут содержать до 144 волокон как одномодовых, так и многомодовых, в зависимости от расстояний между сегментами сети.
При изготовлении ВОК в основном используются два подхода:
· конструкции со свободным перемещением элементов
· конструкции с жесткой связью между элементами
По видам конструкций различают кабели повивной скрутки, пучковой скрутки, кабели с профильным сердечником, а также ленточные кабели. Существуют многочисленные комбинации конструкций ВОК, которые в сочетании большим ассортиментом применяемых материалов позволяют выбрать исполнение кабеля, наилучшим образом удовлетворяющее всем условиям проекта, в том числе - стоимостным.
Особый класс образуют кабели, встроенные в грозотрос.
Отдельно рассмотрим способы сращивания строительных длин кабелей.
Сращивание строительных длин оптических кабелей производится с использованием кабельных муфт специальной конструкции. Эти муфты имеют два или более кабельных ввода, приспособления для крепления силовых элементов кабелей и одну или несколько сплайс-пластин. Сплайс-пластина - это конструкция для укладки и закрепления сращиваемых волокон разных кабелей.
1.4 Оптические коннекторы (соединители)
После того, как оптический кабель проложен, необходимо соединить его с приемо-передающей аппаратурой. Сделать это можно с помощью оптических коннекторов (соединителей). В системах связи используются коннекторы многих видов. Рассмотрим лишь основные виды, получившие наибольшее распространение в мире. Внешний вид разъемов показан на рисунке 2.4.1.
Рис. 2.4.1. Виды оптических коннекторов (соединителей)
Характеристики коннекторов представлены в таблице 2.4.1. Когда говорим, что данные виды коннекторов имеют наибольшее распространение, то это означает, что большинство приборов ВОЛС имеют розетки (адаптеры) под один из перечисленных видов коннекторов. Хотелось бы сказать несколько слов о последнем разделе таблицы 2.4.1. В нем упомянут новый тип фиксации: "Push-Pull".
Таблица 2.4.1
Фиксация "Push-Pull" обеспечивает подключение коннектора к розетке наиболее простым образом - на защелке. Защелка-фиксатор обеспечивает надежное соединение, при этом не нужно вращать накидную гайку. Важное преимущество разъемов с фиксацией Push-Pull - это высокая плотность монтажа оптических соединителей на распределительных и кроссовых панелях и удобство подключения.
1.5 Электронные компоненты систем оптической связи
Рис. 2.5.1. Компоненты системы оптической связи
Коснемся проблемы передачи и приема оптических сигналов. Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. Основу передатчика составлял светоизлучающий диод, работающий на длине волны 0.85 мкм в многомодовом режиме.
В течение последующих трех лет появилось второе поколение - одномодовые передатчики, работающие на длине волны 1.3 мкм.
В 1982 году родилось третье поколение передатчиков - диодные лазеры, работающие на длине волны 1.55 мкм.
Исследования продолжались и вот появилось четвертое поколение оптических передатчиков, давшее начало когерентным системам связи - то есть системам, в которых информация передается модуляцией частоты или фазы излучения. Такие системы связи обеспечивают гораздо большую дальность распространения сигналов по оптическому волокну. Специалисты фирмы NTT построили безрегенераторную когерентную ВОЛС STM-16 на скорость передачи 2.48832 Гбит/с протяженностью в 300 км, а в лабораториях NTT в начале 1990 года ученые впервые создали систему связи с применением оптических усилителей на скорость 2.5 Гбит/с на расстояние 2223 км.
Появление оптических усилителей на основе световодов, легированных эрбием, способных усиливать проходящие по световоду сигналы на 30 dB, дало начало пятому поколению систем оптической связи. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Европа ТАТ-8 и ТАТ-9, Тихоокеанская линия США-Гавайские острова-Япония ТРС-3. Ведутся работы по завершению строительства глобального оптического кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.
В последние годы наряду с когерентными системами связи развивается альтернативное направление: солитоновые системы связи. Солитон - это световой импульс с необычными свойствами: он сохраняет свою форму и теоретически может распространяться по "идеальному" световоду бесконечно далеко. Солитоны являются идеальными световыми импульсами для связи. Длительность солитона составляет примерно 10 трилионных долей секунды (10 пс). Солитоновые системы, в которых отдельный бит информации кодируется наличием или отсутствием солитона, могут иметь пропускную способность не менее 5 Гбит/с на расстоянии 10 000 км.
Такую систему связи предполагается использовать на уже построенной трансатлантической линии ТАТ-8. Для этого придется поднять подводный ВОК, демонтировать все регенераторы и срастить все волокна напрямую. В результате на подводной магистрали не будет ни одного промежуточного регенератора.
2. Передающий оптоэлектронный модуль
2.1 Основные компоненты и принципы функционирования
Передающие оптоэлектронные модули (ПОМ), применяемые в волоконно-оптических системах, предназначены для преобразования электрических сигналов в оптические. Последние должны быть введены в волокно с минимальными потерями. Производятся весьма разнообразные ПОМ, отличающиеся по конструкции, а также по типу источника излучения. Одни работают на телефонных скоростях с максимальным расстоянием до нескольких метров, другие передают сотни и тысячи мегабит в секунду на расстояния в несколько десятков километров.
2.2 Типы и характеристики источников излучения
Главным элементом ПОМ является источник излучения. Перечислим основные требования, которым должен удовлетворять источник излучения, применяемый в ВОЛС:
- излучение должно вестись на длине волны одного из окон прозрачности волокна. В традиционных оптических волокнах существует три окна, в которых достигаются меньшие потери света при распространении: 850. 1300, 1550 нм;
- источник излучения должен выдерживать необходимую частоту модуляции для обеспечения передачи информации на требуемой скорости;
- источник излучения должен быть эффективным, в том смысле, что большая часть излучения источника попадала в волокно с минимальными потерями;
- источник излучения должен иметь достаточно большую мощность, чтобы сигнал можно было передавать на большие расстояния, но и не на столько, чтобы излучение приводило к нелинейным эффектам или могло повредить волокно или оптический приемник;
- температурные вариации не должны сказываться на функционировании источника излучения;
- стоимость производства источника излучения должна быть относительно невысокой.
Два основных типа источников излучения, удовлетворяющие перечисленным требования используются в настоящее время -- светодиоды (LED) и полупроводниковые лазерные (LD).
Главная отличительная черта между светодиодами и лазерными диодами - это ширина спектра излучения. Светоизлучающие диоды имеют широкий спектр излучения, в то время верные диоды имеют значительно более узкий спектр, рис. 3.2.1. Оба типа устройств весьма компактны и хорошо сопрягаются со стандартными электронными цепями.
Рис. 3.2.1. Спектры излучения светодиодов и лазерных диодов
2.2.1 Светоизлучающие диоды
Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно шире, чем лазерные диоды.
Принцип работы светодиода основан на излучательной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока, рис. 3.2.1.1а. Носители заряда -- электроны и дырки -- проникают в активный слой (гетеропереход) из прилегающих пассивных слоев (р- и n-слоя) вследствие подачи напряжения на р-n структуру и затем испытывают спонтанную рекомбинацию, сопровождающуюся излучением света.
Длина волны излучения X (мкм) связана с шириной запрещенной зоны активного слоя (эВ) законом сохранения энергии
л= 1,24/,
рис. 3.2.1.1б.
Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.
Рис. 3.2.1.1. Двойная гетероструктура: а) гетероструктура; б) энергетическая диаграмма при прямом смещении
Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и InР. Соответствующий композит композиционный состав активного материала выбирается в зависимости от длины волны излучения создается посредством напыления на подложку.
Длину волны излучения определяют как значение, соответствующее максимуму спектрального распределения мощности, а ширину спектра излучения -- интервал длин волн, в котором спектральная плотность мощности составляет половину максимальной.
2.2.2 Лазерные диоды
Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов, что представлено на рисунке 3.2.1.
Зависимость мощности излучения от тока накачки описывается ватт-амперной характеристикой лазерного диода. При малых токах накачки лазер, испытывает слабое спонтанное излучение, работая как малоэффективный светодиод. При превышении некоторого порогового значения тока накачки Ithres, излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности, что наблюдается на рисунке 3.2.2.1.
Рис. 3.2.2.1.. Ватт-амперные характеристики: 1 -- лазерного диода; 2 - светодиода
Лазер, изображенный на рисунке 3.2.2.2, состоит из активной среды, устройства накачки и резонансной системы. Активной средой может быть твердый, жидкий или газообразный материал. Широкое применение получили полупроводники. В качестве устройства накачки используется главным образом электрическая энергия. Могут применяться также солнечная радиация, атомная энергия, химическая реакция и другие источники. Роль резонанса выполняют зеркала или другие полированные поверхности.
Рис. 3.2.2.2. Принципиальная схема лазера: 1 -- активная среда; 2 -- устройство накачки; 3 -- резонансная система
По принципу действия и эффекту светового излучения лазер может быть отнесен к люминесцентным материалам. Известны различные виды люминесценции (свечения): тепловая (лампочка накаливания), холодная (фосфор и другие светящиеся материалы), природная (светлячок, гнилое дерево), химическая (активная реакция) и др. В полупроводниковых лазерах действует электрическая люминесценция - свечение происходит за счет электрической накачки.
Принцип действия квантовых приборов (лазеров) основан на использовании излучения атомов вещества под воздействием внешнего электромагнитного поля. Из квантовой механики известно, что движение электронов атома вокруг ядра характеризует энергетическое состояние электронов, иначе называемое энергетическим уровнем. При переходе электронов с одной орбиты на другую под воздействием внешнего электромагнитного поля меняется энергетический уровень и происходит излучение энергии.
В настоящее время применяются различные типы лазеров: полупроводниковые, твердотельные, газовые и др. Полупроводниковый лазер представляет собой полупроводниковый диод типа р-n, выполненный из активного материала, способного излучать световые кванты--фотоны. В качестве такого материала преимущественно используется арсенид галия с соответствующими добавками (теллура, алюминия, кремния, цинка). В зависимости от характера и количества присадок полупроводник имеет области электронной n (за счет теллура) и дырочной р (за счет цинка) проводимостей.
Под действием приложенного напряжения в полупроводнике происходит возбуждение носителей, в силу чего возникает излучение световой энергии и появляется поток фотонов. Этот поток, многократно отражаясь от зеркал, образующих резонансную систему, усиливается, что приводит к появлению лазерного луча с остронаправленной диаграммой излучения.
Схематично полупроводниковый лазер показан на рисунке 3.2.2.3.
Рис. 3.2.2.3. Полупроводниковый лазер
Объем полупроводника примерно 1 мм3. К нему подведены металлические электроды для подачи электрического напряжения. Роль отражающих зеркал выполняют плоскопараллельные отполированные торцевые грани полупроводника. Излучение происходит в слое р-n перехода толщиной 0,15-0,2 мкм.
Наряду с лазерами в качестве источника оптического излучения могут применяться светодиоды. Светодиод является таким же люминесцентным полупроводником типа р-n из арсенида галия, но не имеет резонансного усиления. В отличие от лазера, обладающего остронаправленным когерентным лучом, в светодиоде излучение происходит спонтанно (самопроизвольно) и луч имеет меньшую мощность и широкую направленность.
Сравнительные характеристики лазеров и светодиодов приведены в таблице 3.2.2.1 и на рисунке 3.2.2.4.
Таблица 3.2.2.1
Сравнительные характеристики лазеров и светодиодов
Излучатель |
Мощность, мВт |
Диаграмма, град |
Ширина спектра, мм |
Срок службы, ч |
|
Лазер |
10…40 |
4…20 |
1…3 |
104…105 |
|
Светодиод |
5…20 |
60…80 |
30…50 |
105…106 |
Сравнивая обычный свет, создаваемый, например, лампочкой накаливания, с лазерным лучом, можно отметить, что в обоих случаях действует поток фотонов. Но в отличие от обычного света, основанного на тепловой природе возникновения и излучающего очень широкий непрерывный спектр частот, лазерный луч имеет электромагнитную основу и представляет собой монохроматический (одноволновый) луч.
Рис. 3.2.2.4. Ширина спектра лазера (1), светодиода (2)
Лазерный луч обладает рядом замечательных свойств. Он распространяется на большие расстояния и имеет строго прямолинейное направление. Луч движется очень узким пучком с малой степенью расходимости (он достигает луны с фокусировкой в сотни метров). Лазерный луч обладает большой теплотой и может пробивать отверстие в любом материале. Световая интенсивность луча больше, чем интенсивность самых сильных источников света.
В качестве приемного устройства, преобразующего свет в электричество, применяется фотодиод, схематично изображенный на рисунке 3.2.2.5. Здесь используется эффект Столетова, состоящий в том, что при воздействии света на активный материал, например полупроводник, изменяются его электрические свойства и возникает электрический сигнал.
Рис. 3.2.2.5. Полупроводниковый фотодиод
Таким образом, в лазерах электричество преобразуется в свет, а в фотодиодах происходит обратный процесс: свет преобразуется в электричество.
В магистральных ВОЛС используются два окна 1,3 и 1,55 мкм. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкм, на сверхпротяженных безретрансляционных участках (L = 100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС а состав ВОК входят только ступенчатые одномодовые волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкм (волокон со смещенной дисперсией нет). На длине волны 1,55 мкм удельная хроматическая дисперсия у SMF составляет 17 пс/нм-км. А поскольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только меньшая ширину спектра излучения лазера. Итак, для того чтобы оптические передатчики на длине волны 1,55 мкм могли в равной степени использоваться на протяженной линии не только с одномодовым волокном со смещенной дисперсией (DSF), но и со ступенчатым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.
Четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределенной обратной связью; с распределенным брэгговским гражением; с внешним резонатором.
Лазерные диоды с резонатором Фабри-Перо (FP лазеры, Fabry-Perot). Резонатор в таком лазерном диоде образуется торцевыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.
На рисунке 3.2.1б показан спектр излучения промышленного лазерного диода с использованием резонатора Фабри-Перо. Как видно из рисунка, наряду с главным пиком, в котором сосредоточена основная мощность излучения, существуют побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, длина волны должна удовлетворять соотношению 2D = NДл где D -- диаметр резонатора Фабри-Перо, а N -- некоторое целое число. Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нм. В противном случае в область могут попасть два или более соседних максимумов, что соответствует многомодовому режиму с шириной спектра от одного до нескольких нм. FP лазер имеет далеко самые высокие технические характеристики, но для тех приложений, где не требуется высокая высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.
Следует отметить, что даже в том случае, когда соседние максимумы малы, то есть где реализуется одномодовый режим излучения и Дл мало, с ростом скорости передачи у лазера наблюдается перераспределение мощности в модах, которое приводит к паразитному эффекту -- динамическому уширению спектра (до 10 нм при частоте модуляции 1-2 ГГц).
Этот эффект отсутствует у перечисленных трех других более совершенных типов лазерных диодов, отличающихся способом организации оптического резонатора, и являющихся некоторой степени модернизацией простого резонатора Фабри-Перо.
Лазерные диоды с распределенной обратной связью (DFB лазер) и с распределена брэгговским отражением (DBR лазер). Резонаторы у этих двух довольно схожих типов представляют собой модификацию плоского резонатора Фабри-Перо, в которой добавлена периодическая пространственная модуляционная структура. В DFB лазерах периодическая структура совмещена с активной областью (рис. 3.2.2.6а), а в DBR лазерах периодическая структура вынесена за пределы активной области (рис. 3.2.2.6б). Периодическая структура влияет условия распространения и характеристики излучения. Так, преимуществами DFB и DBR лазеров по сравнению с FP лазером являются: уменьшение зависимости длины волны лазера тока инжекции и температуры, высокая стабильность одномодовости и практически 10 процентная глубина модуляции. Температурный коэффициент для FP лазера порядка 0,5-1 нм/°С, в то время как для DFB лазера порядка 0,07-0,09 нм/°С. Основным недостатке DFB и DBR лазеров является сложная технология изготовления и, как следствие, более высокая цена.
Лазерный диод с внешним резонатором (ЕС лазер). В ЕС лазерах один или оба торца покрываются специальным слоем, уменьшающим отражение, и соответственно, одно или два зеркала ставятся вокруг активной области полупроводниковой структуры. На рис. 3.2.2.6в показан пример ЕС лазера с одним внешним резонатором. Антиотражательное покрытие уменьшает коэффициент отражения примерно на четыре порядка, в то время как другой торец активного слоя отражает до 30% светового потока благодаря френелевскому отражению. Зеркало, как правило, совмещает функции дифракционной решетки. Для улучшения обратно связи между зеркалом и активным элементом устанавливается линза.
Увеличивая или уменьшая расстояние до зеркала, а также одновременно разворачивая зеркало-решетку -- это эквивалентно изменению шага решетки можно плавно изменять длину волны излучения, причем диапазон настройки достигает 30 нм. В силу этого, ЕС лазеры являются незаменимыми при разработке аппаратуры волнового уплотнения и измерительной аппаратуры для ВОЛС. По характеристикам они схожи с DFB и DBR лазерами.
волоконный оптический связь сеть
Рис. 3.2.2.6. Три основных типа лазерных диодов: а) лазер с распределенной обратной связью, DFB лазер; б) лазер с распределенным брэгговским отражением, DBR лазер; в) лазер с одним внешним резонатором, ЕС лазер
2.3 Другие характеристики
Также важными характеристиками источников излучения являются: быстродействие источника излучения; деградация и время наработки на отказ.
Быстродействие источника излучения. Экспериментально измеряемым параметром, отражающим быстродействие источника излучения, является максимальная частота модуляции, Предварительно устанавливаются пороги на уровне 0,1 и 0,9 от установившегося значения мощности светового излучения при низкочастотной модуляции прямоугольными импульсами тока. По мере роста частоты модуляции, т.е. при переходе на меньшие масштабы по временной шкале, форма световых фронтов становится более пологой. Для описания фронтов вводят времена нарастания Trise и спада tmi мощности излучения, определяемые как временные интервалы, за которые происходит нарастание от 0,1 до 0,9 и, наоборот, спад светового сигнала от 0,9 до 0,1. Максимальная частота модуляции определяется как частота входных электрических импульсов, при которой выходной оптический сигнал перестает пересекать пороговые значения 0,1 и 0,9, оставаясь при этом во внутренней области. Для светодиодов эта частота может достигать до 200 МГц, а у лазерных диодов -- значительно больше (несколько ГГц). Времена нарастания и спада предоставляют информацию о полосе пропускания W. Если предположить, что они равны между собой (а это не всегда так), то полосу пропускания можно определить по формуле:
.
2.4 Деградация и время наработки на отказ
По мере эксплуатации оптического передатчика его характеристики постепенно ухудшаются -- падает мощность излучения, и, в конце концов, он выходит из строя. Это связано с деградацией полупроводникового слоя. Надежность полупроводникового излучателя определяется средней наработкой на отказ или интенсивностью отказов. Лазерные диоды, выпускаемые десять лет назад, обладали значительно меньшей надежностью по сравнению со светодиодами. Однако в настоящее время, благодаря совершенствованию конструкций и технологии изготовления, удалось значительно повысить надежность лазерных диодов и приблизить их к светодиодам по времени наработки на отказ, которое составляет до 50000 часов и более (5-8 лет).
2.5 Основные элементы ПОМ
Для организации передачи оптических сигналов не достаточно иметь только источник излучения. В любой конструкции ПОМ есть специальный держатель (housing), который позволяет закрепить и защитить составные элементы передатчика; источник излучения, узел электрического интерфейса и место сопряжения с волокном. Иногда требуются дополнительные внутренние элементы для оптимального подсоединения волокна. Важным элементом лазерных диодов является цепь тока накачки, и система контроля температуры. Для сложных лазерных систем добавляют выходной мониторинг оптического сигнала. Общая схема конструкции оптического передатчика, в которой не все элементы являются обязательными, показана на рис. 3.5.1.
Рис. 3.5.1. Составляющие элементы передающего оптоэлектронного модуля
2.6 Волоконные световоды
Основным элементом ОК является волоконный световод, выполненный в виде тонкого стеклянного волокна цилиндрической формы. Волоконный световод имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными оптическими характеристиками (показателями преломления). Сердцевина служит для передачи электромагнитной энергии. Назначение оболочки: создание лучших условий отражения на границе "сердцевина--оболочка" и защита от излучения энергии в окружающее пространство. Снаружи располагается защитное покрытие для предохранения волокна от механических воздействий и нанесения расцветки.Сердцевина и оболочка изготовляются из кварца, покрытие -- из эпоксиакрилата, фторопласта, нейлона, лака и других полимеров.
Оптические волокна классифицируются на одномодовые и многомодовые. Последние подразделяются на ступенчатые и градиентные. Одномодовые волокна имеют тонкую сердцевину (6-8 мкм), и по ним передается одна волна; по многомодовым (сердцевина 50 мкм) распространяется большое число волн. Наилучшими параметрами по пропускной способности и дальности обладают одномодовые волокна. У ступенчатых световодов показатель преломления в сердечнике постоянен, имеется резкий переход от сердцевины к оболочки и лучи зигзагообразно отражаются от границы "сердечник--оболочка". Градиентные световоды имеют непрерывное плавное изменение показателя преломления в сердцевине по радиусу световода от центра к периферии, и лучи распространяются по волнообразным траекториям. Показатель преломления сердцевины меняется вдоль радиуса по закону показательной функции
где -- максимальное значение показателя преломления на оси волокна, т. е. при r=0;
-- показатель степени, описывающей профиль изменения показателя преломления:
Чаще всего применяются световоды с параболическим профилем. В этом случае и соответственно:
2.7 Аналоги ведущих производителей
Крупными поставщиками оптоэлектронных передатчиков являются фирмы: Epitaxx Inc. icsson Components Ab, Fujitsu Microelectronics Inc., Hamamatsu Corp., Hewlett-Packard, Hit Lasertron Inc., Laser Diode Inc., NEC Electronics tnc., OKI Semiconductors, Optek Technology Optical Communication Product Inc., Orte! Corp., Siemens Corp, LucentTechnologies, Norton, Siemens, IBM, Corning, AlcoaFujikura и др.
Крупным производителем оптических компонентов в России является фирма "Перспективные Технологии". Основными поставщиками оптических шнуров в России являются фирмы "Вимком-Оптик", "Телеком Комплекс Сервис". Многие потребители оптических шнуров имеют собственную сборку (РОТЕК, ЭЛОКОМ).
Передающие модули используются в:
· цифровой аппаратуре ВОЛС,
· гибких оптических мультиплексорах
· SDH-оборудования уровня STM-1/STM-4
Модули ПОМ производства "ФТИ-Оптроник" изготовлены на основе лазеров Фабри-Перо (FP) или лазеров с распределенной обратной связью (distributed feedback laser - DFB). Применяются в цифровом оборудовании волоконно-оптических линий связи, гибких оптоволоконных мультиплексорах, SDH-оборудовании. Имеют следующие характеристики, представленные в таблице 3.7.1:
· Длина волны - 1310нм, 1550нм (если CWDM, то 1270-1610нм)
· Скорость передач данных - от 34Мбит/сек до 2500Мбит/сек
· Напряжение питания - 5В
Таблица 3.7.1
Модель передающего оптического модуля |
Длина волны, нм |
Тип ЛД |
Скорость передачи |
Мощн. излучения, дБм |
Тип корпуса |
Напр. питания, В |
|
POM-34 |
1310 |
FP |
50 Mbps |
-1.5 |
155-15-2 |
5.0 |
|
POM-34/5 |
1550 |
FP |
50 Mbps |
-1.5 |
155-15-2 |
5.0 |
|
POM-155 |
1310 |
FP |
155 Mbps |
-1.5 |
DIL-14 |
5.0 |
|
POM-155/5 |
1550 |
FP |
155 Mbps |
-1.5 |
DIL-14 |
5.0 |
|
POM-155/xxxx-*-cw |
1270...1610 (CWDM-ряд) |
DFB |
155 Mbps |
0 |
DIL-20 |
5.0 |
|
POM-622 |
1310 |
FP |
622 Mbps |
-1.5 |
DIL-14 |
5.0 |
|
POM-622/5 |
1550 |
FP |
622 Mbps |
-1.5 |
DIL-14 |
5.0 |
|
POM-622/xxxx-*-cw |
1270...1610 |
DFB |
622 Mbps |
0 |
DIL-20 |
5.0 |
3. Моделирование работы устройства. Методы повышения характеристик
3.1 Принципиальная схема. Описание и моделирование
Первым этапом при проектировании принципиальной схемы передающего устройства волоконной оптической системы передачи является выбор типа и марки оптического излучателя исходя из предъявляемых к его техническим характеристикам требований. К основным техническим характеристикам излучателей относятся:
- мощность излучения;
- длина волны излучения;
- ширина спектра излучения;
- частота модуляции;
- ток накачки;
- пороговый ток.
В нашем случае проектирование схемы волоконно-оптической системы передачи включает в себя составление следующих узлов:
- входной согласующий усилитель;
- выходной каскад (схема прямого модулятора);
- устройство автоматической регулировки уровня (АРУ) оптического сигнала на выходе;
- система термостабилизации;
- источник питания разрабатываемой волоконно-оптической системы передачи;
Упрощённая схема оптического передающего устройства представлена на рис. 4.1.1.
Согласующий усилитель (СУ) предназначен для усиления сигнала, поступающего с преобразователя кода (с уровнями логического нуля и единицы 0.7 и 5В), до уровня необходимого для модуляции оптической несущей.
Модулятор (МОД) предназначен для изменения параметров оптической несущей в зависимости от изменений входного сигнала. Выбрана классическая схема прямой модуляции в которой модулирующий сигнал управляет мощностью оптической несущей. В результате мощность излучения изменяется по закону изменения модулирующего сигнала.
Подобные документы
Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.
курсовая работа [778,1 K], добавлен 29.12.2014Характеристика действующей волоконно-оптической линии связи в Павлодарской области, распложенной вдоль реки Иртыш. Анализ отрасли телекоммуникации в Республике Казахстан. Организация защищенного транспортного кольца волоконно-оптической линии связи.
отчет по практике [25,7 K], добавлен 15.04.2015Анализ преимуществ волоконно-оптической линии связи над проложенным на данном участке медным кабелем. Направления и механизм модернизации существующей сети. Этапы разработки трассы и выбора метода прокладки. Схема организации связи и ее обоснование.
дипломная работа [964,7 K], добавлен 20.06.2017Структурная схема линейного тракта передачи, расчет параметров. Характеристика оптического интерфейса SDH STM-1 полнофункционального оптического мультиплексора "Транспорт-S1". Особенности регенератора МД155С-05F. Параметры оптического кабеля марки ДПС.
курсовая работа [1,3 M], добавлен 24.04.2015Общая характеристика волоконно-оптической связи, ее свойства и области применения. Проектирование кабельной волоконно-оптической линии передач (ВОЛП) способом подвески на опорах высоковольтной линии передачи. Организация управления данной сетью связи.
курсовая работа [3,8 M], добавлен 23.01.2011Структура и компоненты волоконно-оптической системы связи. Светоизлучающие и лазерные диоды. Модуляторы, физические принципы работы и элементы передающих оптоэлектронных модулей. Оптический гетеродинный прием, технические характеристики фотоприемников.
контрольная работа [3,6 M], добавлен 24.08.2015Первичная сеть, включающая линии передачи и соответствующие узлы связи, образующие магистральную, дорожную и отделенческую сеть связи как основа железнодорожной связи. Конструкция и характеристика оптических кабелей связи, особенности ее строительства.
курсовая работа [428,0 K], добавлен 21.10.2014Определение числа каналов передачи. Характеристика трассы волоконно–оптической линии передачи. Расчет числовой апертуры, нормированной частоты и числа модулей, затухания оптического волокна, дисперсии широкополосности, длины регенирационного участка.
курсовая работа [469,4 K], добавлен 02.03.2016Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.
курсовая работа [1,2 M], добавлен 01.06.2014Геолого-климатический анализ местности. Разработка волоконно-оптической линии связи между двумя городами – Новосибирском и Кемерово. Сметы на строительство линейных сооружений. Схема размещения регенерационных пунктов по трассе оптического кабеля.
курсовая работа [388,3 K], добавлен 15.11.2013