Мобильный офис с антенной решеткой стандарта GSM-900

Цифровая сотовая система подвижной радиосвязи стандарта GSM. Изготовление интерфейсного кабеля для подключения мобильного телефона к компьютеру. Разработка и проектирование антенной решетки, которую предполагается использовать в паре с телефоном.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 14.10.2010
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3.3 Конструктивный расчет АР

3.3.1 Расчет параметров линии передачи

В качестве линии передачи используем микрополосковую линию передачи. Важными достоинствами МПЛ являются широкополосность, малые масса и габариты, высокая технологичность линий и СВЧ устройств, конструируемых на их основе, применение печатного монтажа и возможность автоматизации процесса.

Рис.3.3 Несимметричная полосковая линия передачи

В качестве материала подложки возьмем стеклотекстолит - слоистый прессованный материал, изготовленный из листов стеклоткани (из волокон марки "Э" - электроизоляционного - толщиной 0.1 мм) и пропитанный термореактивным связующим - эпоксидной смолой, отверждаемой смолой новолачного или резольного типа. Листовой стеклотекстолит получают в результате прессования пачки листов стеклоткани, пропитанных связующим и облицованных медной фольгой (типа ФМЭО - оксидированной медной электролитической фольгой - толщиной 35 и 50 мкм; типа ФМЭОШ - оксидированной медной электролитической фольгой повышенной шероховатости 35 … 50 мкм). Для приклейки фольги к диэлектрику используется клей БФ-4, наполненный пылевидным кварцем. Прочность сцепления фольги с диэлектриком 800 … 1000 Н/м.

Материал допускает механическую обработку, выдерживает технологические воздействия при изготовлении полосковых схем, хорошо склеивается с аналогичными диэлектриками и металлами. Допустимая температура пайки 260С (10 … 15 с). Водопоглощение значительное: 1.5 … 3 % (за 24 ч). Диапазон рабочих температур -60 … +85С, нагревостойкий стеклотекстолит допускает возможность эксплуатации его при температурах до 180 … 200С в течении 50 … 100 ч.

Основной недостаток: высокие диэлектрические потери и разброс диэлектрической проницаемости от партии к партии, что определило ограниченную область применения стеклотекстолита на СВЧ (в основном в качестве несущей конструкции полосковых линий с воздушным заполнением).

Но не смотря на все недостатки, которые напрямую относятся к изготавливаемому макету, стеклотекстолит является наиболее доступным материалом и позволяет достичь требуемых параметров.

Стеклотекстолит имеет следующие параметры:

- Диэлектрическая проницаемость r = 6

- Тангенс угла диэлектрических потерь

- Толщина подложки h=10-3 м

- Толщина полоска t=3*10-5 м

Один из основных недостатков плоских МПА является их узкополосность. Ограничение полосы происходит из-за резкого рассоглосования антенны уже при незначительных расстройках частоты от резонанса. Для расширения рабочей полосы частот воспользуемся высокодобротными излучателями у которых диэлектрическая подложка занимает лишь часть поперечного сечения структуры. На рисунке 3.4 показана структура испольуемая в макетном образце, МПВ над подложкой.

Рис. 3.4 МПВ над подложкой

Данная структура представляет собой конденсатор, следовательно для расчета эквивалентной диэлектрической проницаемости воспользуемся следующими соотношениями:

(3.1)

где: С - ескость конденсатора, образованного экраном и МПВ

0 = 8.85*10-12 Ф/м - абсолютная диэлектрическая проницаемость

S - площадь излучающей поверхности антенны

(3.2)

значение d1 выбрано по графикам [6, стр.132-133], из условия, что

Учитывая это получаем:

3.3.2 Расчет параметров одиночного излучателя

В качестве излучателя возьмем прямоугольный полосковый резонатор

Рис. 3.5 Прямоугольный полосковый излучатель.

Диэлектрическая проницаемость:

Длина волны:

Волновое число:

Размер `a' примем равным

Длина волны в диэлектрике:

Длину излучателя найдем из условия резонанса:

Входное сопротивление излучателя найдем для y0=0 из соотношения:

(3.3)

Ширину линии питания (w) определим по методике, т.к.

, что больше чем 132, то

(3.4)

(3.5)

3.3.3 Расчет геометрических размеров решетки и числа излучателей

Рис. 3.6 Геометрия излучателей.

Выбор размера антенны произведем из площади антенны S, необходимой для обеспечения заданного коэффициента усиления

:

(3.6)

Отсюда делаем вывод, что минимальное число излучателей, необходимый для реализации заданного коэффициента усиления: m=2, n=2.

Учитывая то, что схема питания элементов последовательно-параллельная, расстояние между элементами равно

а учитывая размеры элементов получаем расстояние между осевыми излучателей:

dx=dy=0.23 м

3.4 Расчет ДН АР

3.4.1 Диаграмма направленности одиночного элемента

Рассчитаем и построим диаграмму направленности одиночного элемента по формуле (3.7):

(3.7)

Рис. 3.7 ДН МП резонатора в вертикальной плоскости

Ширина диаграммы по уровню -3 дБ = 70 град.

Рис. 3.8 ДН МП резонатора в горизонтальной плоскости

Ширина диаграммы по уровню -3 дБ = 68 град.

3.4.2 Расчет ДН АР для центральной частоты 925 МГц

ДН АР определяется формулой

(3.8)

где F1 - ДН одиночного излучателя см (х.х)

Fp - множитель решетки

(3.9)

Где

(3.10)

Рис. 3.9 ДН АР в вертикальной плоскости

Рис. 3.10 ДН АР в горизонтальной плоскости

3.4.3 Расчет коэффициента усиления

(3.11)

Коэффициент использования поверхности взят равным единице.

3.5 Результаты расчетов

В результате расчетов были получены следующие параметры проектируемой антенны:

· Тип антенны - МПА

· Схема питания - параллельно-последовательная

· Количество излучателей в вертикальной плоскости - 2

· Колличество излучателей в горизонтальной плоскости - 2

· Размеры излучателя - 139мм х 139мм

· Ширина ДН в вертикальной плоскости - 36

· Ширина ДН в горизонтальной плоскости - 36

· Высота подвеса излучателей над экраном - 9.4 мм

3.6 Изготовление лабораторного образца АР

Для изготовления лабораторного образца использовался фольгированный двухсторонний стеклотекстолит. Толщина диэлектрика 1 мм. При изготовлении излучателей был использован тот же стеклотекстолит, у которого с одной из сторон был удален слой фольги. В качестве опор под излучетели, для создания воздушной прослойки, был использован пенопласт. Соединение излучателей, пенопласта и экрана между собой осуществлялось клеем "Момент". Линия питания была вырезана из медной фольги.

После первого подключения антенны к измерительным приборам выяснилось, что реально нижний диапазон излучения антенны не совпадает с заданным. Для уменьшения нижней частоты к углам излучателей были припаяны реактивные элементы емкостного характера.

Для изготовления "корпуса" антенны использовался нефольгированный стеклотекстолит, который был закреплен к экрану антенны на подставках, и пенопласт, для закрытия отверстий по боковому периметру антенны.

После ряда тестовых включений и измерений КСВ был подобран питающий шлейф из медной проволки диаметром _____, сопротивление которой можно рассчитать по формуле ______________.

3.7. Экспериментальные исследования лабораторного образца АР.

3.7.1 Измерение ДН.

Для измерения ЛН использовались приборы, блок-схема включения которых представленна на рис. 3.11

Рис. 3.11 Блок-схема установки для измерения ДН

На высокочастотном генераторе задавалась необходимая рабочая частота, на которую также настраивался измерительный приемник. Далее, антенна, расположенная на поворотном устройстве, располагается напротив приемной антенны, и путем вращения поворотного устройства с исследуемой антенной, производилось снятие зависимости показаний измерительного приемника от угла поворота. Результаты измерений сведены в таблице 3.1 и представленны графически в приложении 1.

Таблица 3.1.

Частота - 890 МГц; Плоскость вектора Е

Угол,°

-90

-80

-70

-60

-50

-40

-35

-20

-10

0

10

20

30

40

50

60

70

80

90

Um

20

 

 

50

 

20

 

 

 

350

 

 

 

8

16

40

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частота - 925 МГц; Плоскость вектора Е

Угол,°

-90

-80

-70

-65

-55

-40

-30

-20

-10

0

10

20

35

45

50

60

70

80

90

Um

3

 

 

6

4

3

16

40

70

100

80

50

14

4

 

 

8

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частота - 960 МГц; Плоскость вектора Е

Угол,°

-90

-80

-70

-60

-50

-40

-35

-20

-10

0

15

20

30

40

50

60

70

80

90

Um

15

 

60

80

 

10

 

250

 

400

300

 

60

10

40

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частота - 890 МГц; Плоскость вектора Н

Угол,°

-90

-80

-70

-60

-50

-40

-35

-20

-10

0

10

20

30

40

50

60

70

80

90

Um

3

 

 

4

2

 

11

33

40

46

37

26

10

 

 

3

 

4

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частота - 925 МГц; Плоскость вектора Н

Угол,°

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

Um

6

6

12

10

4

2

14

50

86

90

84

53

17

2

6

14

9

7

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Частота - 960 МГц; Плоскость вектора Н

Угол,°

-90

-80

-70

-65

-50

-45

-35

-30

-15

0

15

20

30

40

50

60

70

80

90

Um

4

 

 

6

 

3

6

18

40

52

42

30

20

4

8

 

4

 

4

3.7.2 Измерение КСВ

Для измерения КСВ исследуемой антенны использовались следующие приборы:

· индикатор КСВН и ослабления

· генератор качающейся частоты

· широкополосный направленный ответвитель (2 шт.)

Схема измерения приведена на рис. 3.12.

Рис. 3.12 Блок-схема измерения КСВ

Данная установка, позволяют выводить на экран зависимость КСВ антенны от частоты.

Генератор качающейся частоты выдает СВЧ сигнал, который поступает на направленные ответвители мощности. Первый НО обеспечивает выделение части мощности падающей от генератора, которая поступает на соответствующий вход индикатора КСВН. Второй НО обеспечивает выделение части мощности отраженной от антенны. Таким образом, на индикатор поступают сигналы, пропорциональные падающей и отраженной волнам, посредством которых и вычисляется КСВ.

Так как с ГКЧ подается сигнал с изменяющейся частотой, то мы можем наблюдать на индикаторе изменение КСВ в диапазоне частот. Это позволяет обеспечить контроль работоспособности проектируемой антенны в заданной полосе частот, и , если необходимо, произвести согласование.

Согласованность антенны с фидером обеспечивает передачу всей мощности непосредственно в антенну. Это происходит при равенстве входного сопротивления антенны и характеристического сопротивления линии передачи. Если по какой-то причине эти сопротивления не равны, то часть мощности отражается от антенны. Потери при рассогласовании характеризуются коэффициентом стоячих волн - КСВ, который равен:

(3.12)

где Г - коэффициент отражения.

В задании на дипломное проктирование сказано, что КСВ должен быть меньше или равен 2.

Согласование производилось экспериментально-расчетным путем вводя в линию неоднородности, которые создавали дополнительную отраженную волну, которая имеет такуюже амплитуду, что и волна отраженная от нагрузки, но сдвинутая по фазе на 180є.

В результате экспериментов с проектируемым образцом антенны удалось достичь заданного значения КСВ ? 2.

3.7.3 Измерение коэффициента усиления

Измерение коэффициента усиления произвести не удалось, т.к. не удалось найти эталонную антенну с известной зависимостью КУ от частоты для данного диапазона частот.

3.8 Выводы

Результатом проектирования стал макет антенной решетки, для которого мы получили ряд характеристик, рассмотренных выше в этой главе.

В целом же спроектированная антенна удовлетворяет требованиям, указанным в задании. Антенна формирует излучение вертикальной поляризации с ДН, ширина которой по уровню -3 дБ составляет приблизительно 35 во всем рабочем диапазоне частот. Также в рабочем частотном диапазоне реализовано согласование антенны с фидером сопротивлением 50 Ом, с КСВ ? 2.

4. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА

4.1 Краткое описание устройства

В данном дипломном проекте разрабатывается антенная решётка для сотового телефона стандарта GSM, работающего в диапазоне 890 - 960 МГц.

Конструктивно антенная решетка представляет собой систему полосковых излучателей расположенных над экраном.

Антенна не имеет стационарного расположения, т.к. является мобильной и формирует излучение с линейной поляризацией с шириной диаграммы направленности в горизонтальной плоскости - 36°, в вертикальной плоскости - 36°.

В ходе разработки антенны осуществляется теоретические расчеты основных характеристик, параметров и конструкции антенны, изготовление макета антенны, лабораторное исследование макета, доработка конструкции антенны, изготовление окончательного варианта антенны, снятие характеристик антенны.

4.2 Безопасность проекта

4.2.1 Электробезопасность

При проектировании изделия радиомонтажнику приходится использовать электроприборы, которые представляют собой потенциальную опасность, а именно, опасность поражения электрическим током.

Поражение электрическим током может быть при прикосновениях: к токоведущим частям, находящимся под напряжением; к отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате ошибочного включения, к металлическим нетоковедущим частям электроустановок после перехода на них напряжения с токоведущих частей.

Действие электрического тока на организм человека может быть тепловым (ожог), механическим (разрыв тканей), химическим (электролиз) и биологическим (сокращение мышц, паралич дыхания и сердца).

Степень опасного воздействия на человека электрического тока зависит от величины поражающего напряжения и тока, его частоты, пути прохождения через тело человека, продолжительности воздействия, условий внешней среды, а также физического состояния и самочувствия человека. Для переменного тока частотой 50 Гц напряжение прикосновения Uприк не должно превышать 2 В при токе менее 0.3 мА; для постоянного тока Uприк < 8 В при токе менее 1 мА.

Особое внимание следует уделять блокам и элементам, использующим высокое напряжение:

* Источник питания компьютера

* Источники питания периферийных устройств (принтера и т.п.)

* Источники питания генератора и измерителя КСВН

* Розетки и выключатели, напряжение 220 В

* Монитор и измеритель КСВН, имеющий в своем составе электронно-лучевую трубку имеющую напряжение в несколько киловольт.

Эти блоки должны работать только при наличии защитных кожухов с соблюдением изоляции токонесущих элементов и применением технических средств защиты.

Основными способами защиты являются:

* Изоляция токоведущих частей

* Применение малых напряжений

* Обеспечение недоступности прикосновения к токоведущим частям

* Заземление

* Защитное зануление

Изоляция токоведущих частей одна из важнейших задач защиты обслуживающего персонала и студентов в лаборатории. Состояние изоляции должно находиться в строгом соответствии с ПУЭ. Эти правила предусматривают для всех видов электроизоляции точно определенные значения сопротивления изоляции, а также требуют соответствия класса изоляции изделия номинальному напряжению сети или установки условиям окружающей среды и т.д. Для своевременного выявления дефекта ПУЭ предусматривают периодические испытания изоляции и внешний осмотр.

Одним из надежных методов снижения потенциалов статического электричества является заземление всех металлических частей оборудования, где возможна электризация. При заземлении изолированного проводника разность потенциалов между проводником и землей становится равной нулю, а генерируемые электростатические заряды стекают на землю. Заземлять следует не только те части оборудования, которые участвуют в генерировании зарядов, но и все другие изолированные проводники, которые могут зарядиться по индукции.

Также необходимо использовать защитное заземление [10]. Защитным заземлением называется намеренное соединение нетоковедущих частей, которые могут случайно оказаться под напряжением с заземляющим устройством.

При монтаже радиоэлектронного оборудования следует соблюдать требования электробезопасности и работать только исправным электроинструментом. Для исключения возможности поражения электрическим током автоматизированное рабочее место разработчика располагается в помещении без повышенной опасности имеющее все необходимые меры защиты согласно.

4.2.2 Пожарная безопасность

Противопожарная защита представляет собой комплекс инженерно-технических мер, разрабатываемых при проектировании, которые направлены на уменьшение возможности возникновения пожара и защиту людей в случае пожара. На предприятии осуществляются технические, эксплуатационные и режимные мероприятия.

Согласно [14] лаборатория относится к категории «В» пожароопасных помещений. Огнестойкость здания по [15] соответствует I степени (стены выполнены из искусственного или натурального камня и являются несущими, в перекрытиях здания отсутствуют горючие материалы).

Требования по пожаро- и взрывобезопасности определены в.

Монтаж изделия производится при помощи паяльника с применением легко воспламеняющихся жидкостей (этиловый спирт, ацетон, лак и т.д.). Следовательно, монтажные работы пожароопасные. Для избежания пожара паяльник должен обеспечиваться термостойкой подставкой. Легко воспламеняющиеся жидкости должны хранится в металлической посуде с герметичными крышками. Помещение должно обеспечиваться пожарной сигнализацией, аварийным освещением.

Для обеспечения своевременного сообщения о возникновении пожара лаборатория оборудована средствами автоматической сигнализации, подающими звуковой сигнал при обнаружении в воздухе дыма или повышения температуры.

Для первичного тушения огня в лаборатории имеется огнетушитель пенный ОХГТ-10. Кроме того, на этаже имеется пожарный гидрант.

Легковоспламеняющиеся и горючие жидкости, используемые в лаборатории (спирт этиловый, ацетон, нитро и масленые краски, лаки), хранятся в строго отведенном для этого месте в герметичных емкостях с плотно закрывающимися крышками.

Электропаяльники, применяемые в лаборатории, имеют негорючие подставки из диэлектрического материала. Разрабатываемая антенна выполнена из негорючих материалов.

4.2.3 Освещенность рабочего места

Свет является естественным фактором жизнедеятельности человека, играющим важную роль в сохранении здоровья и высокой работоспособности.

Уровень освещенности оказывает действие на состояние психических функций и физиологические процессы в организме. Так, хорошее освещение действует тонизирующе, стимулирует активность деятельности человека; улучшает протекание основных нервных процессов. Рациональное освещение предупреждает развитие утомления, способствует повышению производительности труда и играет важную роль в снижении производственного травматизма. Установлено, что плохое освещение является причиной примерно 5% несчастных случаев на предприятиях.

При недостаточной освещенности сокращается время, в течение которого глаз человека сохраняет способность различать рассматриваемый объект, - время ясного видения. На устойчивость ясного видения оказывают влияние напряженность зрительной работы, уровень освещенности, пульсация светового потока. Как показывают физиологические исследования, время ясного видения при работе в течение трех часов сокращается при освещенности 50 лк на 72% от исходной величины, при освещенности 75 лк - на 55%, при 100 лк - на 26%, при 200 лк - на 15%.

Требования к освещению рабочих мест приведены в [16].

В лаборатории, где проходят все стадии проектирования, используется комбинированное освещение: естественное и искусственное.

Изготовление антенны относится к работам средней точности и имеет 4 разряд зрительных работ.

Естественное освещение поступает через два окна. По нормам производственного освещения, при 4 разряде зрительных работ коэффициент естественного освещения должен быть не менее Е = 1,5%.

Нормированное значение КЕО рассчитываем следующим образом:

(4.1)

где Е - коэффициент естественного освещения, равен 1,5%

m - коэффициент светового климата, зависит от района расположения здания и территории.

c - коэффициент солнечного климата

Для Екатеринбурга принимают m = 0,9 с = 0,95

Требуемая площадь световых проемов (So), обеспечивающая нормированное значение коэффициента естественной освещенности определяется по формуле (4.2):

(4.2)

где: Sn - площадь пола помещения (10x4,5 = 45 м2.),

Еn - нормативное значение КЕО (1.28),

K1 - коэффициент запаса (1.2),

g - световая характеристика окон (15)

К2 - коэффициент учитывающий затемнение окон противостоящими зданиями (1),

V - коэффициент учитывающий повышение КЕО при боковом освещении благодаря отражению света (1.2),

Т0 - общий коэффициент светопропускания , определяется по формуле (4.3):

Т0 = Т1 х Т2 х Т3 х Т4 (4.3)

где: Т1 - коэффициент светопропускания материала (для окон двойного стекла 0,8),

Т2 - потери света в переплетах (деревянный, двойной, раздельный 0,65),

Т3 - потери света в несущих конструкциях (1),

Т4 - потери света в солнцезащитных устройствах (1),

Таким образом (Т0= 0.8x0.65x1x1=0.52) площадь светового проема:

Площадь оконных проемов равна (2.6х2)х4=20.8, что с запасом удовлетворяет норме [16].

Произведем расчет уровня искусственного освещения в лаборатории

(4.4)

где F - световой поток одной лампы

з = 0.3 - коэффициент использования светильника

N = 16- число ламп

n = 0.4 - коэффициент использования осветительной установки

S - площадь пола

Z = 0.75 - коэффициент освещенности

Комната освещается лампами типа ЛБ-40-2 (в каждом светильнике две лампы), световой поток каждой составляет F = 4320 лк. Для помещений с малым содержанием пыли коэффициент запаса k = 1. Подставив перечисленные значения в (4.4), получим:

Е = 245 лк

Полученный результат показывает, что искусственного освещения достаточно, т.к. по [16] минимальное освещение должно быть не менее 200 лк.

Таким образом, из полученных результатов можно сделать вывод, что в рабочие часы даже естественное (без искусственного) освещение обеспечивает необходимую освещенность рабочего места.

Так как для выполнения монтажных работ требуется повышенная освещенность рабочего места, то дополнительно на рабочем месте установлен настольный светильник.

В поле зрения отсутствует прямая (от источников света) и отраженная (от блестящих поверхностей) блесность. Это достигается уменьшением яркости источников света и подбором угла освещения.

4.2.4 Микроклимат в рабочей зоне

Микроклимат в рабочей зоне влияет на самочувствие и работоспособность человека. В производственных помещениях, в которых производится сборка радиоаппаратуры, должны обеспечиваться оптимальные параметры микроклимата. Так, при увеличении температуры больше 30°С работоспособность уменьшается. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени, тем быстрее наступает перегрев. При недостаточной влажности увеличивается испарение со слизистых оболочек, будет пересыхание, растрескивание и загрязнение микробами, сгущение крови и нарушение функционирования сердечнососудистой системы. Рекомендуется относительная влажность 40-60 %. Атмосферное давление в помещениях должно быть 1013.25 ± 266 ГПа. Оптимальной температурой для человека является 23-24 °С при оптимальной влажности с скорости движения воздуха до 0.1 м/с.

Гигиенические требования к микроклимату помещений определены в [17, 18].

Таблица 4.1

Период года

Температура воздуха, °С

Температура поверхностей, °С

Относительная влажность воздуха, %

Скорость движения воздуха, не более, м/с

Холодный

22-24

21-25

40-60

0.1

Теплый

23-25

22-26

40-60

0.1

Помещения должны оборудоваться системами кондиционирования воздуха или эффективной приточно-вытяжной вентиляцией.

В холодное время года для поддержания в помещении нормальной температуры воздуха применяется отопление.

Для повышения влажности воздуха следует применять увлажнители воздуха, заправленные кипяченой питьевой водой.

Рациональное освещение производственных участков является одним из важнейших факторов предупреждения травматизма и профессиональных заболеваний. Недостаточность освещения приводит к напряжению зрения, преждевременной усталости и ослабляет внимание. Чрезмерно яркое освещение вызывает ослепление, раздражение и резь в глазах.

4.2.5 Молниезащита здания и антенных систем

Разряды атмосферного электричества (молнии) могут явиться причиной взрывов, пожаров, поражения людей. По данным статистики около 7 % пожаров возникает от разрядов молнии. Разрушительное действие прямого удара молнии (первичного проявления молнии) очень велико. Однако существует еще и вторичное проявление, которое заключается в том, что во время разряда молнии на изолированных от земли металлических предметах вследствие электромагнитной и электростатической индукции возникают электротоки высоких напряжений. Возможен перенос высоких потенциалов по проводам, через наземные или подземные металлические коммуникации. При этом в местах разрыва электрической цепи может возникнуть искрение, достаточное для воспламенения горючей среды.

Ток молнии производит электромагнитное, тепловое и механическое воздействия на те сооружения, по которым проходит во время удара молнии. При прямом ударе молнии в объект через него проходит кратковременный (импульсный) ток молнии. Молнией называется разряд между электрически заряженным облаком и землей или между разноименно заряженными областями двух облаков. Электростатическая электризация грозовых облаков происходит в результате движения мощных воздушных потоков и конденсации в них водяных паров. Вследствие накопления в облаках значительных электрических зарядов происходит гроза. Во время грозового разряда в течение 0,1с при токе молнии порядка 100-200 кА в канале молнии развивается температура до 30 000 °С. Вследствие быстрого расширения нагретого воздуха возникает с большим шумом взрывная волна. В разных районах страны число грозовых дней и грозовых часов различно (на юге и в средней полосе 100 и 60-80 ч, а в районах Средней Азии и Крайнего Севера -менее 10 ч в год). Средняя грозовая деятельность определяется по специальной карте.

Комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности здании и сооружений, оборудования и материалов от взрывов, загораний и разрушений, называется молниезащитой. Для приема электрического разряда и отвода токов молнии в землю служат специальные устройства - молниеотводы. Молниеотвод состоит из следующих частей:

* несущей части (опоры)

* молниеприемника, непосредственно воспринимающего удары молнии

* токоотвода (спуска)

* заземлителем для отвода тока в землю

Молниеприемники по устройству делят на стержневые, тросовые и сетчатые. По количеству действующих молниеприемников их разделяют на одиночные, двойные и многократные (три и более).

Защитное действие молниеотводов основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому более низкие по высоте здания, входящие в зону защиты данного молниеотвода, не будут поражены молнией.

Зоной защиты молниеотвода называют часть пространства, примыкающего к молниеотводу и обеспечивающего защиту сооружения от прямых ударов молнии с достаточной степенью надежности (99 %). Радиус зоны защиты (рис. 4.1) вычисляется по конкретным параметрам для того или иного молниеотвода. Для защиты антенных систем наиболее удобна схема с одиночным тросовым молниеотводом (рис. 4.1).

Рис. 4.1. Зона защиты молниеотводов

а - одиночного стержневого; б - тросового; 1 - трос; 2 - граница зоны защиты на уровне земли; 3 - то же, на уровне hх; hоп - высота опоры; h - высота молниеотвода; h0 - высота зоны защиты над землей; r0 - радиус зоны защиты па уровне земли; rх - радиус зоны защиты на высоте hx над землей: а - расстояние между опорами

Так, для одиночного стержневого молниеотвода зона защиты представляет собой конус с основанием радиусом r =1,5*h (h - высота молниеотвода, м), радиус зоны защиты на высоте защищаемого сооружения hх, м, определяется из выражения 4.5:

rх = 1,5 (h - 1,25*hх) (4.5)

для одиночного тросового молниеотвода - из 4.6:

rх= 1,25 (h - 1,25*hх) (4.6)

Помещение лаборатории относится по к категории "В" пожароопасных помещений, а здание по соответствует I степени огнестойкости. Поэтому молниезащиту антенных систем и здания необходимо осуществлять исходя из требований ко II категории по [19]. В этом случае молниезащита по этим категориям предусматривает защиту зданий и сооружений от прямых ударов молнии, от электростатической и электромагнитной индукции и заноса высоких потенциалов через наземные и подземные металлические конструкции и коммуникации.

Ожидаемое количество поражений в год (N) зданий и сооружений, не оборудованных молниезащитой, определяется из выражения

N = (b + 6*hx) (L + 6*hx) n*10-6 (4.7)

где L и b- соответственно длина и ширина здания, м;

hх - наибольшая высота здания по его боковым сторонам, м;

n - среднее число поражений молнией 1 км2 земной поверхности в месте расположения здания, принимается в зависимости от грозовой деятельности, А, ч/год, таблица 4.2.:

Таблица 4.2

А, ч/год

n

10-20

1

20-40

3

40-60

6

60-80

9

80-100 и более

12

По степени надежности зоны защиты молниеотводов делят на два типа: А - со степенью надежности 99,5 % и выше; Б - 95 % и выше.

Тип зоны защиты молниеотводов для объектов II категории зависит от ожидаемого числа поражений молнией в год зданий и сооружений, не имеющих молниезащиты (N). При показателе N > 1 для зданий и сооружений II категории предусматривается зона типа А, а при N ? 1 - типа Б.

При II категории молниезащиты, кроме отдельно стоящих или установленных на зданиях изолированных молниеотводов, допускается использовать молниеприемную сетку, накладываемую на кровлю. Заземлители молниеотводов необходимо размещать в редко посещаемых местах на расстоянии 5 м и более от проезжих и пешеходных дорог. Сопротивление заземлителя должно быть не более 10 Ом.

Молниеприемники должны быть изготовлены из стали (оцинкованы или окрашены): стержневой - сечением не менее 100 мм2 и длиной не менее 200 мм и тросовый (многопроволочный оцинкованный трос) - сечением не менее 35 мм2.

4.2.6 Шум и вибрация

Вибрация на рабочем месте, вызываемая оборудованием АРМ отсутствует. В соответствии с [20] защита от шума, создаваемого на рабочих местах внутренними источниками, а также шума, проникающего извне, осуществляется следующими методами:

* Уменьшение шума в источнике

* Применение средств коллективной защиты [20]

* Применение средств индивидуальной защиты [21]

* Рациональная планировка и акустическая обработка рабочих помещений

Наиболее рациональной мерой является уменьшение шума в источнике или же изменение направленности излучения.

Уровень шума на рабочем месте, вызываемый переключением кнопок клавиатуры, работой вентиляционного оборудования, системного блока, генератора, находится в диапазоне частот 50- 4000 Гц, не превышает 40 дБ, что удовлетворяет нормам, устанавливаемых в [22]. Поэтому в лаборатории не требуется дополнительное звукопоглощающее оборудование.

4.3 Эргономичность проекта

Рабочее место оператора-это место человека в системе "человек-машина", оснащенное средствами отображения информации, органами управления и вспомогательным оборудованием, на котором осуществляется его трудовая деятельность. Организация рабочего места зависит в основном от характера труда оператора и условий труда.

Рабочее место настройщика оснащается приборами, имеющими устройства отображения информации:

* генератор качающейся частоты; « измеритель КСВН;

* измеритель мощности;

* измерительная антенна;

Кроме того, на рабочем столе имеются вспомогательные инструменты и материалы:

а) паяльник;

б) припой;

в) флюс;

г) пинцет и др. инструменты;

Согласно требованиям [23] рабочее место настройщика должно обеспечивать возможность удобного выполнения работ. При этом учитываются следующие факторы:

а) физическая тяжесть работ;

б) особенности технологического процесса;

в) параметры рабочей зоны и необходимость передвижения в ней работающего в процессе настройки;

г) мероприятия, направленные на снижение утомляемости;

д) геофизическая совместимость.

Таким образом, необходимо выполнять ряд мероприятий обеспечивающих рациональный и безопасный трудовой процесс и эффективное использование орудий и предметов труда, что снижает утомляемость и повышает производительность труда.

Согласно [24] "Рабочее место оператора" включает в себя информационное поле, т.е. пространство, в котором находятся средства отображения информации и моторное поле, где расположены органы управления.

Информационное поле как в горизонтальной (рисунок 4.2.), так и в вертикальной (рисунок 4.3.) плоскости разбивается на три зоны.

1) в зоне 1 располагаются те средства отображения информации (СОИ), которые используются наиболее часто и требующие быстрого и точного считывания показаний;

2) в зоне 2 располагаются те СОИ, которые используются менее часто и требуют менее точное и быстрое считывание показаний;

3)в зоне 3 располагаются те СОИ, к которым обращаются редко или достаточно только качественной информации.

Рис. 4.2 Информационное поле в горизонтальной плоскости

Рис. 4.3 Информационное поле в вертикальной плоскости

Моторное поле также состоит из трех зон (рисунок 4.4.):

1) 3она оптимальной досягаемости, в которой располагаются часто используемые органы управления (приборы к которым следует обращаться чаще, чем 2 раза в минуту);

2) Зона легкой досягаемости, в которой расположены органы управления, используемые реже, чем 2 раза в минуту, но чаще, чем 2 раза в час;

3) Зона досягаемости, в которой расположены органы управления, используемые реже, чем 2 раза в час.

Рабочее место настройщика должно быть спроектировано с учетом антропометрических данных человека - усредненных размеров тела. Статистические характеристики основных антропометрических признаков мужчин и женщин приведены в [25].

Рис. 4.4 Моторное поле

Для настройки антенны важным приборам является измеритель КСВН, который необходимо поместить в 1 зону информационного поля, также в нее необходимо поместить настраиваемую антенну. Генератор качающейся частоты можно расположить во второй зоне информационного поля, а измерительную антенну в 3 зоне.

Рабочее место настройщика:

Рис 4.5 Рабочее место настройщика

1 - измеритель КСВН; 2 - генератор качающейся частоты; 3 - измерительная антенна; 4 - паяльник с припоем и флюсом; 5 - пинцет и др. инструменты; 6 - касса с элементами;

В зоне оптимальной досягаемости моторного поля должна находиться сама антенна (удобно расположить ее прямо на измерителе КСВН) паяльник с припоем и флюсом, пинцет и другие инструменты. Основные приборы средств отображения информации должны быть расположены в легкой досягаемости, а в зоне досягаемости - измерительная антенна.

С учетом изложенного выше, рабочее место настройщика должно выглядеть, как изображено на рисунке 4.5.

При такой расстановке приборов достигается максимальная производительность труда и оптимальная физическая нагрузка настройщика.

4.4 Экологичность проекта

При выполнении монтажных работ в результате пайки в воздух рабочей зоны выделяются вредные пары, содержащие свинец, который согласно [26] относится к общетоксичным веществам. Характеристикой загрязнения воздуха рабочей зоны является предельно допустимая концентрация (ПДК). Согласно [18] для свинца ЦЩС = 0,01 мг/м3. Для того, чтобы в воздухе рабочей зоны концентрация паров не превышала ПДК в помещении, должна работать вентиляция.

Рассчитываем требуемую скорость удаления воздуха и кратность воздухообмена.

В используемом припое ПОС-61 содержится 39% Pb (свинец). При выполнении монтажных работ расход припоя примерно равен 5 г/час, из которых 1.95 г составляет Pb. Количество припоя, испарившееся при нормальной температуре жала паяльника (280 °С), не превышает 1% от его количества. Следовательно, количество испарившегося Pb составит примерно 19,5 мг/час. Требуемая скорость удаления воздуха должна быть не менее:

(4.7)

а кратность воздухообмена:

(4.8)

4.5 Воздействие ионизирующих и электромагнитных излучений на полупроводниковые приборы и интегральные микросхемы

Для оценки возможных нарушений работоспособного состояния электрорадиоизделий и аппаратуры при воздействии ионизирующих и электромагнитных излучений разработчику необходимо располагать информацией о возможных видах радиационных эффектов, их зависимости от амплитудно-временных и спектрально-энергетических характеристик излучений и их вида. Принято выделять следующие радиационные эффекты: смещения, переноса заряда и ионизационные.

Эффекты смещения представляют собой перемещение атомов из своего нормального положения в кристаллической решетке материала. Эти перемещения сопровождаются возникновением структурных дефектов кристаллической решетки, к простейшим из них относят свободные положения в решетке (вакансии) и дополнительные атомы между ее узлами (межузельные внедрения).

Помимо простейших дефектов, которые в материалах полупроводников оказываются неустойчивыми при комнатной температуре, и могут релаксировать через некоторое время после прекращения облучения, в них возникают сложные дефекты (ассоциация различных дефектов между собой, а также с примесями и дефектами решетки), существующие в течение длительного времени.

При облучении электронами и фотонами с энергией ниже 1 МэВ возникают, как правило, простейшие дефекты. Облучение нейтронами, протонами и электронами более высоких энергий обычно сопровождается появлением кластеров дефектов, обусловленных движением по кристаллу первичных атомов отдачи с достаточно высокой (0,1 ... 100 кэВ) энергией.

В электронных узлах эффекты смещения влияют в основном на работу полупроводниковых приборов, поскольку приводят к существенным изменениям времени жизни неосновных носителей, их концентрации и подвижности, зависящих от уровня излучения. Таким образом, следует различать долговременные и кратковременные эффекты смещения.

Долговременные эффекты смещения проявляются в необратимом, сохраняющемся по истечении некоторого времени после облучения изменении различных параметров полупроводниковых приборов. Это изменение зависит от интегрального потока частиц и дозы гамма-излучения, их энергетического спектра и температурных условий облучения. При прочих равных условиях более жесткий спектр излучения и понижение температуры облучаемого материала приводят к росту числа структурных дефектов.

При облучении гамма- и нейтронным излучениями влияние гамма-излучения на процесс образования структурных дефектов во многих случаях чрезвычайно мало в сравнении с воздействием нейтронов.

Однако в некоторых случаях, например, при воздействии гамма- и нейтронного излучений на униполярные транзисторы, металл-диэлектрик-полупроводник (МДП)-структуры, стекла, органические диэлектрики и смазки дозовые эффекты необходимо учитывать.

Кратковременные эффекты смещения проявляются в обратимых изменениях параметров объектов и характерны для импульсного облучения. Как известно, смещенные под действием облучения нейтронами атомы в начальный момент представляют собой термодинамически неустойчивые образования, большинства из них, в частности простейшие дефекты, имеют весьма малую энергию активации, определяющую скорость их рекомбинации. Из-за высокой скорости рекомбинации значительная доля созданных дефектов структуры за весьма малые промежутки времени после прекращения облучения «отжигается». Поэтому частично восстанавливаются первоначальные свойства материалов и соответственно ЭРИ. Однако с процессами рекомбинации протекают процессы, связанные с перегруппировкой структурных повреждений, взаимодействием их с атомами примеси и дефектами структуры. Если длительность облучения значительно превышает характерное время таких процессов, то после облучения практически наблюдаются необратимые повреждения или медленные и слабо выраженные процессы восстановления параметров.

При воздействии нейтронного импульса эти процессы восстановления не успевают закончиться к моменту его окончания, что проявляется в глубоком кратковременном изменении параметров изделий и схем РЭА, во много раз превосходящем установившееся после облучения значение параметров. Изменение параметров зависит от плотности потока нейтронов, а длительность процесса восстановления (быстрого «отжига») -- в основном от свойств материалов и режима работы изделий в РЭА. Кратковременные изменения параметров из-за импульса нейтронов могут привести к полной потере работоспособности аппаратуры на период их времени восстановления.

Эффекты переноса заряда обусловлены передачей кинетической энергии ИИ вторичным частицам и проявляются в виде неустановившихся токов, а также захваченного диэлектриком заряда. При движении вторичных заряженных частиц (например, комптоновских электронов, возникающих под действием фотонов высоких энергий, или протонов отдачи, возникающих при взаимодействии нейтронов с водородосодержащими веществами) создаются электрические и магнитные поля, а также протекают неустановившиеся токи, зависящие от мощности дозы облучения. Эти эффекты могут привести к появлению ложных сигналов и сбоев в аппаратуре или пропаданию полезных сигналов, а также при недостаточной электрической прочности входных и выходных цепей к их перегоранию. Заряд, перенесенный вторичными частицами в непроводящую область, может находиться там в течение длительного времени, он зависит от интегрального потока частиц (дозы облучения).

Входящие в состав ИИ заряженные частицы как первичные, так и вторичные выделяют в веществе энергию преимущественно путем образования вдоль траектории движения электронно-ионных пар. Ионизационными называются эффекты, вызванные этими низкоэнергетичными заряженными носителями. Они отличаются от эффектов переноса заряда, которые определяются как смещение зарядов высокоэнергетичными частицами. Число образующихся электронно-дырочных пар независимо от вида первичных частиц определяется только количеством энергии, выделяемой на ионизацию.

Ионизационные эффекты проявляются в виде переходных эффектов (эффектов свободных носителей): промежуточных релаксационных, долговременных эффектов захваченных носителей и химических.

Переходные эффекты связаны с образованием свободных носителей. Средняя продолжительность существования носителей в полупроводниковых материалах до захвата или рекомбинации может меняться от 10-9 до 10-5 с. Поэтому плотность свободных носителей в зависимости от соотношения между длительностями импульса излучения и времени жизни носителей зависит либо от дозы, либо от мощности дозы излучения.

Возрастание числа свободных электронов и ионизированных атомов приводит к изменению электрофизических характеристик материала (например, удельного сопротивления, диэлектрических потерь) и формированию во внешних цепях ЭРИ приращений токов. Из-за высокой подвижности свободных носителей неравновесное состояние, вызванное ионизацией, обычно быстро исчезает после прекращения облучения. Ионизационный эффект и процесс последующего восстановления равновесного состояния зависят от параметров излучения {мощности дозы гамма-излучения и плотности потока нейтронов, спектрального состава излучения, формы и длительности воздействующего импульса) и физических параметров материалов (главным образом времени существования неравновесных носителей заряда в объеме материала).

В диэлектриках и изоляторах захваченные на «ловушки» носители иногда могут снова высвободиться за счет тепловых эффектов, вызывая промежуточные релаксационные эффекты. В зависимости от энергии ионизации время их релаксации изменяется от долей микросекунды до многих суток, приводя, например, к появлению в радиационно наведенной проводимости составляющих с постепенно возрастающим временем жизни и опадающей амплитудой.

Отдельные носители, генерируемые в диэлектрике и изоляторах, захватываются на глубокие энергетические уровни, их плотность возрастает с ростом дозы и достигает насыщения после заполнения большинства свободных уровней. В этом случае говорят о долговременных эффектах захваченных носителей. И наконец, под действием энергии, высвобождающейся при парной рекомбинации и рекомбинации свободных носителей, возникают химические эффекты, проявление которых в аппаратуре и влияние на работоспособность практически не исследованы.

Возникающие при облучения неравновесные носители в результате их направленного дрейфа и диффузии в p-n - переходе и прилегающих к нему областях вызывают переходные токи во внешних цепях полупроводниковых приборов и компонент ИС, называемые первичными ионизационными токами. Направление этих токов соответствует направлению токов через обратносмещенные переходы. Первичные ионизационные токи, протекающие во входных цепях транзисторов, могут умножаться за счет усилительных свойств транзисторов. Степень усиления зависит от схемы включения транзистора и электрического режима его работы. Токи в выходных цепях, обусловленные умножением первичных ионизационных токов, называют вторичными. Изменяется также проводимость материала, особенно в изолирующих и слаболегированных областях полупроводниковых приборов (каналы и изолирующий слой затвора полевого транзистора).

Кроме указанных эффектов на работу полупроводниковых приборов могут оказывать влияние утечки по воздуху между электродами, возникающие при ионизации. Этот эффект может стать определяющим для приборов с малой (ниже 10-13 … 10-14 А*с*Р-1) чувствительностью к гамма-излучению.

Таким образом, ионизационные эффекты в ЭРИ при воздействии гамма- и нейтронного излучений вызывают образование избыточных зарядов, появление которых в диэлектриках и изоляторах понижает их изолирующие свойства, приводит к возникновению токов утечки, а в полупроводниках к образованию ионизационных токов. В результате возникают обратимые изменения параметров аппаратуры, находящейся во включенном состоянии, что может приводить к временной потере ее работоспособности, ложным срабатываниям, сбоям и пропаданию полезного сигнала.

Эффекты, вызванные действием ЭМИ.

В реальных условиях работы ЭРИ в составе аппаратуры на них могут
воздействовать непосредственно электромагнитные поля,
трансформированные по форме и ослабленные экранами объекта или блоков
аппаратуры, и импульсные электрические напряжения и токи, наводимые
полем ЭМИ на схемных соединениях и в самих изделиях.

В общем случае при действии ЭМИ на изделия электронной техники имеют место следующие эффекты:

* проникновение ЭМИ внутрь корпусов и искажение внутренних электрических и магнитных полей изделий;

* возникновение ЭДС и токов на корпусах, выводах, металлизации и других проводящих элементах;

* воздействие на изделия электрических импульсов, приходящих с других элементов РЭА, паразитных антенн

Степень влияния этих эффектов на работоспособность ЭРИ неодинакова. Наиболее существенное влияние на работоспособность изделий в составе аппаратуры оказывают импульсные напряжения, наведенные ЭМИ на протяженных соединительных линиях, антеннах и т. п., электрически связанных с этими изделиями. При воздействии импульсных перенапряжений в изделиях могут наблюдаться:

* пробои p-n - переходов у полупроводниковых приборов;

* пробои вакуумных и газонаполненных промежутков;

* расплавление и обрывы токоведущих дорожек, мест пайки (сварки) проводов из-за термо- и электродинамических напряжений;

* сбои в работе и появление ложных сигналов.

Эти явления присущи наиболее чувствительным к излучению (изделиям, таким, как полупроводниковые приборы и интегральные микросхемы. Основные отказы этих изделий связаны с электрическими (влияющими на величину и распределение токов в структуре приборов) и тепловыми (определяющими повышение температуры отдельных участков этой структуры) процессами. Возникновение электрического (лавинного или туннельного) пробоя приводит к резкому возрастанию обратного тока перехода, который может превысить допустимое значение. После воздействия импульса перенапряжения, если электрический пробой не перешел в тепловой, значение обратного тока возвращается к первоначальному (допробойному).

Вторичный пробой является основной причиной необратимых изменений в p-n - переходах при воздействии импульсных перенапряжений. Вторичный пробой связан с протеканием тока и выделением мощности на отдельных небольших по площади участках области перехода. По мере выделения тепла на отдельных участках полупроводника сопротивление их меняется, в результате чего возможно перераспределение токов в других участках p-n - перехода. Этот эффект кумуляции характерен как для биполярных транзисторов, так и для МОП - транзисторов, тиристоров, точечных и плоскостных диодов и других приборов с переходами. Кумуляция тока и мощности в основном связана с наличием:

* поперечного электрического поля в базе, приводящего к дополнительному смещению отдельных участков p-n - перехода по сравнению с остальными;

* неоднородностей распределения концентрации примесных атомов в структуре;

* структурных дефектов;

*неоднородностей конфигурации приборов.

Первые две причины наиболее существенны. При этом более чувствительным к пробою является переход эмиттер--база, включенный в обратном направлении. Значительное место в повреждении полупроводниковых приборов планарной конструкции занимает расплавление токоведущих дорожек, напыляемых на поверхность окисных пленок. В наибольшей степени этот эффект проявляется у кремниевых усилительных СВЧ транзисторов (с дорожками весьма малых размеров), а также у быстродействующих. Высокочастотных интегральных микросхем.

При воздействии достаточно мощных и коротких по длительности импульсных напряжений иногда наблюдается эффект электродинамического отрыва вывода транзистора от траверсы в месте их соединения. Другой вид повреждения ряда изделий электронной техники и электротехники при воздействии импульсных электрических напряжений связан с перегоранием и расплавлением их токоведущих и резистивных элементов при протекании большого тока.

4.6 Выводы

В данном разделе была произведена оценка дипломного проекта с точки зрения безопасности, эргономичности и экологичности. В результате исследований можно сделать следующие выводы:

· Лаборатория, где помещено рабочее место, относится к помещениям без повышенной опасности и отвечает требованиям, предъявленным в [9].

· Рассмотрены вопросы пожарной безопасности рабочего места и системы. По полученным результатам можно констатировать, что лабораторное помещение относится к относится к категории "В" пожароопасных помещений. Оно отвечает требованиям [12] и является безопасной с пожарной точки зрения.

· Освещённость рабочего места является комбинированной и удовлетворяет разряду проделываемых работ.

· Микроклимат в лабораторном помещении в теплое и холодное время соответствует [17].


Подобные документы

  • Распространение цифровых стандартов в области сотовых сетей подвижной радиосвязи. Максимальное число обслуживаемых абонентов как основная характеристика системы подвижной радиосвязи. Достоинствами транкинговых сетей. Европейский проект стандарта W-CDMA.

    контрольная работа [26,3 K], добавлен 18.09.2010

  • Определение геометрических параметров антенной решетки. Расчет диаграммы направленности диэлектрической стержневой антенны, антенной решетки. Выбор и расчет схемы питания антенной решетки. Выбор фазовращателя, сектор сканирования, особенности конструкции.

    курсовая работа [2,7 M], добавлен 06.07.2010

  • Излучатель антенной решетки. Выбор конструкции вибратора и схемы питания. Антенная решетка системы излучателей. Расчет диаграммы направленности и геометрия антенной решетки. Расчет параметров решетки при заданном максимальном секторе сканирования.

    контрольная работа [250,6 K], добавлен 03.12.2010

  • Формы, размеры и конструкции современной фазированной антенной решетки, ее структурная схема и особенности построения. Расчет основных электрических параметров волноводной фазированной антенной решетки, определение ее основных габаритных параметров.

    курсовая работа [2,3 M], добавлен 18.05.2013

  • Разработка пакета программ, позволяющего рассчитать полевые и импедансные характеристики плоской двумерной фазированной антенной решетки. Определение зависимости взаимного сопротивления от расстояния между излучателями при различных диэлектриках.

    дипломная работа [897,1 K], добавлен 07.07.2009

  • Особенности конструкции, преимущества и недостатки фазированных антенных решеток как наиболее эффективных и перспективных антенных систем. Расчет формы и линейных размеров излучающего полотна. Разработка данной антенной решетки, алгоритм расчета задания.

    контрольная работа [2,6 M], добавлен 06.05.2011

  • Анализ развития микроэлектроники и её достижения. Расчет волноводно-щелевой антенной решетки резонансного типа в плоскости. Выбор схемотехнического решения и конструктивной реализации. Моделирование в пакете прикладных программ Microwave office.

    дипломная работа [2,4 M], добавлен 05.12.2013

  • Устройство функционально-диагностического контроля системы управления лучом радиолокационной станции (РЛС) боевого режима с фазированной антенной решеткой. Принципы построения системы функционального контроля РЛС. Принципиальная схема электронного ключа.

    дипломная работа [815,8 K], добавлен 14.09.2011

  • Назначение микрополосковых антенн. Выбор материала антенной решетки и определение конструктивных размеров микрополоскового излучателя. Расчёт зависимости входного сопротивления от частоты. Расчёт конструктивных размеров элементов антенной решетки.

    курсовая работа [1,5 M], добавлен 28.03.2012

  • Фазированная антенная решётка, способы расположения элементов. Сектор сканирования ФАР. Расчет длины волны. Моделирование антенной решетки. Трехмерное изображение антенной решетки с рефлектором. Угол наклона главного лепестка диаграммы направленности.

    контрольная работа [1,3 M], добавлен 06.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.