Конструирование вибраторной антенной решетки

Излучатель антенной решетки. Выбор конструкции вибратора и схемы питания. Антенная решетка системы излучателей. Расчет диаграммы направленности и геометрия антенной решетки. Расчет параметров решетки при заданном максимальном секторе сканирования.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 03.12.2010
Размер файла 250,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Содержание

  • Введение
    • 1. Излучатель антенной решетки
    • Общая характеристика излучателя
    • Расчет диаграммы направленности вибратора
    • Выбор конструкции вибратора и схемы питания
    • 2. Антенная решетка системы излучателей
    • Расчет диаграммы направленности
    • Геометрия антенной решетки
    • Расчет параметров решетки при заданном максимальном секторе сканирования
    • Заключение
    • Список литературы

Введение

Антенные решетки - наиболее эффективные и перспективные антенные системы, позволяющие осуществлять быстрый обзор пространства, многофункциональный режим работы, комплексирование радиосредств, адаптацию к конкретной радио обстановки, предварительную обработку сверхвысокочастотных сигналов, обеспечение электромагнитной совместимости и т.д. Антенная решетка, обеспечивающая излучение и прием радиоволн, - неотъемлемая часть любой радиотехнической системы. Требования к техническим характеристикам антенн вытекают из назначения радиосистемы, условий размещения, режима работы, допустимых затрат и т.д. Реализуемость необходимых направленных свойств, помехозащищенности, частотных, энергетических и других характеристик антенн во многом зависит от рабочего диапазона волн.

Решетки обладают рядом интересных и полезных свойств. Кроме возможности получения узкой DH и большого КНД, решетки дают возможность, например, изменять положение DH в пространстве без изменения положения самой решетки и отдельных ее частей.

Антенны СВЧ широко применяют в различных областях радиоэлектроники - связи, телевидении, радиолокации, радиоуправлении, а также в системах инструментальной посадки летательных аппаратов, радиоэлектронного противодействия, радио взрывателей, радио телеметрии и др. Успешное развитие радиоастрономии и освоение космоса во многом связаны с достижениями антенной техники СВЧ. В последние годы намечаются новые области использования СВЧ антенной техники, например для передачи СВЧ энергии на большие расстояния.

Применение ФАР для построения сканирующих остронаправленных антенн позволяет реализовать высокую скорость обзора пространства и способствует увеличению объема информации о распределении источников излучения или отражения электромагнитных волн (ЭМВ) в окружающем пространстве.

Характерной особенностью современных антенн является их многообразие (непрерывно появляются новые типы). В соответствии с решаемыми радиотехнической системой задачами антенны СВЧ, работающие в дециметровом, сантиметровом или миллиметровом диапазонах волн, имеют принципиально различные характеристики и отличаются конструкцией, технологией изготовления, эксплуатацией и т.д.

1. Излучатель антенной решетки

Общая характеристика излучателя

В качестве излучателей антенной решетки используются вибраторы, открытые концы волноводов, диэлектрические стержни, спирали, щели и др.Вибраторные излучатели в АР обычно располагают над плоской проводящей поверхностью, играющей роль экрана и предотвращающей обратное излучение. Теоретические и экспериментальные исследования показывают, что на характеристики вибраторного излучателя в составе АР сильнее всего влияют два фактора: их размещение в решетке и положение относительно проводящего экрана. Уменьшение шага решетки позволяет не только подавить высшие дифракционные максимумы, но и улучшить их согласование в широком секторе углов сканирования. Изменение высоты вибраторного излучателя над экраном приводит к улучшению согласования в крайних положениях луча при сканировании в плоскостях Е и Н.

Направленные свойства любой антенны характеризуются ДН и КНД. Диаграмма направленности вибратора зависит от его длины и является поверхностью вращения, ось которой совпадает с осью вибратора. На КНД вибратора влияют два основных фактора: ширина главного лепестка ДН и уровень боковых лепестков.

Очень важным параметром любой антенны является входное сопротивление. В общем случае это комплексная величина. Входное сопротивление симметричного вибратора находим по формуле:

Zвх = Rвх + iXвх;

где Rвх - активная составляющая входного сопротивления,

iXвх - реактивная составляющая входного сопротивления. Величина активной и реактивной составляющих входного сопротивления зависит от длины и волнового сопротивления вибратора. Максимумы Rвх наблюдаются при L/л, кратных 0.5.Поэтому при длине вибратора, кратной 0,25л наблюдается последовательный, а при L = n *л /2 - параллельный резонанс. Чем быстрее меняется Zвх при изменении частоты колебаний, тем хуже диапазонные свойства вибратора, которые зависят от его толщины. Чем толще вибратор, тем медленнее изменяется Zвх при изменении частоты. Добротность одного и того же вибратора на параллельном резонансе примерно в восемь раз больше, чем на последовательном. Кроме того добротность зависит от волнового сопротивления вибратора: чем больше волновое сопротивление, тем больше добротность. Волновое сопротивление вибратора, в свою очередь, зависит от толщины вибратора: чем толще вибратор.тем меньше волновое сопротивление. Таким образом, при увеличении толщины вибратора уменьшается его добротность и, следовательно, улучшаются его диапазонные свойства.

Наиболее широко используемыми типами симметричных вибраторных излучателей являются:

1) Тонкий цилиндрический вибратор диаметром 2а << л, где - длина волны, возбуждаемой от коаксиальной линии. Тонкий вибратор имеет небольшую рабочую полосу частот, которая может быть расширена подбором длины 2L герметизирующего кожуха 3 (2L =л/5).

2) Широкополосный вибратор. В широкополосных вибраторах для соединения коаксиального питающего фидера с воздушной полосковой линией длиной л/4 использован экспоненциальный переход. Эти вибраторы обладают повышенной электрической прочностью.

3) Изогнутый вибратор. Он имеет более широкую ДН в Е - плоскости, что позволяет получить большой сектор сканирования АР. В качестве направленных вибраторных излучателей в АР с ограниченным сектором сканирования используются антенны типа волновой канал.

4) Электрические (Н - образные) вибраторы. Для настройки их в резонанс используются поперечные плечи. Такие вибраторы имеют уменьшенную поверхность рассеяния, и их использование целесообразно при построении совмещенных в одной апертуре разночастотных вибраторных АР, так как взаимные искажения ДН получаются при этом минимальными.

5) Печатные вибраторные излучатели. Они обладают высокой технологичностью, компактностью, конструктивной жесткостью и перспективны для АР, устанавливаемые на подвижных объектах.

6) Коротко замкнутые вибраторы, или диполи. Широко применяются в последнее время при создании частотно - и поляризационно-селективных пространственных структур или фильтров. Они используются для обеспечения ЭМС близко расположенных антенн, уменьшения уровня боковых лепестков, построения многофункциональных антенн и облегчения рефлекторов зеркальных антенн, уменьшения эффективной площади рассеяния антенн и т.д.

Способы питания вибратора.

Вибраторные АР чаще строятся по параллельной схеме питания. В качестве фидерных используются коаксиальные или полосковые линии.

Для симметрирования и согласования вибраторных излучателей АР с фидерными линиями применяются симметрирующие и согласующие устройства. Наиболее широко используемыми типами симметрирующих устройств являются четвертьволновая щель (при жестком коаксиальном фидере) и U - колено (в случае гибких коаксиальных и полосковых линий).Реже используется волноводная линия для возбуждения вибраторов АР при последовательной схеме питания. Применяются так же АР вибраторные АР с оптическим питанием: отражательные, состоящие из облучателя и приемопередающих вибраторных элементов, нагруженных отражательными фазовращателями, и проходные.

Расчет диаграммы направленности вибратора

Диаграмма направленности одиночного вибратора в общем виде:

Fh (): =1

Где k=2/-волновое число, L-длинна плеча вибратора.

Диаграмма направленности вибратора расположенного над идеальным бесконечным проводящим экраном в общем виде:

Где h-высота над экраном. ля согласования вибратора с нагрузкой выбираем длину плеча: L=0.25*. Выбираем высоту над экраном: h=0.25*.

Тогда диаграмма направленности вибратора расположенного над идеальным бесконечным проводящим экраном имеет вид:

ДН вибратора в E-плоскости.

ДН вибратора в H-плоскости.

Выбор конструкции вибратора и схемы питания

В качестве излучателя будем использовать тонкий цилиндрический вибратор диаметром 2а << , где - длина волны, возбуждаемой от коаксиальной линии (см. чертеж №1). Для защиты от внешних метеоусловий узел возбуждения такого вибратора может закрываться герметизирующим кожухом. Через коаксиальный разъем 6 вибратор связан с фидерным трактом. Для симметрирования возбуждения плеч вибратора 1 и 2 служит четвертьволновая щель 4. Для получения однонаправленного излучения используется экран 5. Тонкий вибратор имеет небольшую рабочую полосу частот (2?f/f = 4.6%), которая составляет 2?f = 36 МГц. Она может быть расширена подбором длины 2L герметизирующего кожуха 3 (2L =л/5). Также вибратор обладает электрической прочностью (в сантиметровом диапазоне допустимая мощность не превышает 10 кВт) удовлетворяющей техническому заданию. Мощность, приходящаяся на каждый излучатель: P1max=P/ (N) =56Вт, где N-количество излучателей, - КИП, P1доп=10кВт значит P1max<<P1доп. Длина вибратора 2L будет определяться по формуле: L = 0,25*= 0,25*0,5 =0,125 (м)

2. Антенная решетка системы излучателей

Расчет диаграммы направленности

Полагая решетку состоящей из одинаковых излучателей, можно представить ее характеристику направленности F (,) в виде произведения характеристики направленности изолированного излучателя F (,) на множитель решетки F (,): F (,) =F (,) *F (,),

где Фn =k (xnqcosгл+ynqsinгл) sinгл - пространственный фазовый сдвиг для направления наблюдения (,).

где б - угол сканирования луча; ?ц1 - угол поворота первого кольца; ?ц2 - угол поворота второго кольца; ?ц3 - угол поворота третьего кольца; I1, I2, I3 - амплитуды токов.

Графики ДН в Е и Н плоскостях при равно-амплитудном распределении токов приведены на рисунке 2

ДН решетки со спадающим к краям распределением тока.

Уровень боковых лепестков задан - 18дБ.

Для уменьшения уровня боковых лепестков нужно ввести спадающее к краям решетки распределение токов излучателей: I1= 1; I2=1; I3=0,6

Геометрия антенной решетки

При размещении излучателей на кольцах решетки возможно синфазное сложение полей отдельных излучателей не только в направлении главного максимума ДН, но и в других направлениях, которым соответствует пространственный фазовый сдвиг, компенсирующий сдвиг фазы между излучателями за счет возбуждения. В этом случае помимо главного максимума существует еще и дифракционные максимумы высших порядков, пространственная ориентация которых зависит от расстояния между излучателями. При уменьшении этого расстояния число дифракционных максимумов, находящихся в области действительных углов, уменьшается.

Для нормальной работы решетки необходимо, чтобы в области действительных углов находился лишь один главный максимум, а дифракционные отсутствовали. Таким образом радиусы колец решетки удовлетворяющие заданному уровню УБЛ при обеспечении необходимого угла сканирования равны соответственно:

R1 = 0.6*, R2 = 1.2*, R3 = 1.9* .

Расчет параметров решетки при заданном максимальном секторе сканирования

Коэффициент усиления фазированной антенной решетки приближенно равен произведению КНД на КПД:

При ск.е=30: G = Ю*D0*cosск= 179*cos30*0.95=147, где D0=4S/2, Ю = 0,95, При ск.h=25: G = Ю*D0*cosск = 179*cos25*0.95=154

Ширина диаграммы направленности на уровне 0.5 по мощности:

При ск=25: h0.5=18, e0.5= 15

Заключение

В данной курсовой работе была сконструирована вибраторная антенная решетка с концентрической схемой расположения излучателей обеспечивающая максимальный угол сканирования ск = 25 и удовлетворяющая техническому заданию. Все расчеты проводились в специальной программе "Mathcad".

Список литературы

1. Воскресенский Д.И. Антенны и устройства СВЧ. Проектирование фазированных антенных решеток. - М.: Радио и связь, 1994 г.

2. Сазонов Д.М. Антенны и устройства СВЧ. - М.: Высшая школа, 1988.

3. Проблемы теории и техники антенн / Под редакцией Бахраха, Д.И. Воскресенского. - М.: Радио и связь, 1989 г.

4. Амитей Н., Галиндо В., Ву Ч. Теория и анализ ФАР / Пер с англ. -М.: Мир, 1974 г.


Подобные документы

  • Определение геометрических параметров антенной решетки. Расчет диаграммы направленности диэлектрической стержневой антенны, антенной решетки. Выбор и расчет схемы питания антенной решетки. Выбор фазовращателя, сектор сканирования, особенности конструкции.

    курсовая работа [2,7 M], добавлен 06.07.2010

  • Фазированная антенная решётка, способы расположения элементов. Сектор сканирования ФАР. Расчет длины волны. Моделирование антенной решетки. Трехмерное изображение антенной решетки с рефлектором. Угол наклона главного лепестка диаграммы направленности.

    контрольная работа [1,3 M], добавлен 06.01.2014

  • Формы, размеры и конструкции современной фазированной антенной решетки, ее структурная схема и особенности построения. Расчет основных электрических параметров волноводной фазированной антенной решетки, определение ее основных габаритных параметров.

    курсовая работа [2,3 M], добавлен 18.05.2013

  • Назначение микрополосковых антенн. Выбор материала антенной решетки и определение конструктивных размеров микрополоскового излучателя. Расчёт зависимости входного сопротивления от частоты. Расчёт конструктивных размеров элементов антенной решетки.

    курсовая работа [1,5 M], добавлен 28.03.2012

  • Особенности конструкции, преимущества и недостатки фазированных антенных решеток как наиболее эффективных и перспективных антенных систем. Расчет формы и линейных размеров излучающего полотна. Разработка данной антенной решетки, алгоритм расчета задания.

    контрольная работа [2,6 M], добавлен 06.05.2011

  • Проектирование линейной антенной решетки из спиральных излучателей, расчет ее параметров. Расчет линии передачи и вращающегося сочленения. Согласующее устройство, делитель мощности. Коэффициент полезного действия антенны. Электрическая схема конструкции.

    курсовая работа [662,3 K], добавлен 21.02.2013

  • Современные радиотехнические средства. Расчет параметров одного излучателя и антенной решетки. Конструктивная схема вибраторного излучателя. Коаксиально – полосковые переходы и дискретный фазовращатель. Полосковый делитель и кольцевой делитель мощности.

    курсовая работа [139,1 K], добавлен 03.12.2010

  • Методика расчета уголковой антенны, петлевого вибратора, коллинеарной антенной решетки. Выбор размеров уголковой антенны, расчет параметров элемента решетки с учетом уголкового рефлектора, ширины диаграммы направленности. Схема распределения мощности.

    курсовая работа [968,3 K], добавлен 21.03.2011

  • Расчет вибраторных фазированных антенных решеток с расширенным углом сканирования. Общая характеристика излучателя антенной решетки. Основной способ питания излучателя. Расчеты диаграммы направленности излучателя. Расчеты амплитудного распределения.

    курсовая работа [3,2 M], добавлен 28.11.2010

  • Анализ развития микроэлектроники и её достижения. Расчет волноводно-щелевой антенной решетки резонансного типа в плоскости. Выбор схемотехнического решения и конструктивной реализации. Моделирование в пакете прикладных программ Microwave office.

    дипломная работа [2,4 M], добавлен 05.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.