Цифровой концентратор

Анализ аппаратуры концентрации цифровых каналов. Основные функции цифрового концентратора. Система сети UltraNet, Fast Ethernet, Fiber Distributed Data Interface, 100VG-AnyLAN, DSL-Stinger. Преимущества и особенности языка моделирования на GPSS.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 01.05.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

96

Размещено на http://www.allbest.ru/

Введение

В хозяйственной, технической, научной, политической и культурной жизни общества возрастают потоки различных видов информации, которые необходимо передавать на большие расстояния с большой достоверностью. Важную роль в решении этих вопросов играет качественная электрическая связь. Преимущества цифровых сетей связи настолько очевидны, что замена аналоговых сетей цифровыми и создание интегральной цифровой сети осуществляется практически во всех странах мира.

Сегодня в Казахстане, наряду с повсеместной цифровизацией сети связи, идет активное внедрение новых технологий и нового оборудования, среди которых особое место занимают цифровые концентраторы.

Введение концентраторов позволяет:

достичь значительного сокращения длины абонентских линий;

сократить требуемое число соединительных линий, связывающих концентраторы с коммутационной станцией;

сократить общую длину распределительного кабеля на сети;

повысить использование АЦП/ЦАП оборудования и каналов связи.

Современные методы имитационного моделирования беспечивают возможность испытания, оценки и проведения экспериментов с предполагаемой системой без каких-либо непосредственных воздействий на нее. Они позволяют провести машинный эксперимент с моделью еще не созданной системы, оценить показатели ее надежности, измерить показатели качества функционирования реальной системы, разработать рекомендации по ее модернизации и т.д.

Настоящая дипломная работа посвящёна имитационному моделированию, разработке алгоритма и программы имитации работы цифрового концентратора в сети ISDN.

1. Анализ аппаратуры концентрации цифровых каналов

1.1 Основные функции концентратора

Одним из способов повышения использования канала является применение концентраторов [1]. Концентратор - устройство, принимающее данные от нескольких абонентов и передающее их к ЭВМ или на узел по одному каналу с высоким быстродействием или производящее распределение полученной по этому каналу информации по абонентским линиям [2]. В отличие от устройств простого уплотнения (мультиплексоров), концентратор обеспечивает накопление и хранение информации, а иногда и некоторую ее обработку, например применение более сложных кодов для повышения помехозащищенности, изменение формата и т.п. Концентраторы стоят дороже систем уплотнения, но поскольку они позволяют лучше использовать каналы, то общая стоимость сети может быть сокращена.

При использовании мультиплексоров, каналы с низким быстродействием объединяются в один канал с высоким быстродействием. Когда канал с низким быстродействием не занят, по каналу с высоким быстродействием передаются сигналы пробела для поддержания синхронизации. Это соответствует тем периодам, когда пользователи, сидящие у своих пультов, не передают и не принимают данные. Пользователь, как правило, затрачивает значительную часть времени на обдумывание и подготовку своего следующего сообщения или, вообще, занят какой-либо другой деятельностью. Во многих случаях канал свободен большую часть времени. Поэтому было бы лучше, если бы мы могли занимать быстродействующий канал только в том случае, когда имеется что-либо для передачи. Рассмотрим некоторые возможности, которые дает концентратор. Во-первых, на абонентской стороне концентратора можно иметь быстродействующие устройства (например, экранные пульты), а не только абонентские пульты с низким быстродействием. Сообщения, передаваемые от таких оконечных устройств для ЭВМ, будут храниться, задерживаться в концентраторе до тех пор, пока не освободится канал.

Во-вторых, по быстродействующему каналу передается совокупность стартстопных сигналов. Это может оказаться неэффективным. Так, если оператор делает паузу в момент между нажатием клавиш на абонентском пульте, канал будет занят на протяжении всей этой паузы. Поэтому лучше иметь в концентраторе соответствующие буферные устройства, а по быстродействующему каналу использовать более эффективную синхронную передачу. В-третьих, по быстродействующему каналу можно посылать условные символы, которые сокращали бы передачу. Если концентратор сделать программно управляемым, то многие элементы информации, связанные, например, с ведением диалога человека с машиной, можно разместить в концентраторе, не передавая их вычислительной машине.

Функции удаленного концентратора можно подразделить на две категории: функции, зависящие от характера информации (генерирование ответов абонентскими пультами, обработка разговорных сообщений при диалоге человека с машиной, проверка контрольных сумм и т.д.), и функции, не зависящие от информации. Последняя категория функций, связанных исключительно с организацией (в виде определенных структур) передаваемых по каналам бит информации, может быть реализована с помощью логики устройства и использована для самых различных случаев.

Мы познакомимся с устройствами, работа которых не зависит от вида информации и от содержания данных в передаваемых сообщениях. Для того чтобы обеспечить выполнение функций, зависящих от характера информации, необходим концентратор с хранимой в памяти специальной программой, или могут быть применены специализированные устройства, приобретаемые дополнительно.

Укажем основные функции концентратора.

1.1.1 Применение буферной памяти

Различные сообщения, поступающие в концентратор из канала с низким быстродействием, должны храниться таким образом, чтобы с ними можно было производить необходимые манипуляции. Даже если информация не обрабатывается, то требуется ее запоминание в буферной памяти для каждой входящей линии, пока не поступит сообщение или, по меньшей мере, блок данных, включающий большое количество символов. Символы записываются в память концентратора и хранятся там до тех пор, пока не будет скомпоновано сообщение, которое для передачи считывается из памяти.

1.1.2 Распределение памяти и управление очередями

Распределение памяти может превратиться в сложную проблему. В некоторый момент времени сообщения могут передаваться одновременно большим количеством абонентских пультов; в другой момент таких абонентских пультов может быть немного. Передаваемые сообщения могут значительно различаться по длине. Когда это получается случайно, то необходим некоторый порядок динамического распределения памяти и нельзя выйти из положения путем выделения фиксированной области памяти каждому абонентскому пульту. Очередь из сообщений возникает и тогда, когда они приходят по быстродействующему каналу связи. Образование подобных очередей особенно существенно, если при передаче имеют место случайные ошибки и необходимы запросы и повторные передачи в случае использования групповой (многопунктовой) быстродействующей линии, обслуживающей несколько концентраторов (рис. 1.1).

Рис. 1.1 Использование групповой (многопунктовой) быстродействующей линии, обслуживающей несколько концентраторов

Периферийные концентраторы ПК подсоединены к групповой телефонной линии и дистанционно управляются из вычислительного центра ВЦ. Сообщения, приходящие от абонентских пультов, ставятся в очередь до тех пор, пока концентратору не будет предоставлено право не передачу. Тогда он передает всю имеющуюся информацию. И наоборот, он периодически принимает пакет сообщений, которые должны каким-то образом распределяться и поступать в линии с низким быстродействием. Необходимо иметь такое запоминающее устройство, чтобы его структура позволяла обрабатывать меняющееся количество посылаемых и принимаемых элементов информации. Хранящиеся в очереди элементы информации должны организовываться в виде цепочки, чтобы имелась возможность передавать их как поток данных, когда разрешена передача. Механизм распределения памяти для поступающих сообщений должен предусматривать различные средства, чтобы распознавать, какая часть памяти свободна и может быть предоставлена для того или другого сообщения. Когда сообщение передано и известно, что оно принято правильно, соответствующие части занимаемой им памяти будут возвращены в список нераспределенной и свободной памяти.

1.1.3 Прием сообщений по каналам связи с низким быстродействием

Концентратор имеет цепи, обеспечивающие непрерывный прием по каждому из каналов с низким быстродействием и хранением принятых сообщений (символов). При этом необходимо обеспечить возможность обработки входных сигналов от всех абонентских пультов одновременно. Некоторые концентраторы могут осуществлять одновременный прием данных и обработку от различных типов абонентских пультов работающих с различными кодами и разным быстродействием. Это усложняет логику приема, поскольку концентратор должен знать особенности работы каждого канала.

Обычно концентратор просматривает каналы с быстродействием, определяемым электронными компонентами, обеспечивая последовательную выборку. Если схема характеризуется временем цикла 20 мкс и может обрабатывать информацию, передаваемую по 50 линиям, то каждый канал будет просматриваться один раз в миллисекунду. Если при этом скорость передачи информации 150 Бод, то длительность одного бита составляет 6,67 мс, а, следовательно, выборка будет производиться шесть или семь раз за бит. Если значения, полученные при разных выборках одного бита отличаются, то оценка производится по большинству. Так как в большинстве случаев длительность шумовой помехи менее 3 мс, то такой прием позволяет уменьшить влияние помех. Это же обеспечивает высокую степень защиты от искажений, связанных с нарушением синхронизации.

1.1.4 Преобразование кодов

Код, используемый центральной ЭВМ, часто отличается от тех кодов, которые применяются при передаче сообщений от абонентских пультов. В некоторых случаях различны коды при передачах по каналам с высоким или низким быстродействием. Скажем, в каналах с высоким быстродействием может использоваться код ASCII, но в абонентских пультах его не применяют. С другой стороны, концентратор, в интересах простоты, может не производить перекодирования.

Концентратор преобразовывает стартстопные символы, идущие по каналам с низким быстродействием, в символы для быстрой синхронной передачи. При этом исключаются стартовые и стоповые биты и (если они имеются) биты для проверки на четность. Когда телеграфный сигнал вводится в концентратор, необходимо чтобы была предусмотрена возможность распознавать телеграфную последовательность символов, означающих "конец сообщения". Это может быть трех или четырех символьная последовательность, например NNNN. При синхронной передаче обычно предусматривают собственный индикатор окончания сообщения. Другие телеграфные последовательности могут быть также преобразованы или исключены, например "начало сообщения" ZCZC. Обратное преобразование производится на выходе.

1.1.5 Компоновка сообщений для быстрой передачи

Иногда после кодового преобразования принимаемые символы хранятся в памяти, из которой они позднее будут переданы в линию с высоким быстродействием. Вычислительная машина должна знать, с какого абонентского пульта поступает сообщение, поэтому адрес абонентского пульта следует хранить, разместив его перед символами данных. Если сообщение длинное и разделяется на части из-за трудностей, связанных с распределением памяти, необходимо, чтобы последующий символ показывал, каким является этот сегмент сообщения. Когда прием сообщения закончен, символ окончания сообщения будет храниться в памяти.

1.1.6 Передача сообщений по быстродействующему каналу

Сообщения передаются из памяти концентратора для ЭВМ в виде синхронных блоков; этот порядок сохраняется и в случае передач из любого другого буферного синхронного устройства. Концентратор посылает первым блок синхронизации или символ начала сообщения, а затем символ, задающий адрес концентратора (если в линии используется не один, а несколько концентраторов); после этого следует сообщение или блок сообщений, каждое из которых имеет собственную метку окончания сообщения. Если несколько сообщений посылается непрерывным потоком, то за ними должен последовать символ окончания передачи. В процессе передачи составляется символ проверки по всей длине или группа символов, которые добавляется в конец сообщения.

1.1.7 Контроль за ошибками

Символы, передаваемые по линиям с высоким быстродействием, далеко не всегда подвергаются проверке на четность. Передаваемое синхронно сообщение или блок сообщений обычно содержит блоки или символы для проверки ошибок по всей длине. Когда концентратор производит передачу, он составляет символ контроля ошибки или группу таких символов. Они ставятся в конец сообщения с последующей проверкой их вычислительной машиной. Обычно желательно иметь средства для повторения передач, если ошибка найдена, хотя в некоторых системах предусматривается просто сигнальная индикация на абонентском пульте, когда обнаруживается ошибка.

В линиях с низким быстродействием обычно применяют стартстопную передачу, так что единственно возможным видом контроля является в большинстве случаев проверка на четность посимвольно.

1.1.8 Вызов по быстродействующим каналам

Часто целесообразно иметь несколько концентраторов в быстродействующем канале, как показано на рис. 1.1. В этом случае функция вызова должна быть реализована в логике концентратора. Необходимо, чтобы концентратор мог распознавать собственный адрес в сообщениях, посланных по линии, и отвечать соответствующим образом на адресуемые ему вызовы и управляющие сигналы.

1.1.9 Вызов в каналах с низким быстродействием

В больших сетях может оказаться экономичным иметь в распоряжении групповые (многопунктные) линии на абонентской стороне концентратора. В некоторых пунктах с оборудованием, работающим в реальном времени или в режиме разделения времени, сосредоточено большое количество абонентских пультов. Концентраторы в этих местах размещаются таким образом, чтобы минимизировать стоимость линии с низким быстродействием.

Если к линии с концентратором и низким быстродействием подключено большое количество абонентских пультов, необходимо предусмотреть некоторый способ управления ими. Обычно они должны управляться с соблюдением некоторой дисциплины вызовов. Это означает, что теперь мы различаем два уровня вызовов - вызов концентраторов в быстродействующих линиях и вызов абонентских пультов в линиях с низким быстродействием. В случае линий с низким быстродействием вызов может производиться либо с главной ЭВМ, либо с концентратора. Если вызов делается вычислительной машиной, то идущие по быстродействующим линиям сообщения должны содержать введенные в них адреса линий с низким быстродействием. Это существенно увеличивает сложность управления линиями.

Можно использовать такой концентратор, который сам производил бы вызов. Однако это приводит к значительному усложнению логики в концентраторе. Необходимо, чтобы концентратор имел список адресов, а предусматриваемая логика позволяла вызывать абонентские пульты по этому списку в некоторой последовательности, запрашивать их о том, имеют ли они что-либо для передачи, и интерпретировать их ответы. Список адресов должен быть легко обновляемым, аналогично хранимой в памяти ЭВМ программе, поскольку подсоединяемые в каждом конкретном случае абонентские пульты могут непрерывно меняться. Нужно, чтобы концентратор мог "справляться" с ошибками в линии, правильно реагировал на связанные с абонентскими пультами неполадки, такие, как, скажем, отсутствие бумаги для печатающего устройства и возникновение неисправностей.

1.1.10 Требования к времени реакции

Концентратор может передавать сообщения по одному, а может послать все сообщения, которые он содержит, совместно. В некоторых устройствах так и делается. Если, например, концентратор должен передать 10 сообщений для ЭВМ, то для этого требуется 10 запросов и 20 ответных сообщений, чтобы установить синхронизацию. Если же все 10 сообщений передать в виде одного блока, то потребуется только один запрос и два ответа.

Однако при этом увеличивается время реакции, а в некоторых системах (например, таких как резервирование мест на самолеты) считается очень важным иметь малое время реакции. В контрактах на проектирование подобных систем прямо указывается, что в 90% случаев время реакции не должно превышать трех секунд; в некоторых же случаях требуемое среднее время реакции составляет менее двух секунд (здесь время реакции оценивается тем временем, которое проходит от момента окончания передачи оператором абонентского пульта до момента поступления первого символа ответа от ЭВМ, когда он печатается или высвечивается на экране абонентского пульта).

В некоторых концентраторах идут на компромисс при посылке нескольких сообщений в виде одного блока, например в тех случаях, когда блок превышает заданный размер. В ряде случаев вычислительная машина может изменять объем данных, которые концентратор передает в тот или иной момент времени.

Так же как и для других аспектов проектирования сетей связи, при рассмотрении требований к времени реакции возможно принятие компромиссных решений с учетом объемов передаваемой информации и обеспечиваемым временем реакции.

1.1.11 Контроль за ошибками

Символы для проверки цикла формируются при передаче, а контроль производится в линиях с низким быстродействием. Любое сообщение, в котором найдена ошибка, не передается повторно автоматически. Вместо этого оператору абонентского пульта выдается предупреждение об ошибке, и он повторяет запрос. Это случается не очень часто. Если средняя длина сообщения и соответствующий ответ составляют 50 символов и на каждом из четырех участков передачи (абонентский пульт - концентратор - ЭВМ - концентратор - абонентский пульт) искажается не более одного бита из 100 000, то менее чем один ответ из 100 будет содержать ошибку и потребуется новый запрос.

Во многих информационных системах такой подход представляется целесообразным. Однако в ряде систем, особенно в тех, которые связаны с обработкой финансовых операций или каких-либо числовых величин, требующих тщательного контроля, процедуры отыскания ошибок при передачах в линии заслуживают самого пристального внимания. Автоматическое повторение передачи данных, среди которых обнаружена ошибка, может уменьшить вероятность неправильной записи в файл при его обновлении.

1.1.12 Групповые линии с низким быстродействием

На рис. 1.2 показаны концентраторы с групповыми (многопунктными) линиями с низким быстродействием. При таком размещении большое количество абонентских пультов с низким быстродействием, разбросанных на значительной площади, могут подсоединяться к вычислительной машине с помощью одного обычного телефонного канала.

Пусть быстродействие абонентских пультов при запросе составляет 10 симв./с и среднее количество символов в сообщении для ЭВМ и ее ответе равно 50. Пусть оператор посылает одно такое сообщение, в среднем, каждые 10 с. Остальную часть времени составляет время "на обдумывание" или время, когда оператор обсуждает какое-то дело с клиентом. Предположим, что каждый символ является восьмибитовым; тогда будет передано, очевидно, 400 бит на абонентский пульт, а если учесть еще биты синхронизации, адресов, символов окончания и контроля за ошибками - то до 440. Отсюда видно, что за одну секунду будет передано, в среднем, 4,4 бита на один пульт. Пусть быстродействие канала составляет 2400 бит/с. Чтобы не допускать образования очередей, загрузка канала не должна превышать 60%. Поэтому, к одному такому телефонному каналу мы можем подсоединить (2400Х0,6)/4,4 = 327 абонентских пультов. Излишне говорить, что это очень существенно уменьшает стоимость линий в географически разбросанной системе. Подобная конструкция сети предлагает схему, которая иначе оказалась бы чрезмерно дорогостоящей.

Теперь рассмотрим возможность использования низкоскоростного канала. Время передачи символов по такому каналу составит 50/10 = 5 с. Однако часть этого времени расходуется на более медленный ввод данных человеком, а так как абонентский пульт не имеет буфера, то канал будет подсоединяться на все время, которое требуется оператору, чтобы отпечатать

Рис. 1.2 Концентраторы с групповыми (многопунктными) линиями с низким быстродействием

на клавиатуре сообщение. Пусть длина этого сообщения от 15 до 50 символов (средняя длина, вообще-то, близка к нижнему пределу, поскольку поступающие от оператора входные сообщения большей частью очень короткие). Если оператор печатает на клавиатуре с несколько замедленной скоростью (порядка двух символов в секунду), то полное время передачи сообщения по каналу с низким быстродействием составит величину, равную (15/2 + 35/10) = 11 с. Считая, что канал с низким быстродействием не может быть загружен более чем на 60%, получим (100Х0,6)/11 = 5,4, т.е. в такой канал можно включить только пять абонентских пультов.

Если абонентские пульты используются для обработки более длинных сообщение, то общее их количество, которое можно включить в один канал (без буферов), соответственно уменьшается. В некоторых системах оказывается возможным иметь только один или два абонентских пульта в линии; в противном случае наблюдается резкое возрастание времени реакции.

Групповая работа необходима, так как значительную часть дня абонентские пульты не используются. Различные лица имеют в своем учреждении абонентские пульты, хотя пользуются ими изредка. Несколько таких пультов могут быть подсоединены к частному арендуемому каналу. В этих случаях стоимость всей системы может оказаться меньше, чем стоимость использования общественных линий связи с телефонным набором. Но это имеет смысл только при условии, что пользователь не передает очень длинных непрерывных сообщений. В противном случае время реакции при передаче сообщений другими пользователями существенно увеличивается. Такому пользователю было бы целесообразно разделить свое сообщение и передавать его частями. Другим средством уменьшения времени реакции в групповой линии может служить применение абонентских пультов с буферами.

1.1.13 Комплексное управление линией

Как упоминалось ранее при рассмотрении работы нескольких абонентских пультов в одной линии с низким быстродействием и концентратором, их вызов может производиться либо из ЭВМ, либо из концентратора. Если вызов идет с концентратора, то порядок использования быстродействующей линии не должен быть намного сложней, чем в выше рассмотренном случае. Необходимо предусмотреть один дополнительный адресный символ, указывающий линию с низким быстродействием, к которой подсоединяется абонентский пульт. Кроме того, имеются дополнительные сообщения, связанные с выполнением таких функций, как изменение списка адресов. Однако существенного различия в управлении быстродействующими линиями и линиями с низкой скоростью нет.

Тем не менее, на практике в некоторых системах концентратор не производит вызовы. В этом случае информация, касающаяся управления линией с низким быстродействием, вводится в сообщения, передаваемые по быстродействующим линиям. Это может привести к определенным осложнениям, особенно в тех случаях, когда посылается утвердительный или отрицательный ответ в связи с возникновением ошибки и производится автоматическая повторная передача сообщений.

1.1.14 Количество управляющих символов

Процедура управления линией стала гораздо более сложной. Но это не имеет никакого значения, если достигается усложнение программы управления линиями связи, но почти все наши усилия по организации более эффективных вычислительных систем связаны с созданием более сложных средств программного обеспечения, а это не такая уж большая дополнительная работа. Вместе с тем это может вызвать чрезмерное увеличение количества управляющих символов, передаваемых по быстродействующим линиям, что может помешать достижению наших целей.

Во многих системах ответы, который оператор абонентского пульта направляет для ЭВМ, короткие. Иногда вычислительная машина поясняет, что ей "нужно" от оператора или каким образом оператор может продолжить свои расспросы, и тогда оператор делает краткие передачи материала несколько раз. Надобность в подобного рода действиях становится все более ощутимой, поскольку абонентские пульты используются все чаще и чаще для нерегулярных работ, когда оператор манипулирует с пультом самое непродолжительное время, но заинтересован в быстром получении сведений. В таких случаях вычислительная машина "проводит" его шаг за шагом через все необходимые процедуры.

Если это так, то количество управляющих символов, передаваемых по быстродействующей линии, может намного превышать количество символов, поступающих от оператора абонентского пульта. Увеличение логических возможностей концентратора позволяет уменьшить информацию, передаваемую по быстродействующей линии. Например, можно вызывать пульты, включенные в линию с низким быстродействием, из концентратора, а не из ЭВМ. Выполнение этой функции требует достаточно сложной логики, которая в большинстве случаев может быть реализована с помощью микропрограммы, хранимой в памяти.

Выполнение функции вызова независимо от ЭВМ называют "автовызовом". Автовызов усложняется еще больше, если к устройству подключены абонентские пульты разного типа и с разными способами вызова. Часто, например, телеграфное оборудование берется вперемежку с другими более специализированными пультами. Все они могут быть вызваны с помощью одного и того же устройства автовызова.

1.2 Современная аппаратура концентрации цифровых каналов

Появление и сравнительно быстрое внедрение систем передачи плезиохронной и, особенно, синхронной цифровых иерархий позволили резко увеличить масштабы цифровой транспортной сети [3]. Несмотря на образовавшееся благодаря этому изобилие цифровых каналов и трактов, продолжаются исследования, направленные на повышение пропускной способности цифровых каналов. Тому есть ряд причин, основными из которых являются ограниченные возможности передачи на отдельных направлениях (в частности, в случае использования спутниковых систем связи) и вполне объяснимое стремление операторов повысить доходность арендованных цифровых трактов.

Значительная экономия средств и сетевых ресурсов достигаются при использовании оборудования DCME (Digital Circuit Multiplication Equipment - аппаратура умножения числа цифровых каналов), что в русской редакции рекомендаций МСЭ-Т переводится как "Аппаратура концентрации цифровых каналов". Соответственно, системы связи, оснащенные двумя или более терминалами DCME, обозначаются как DCMS (Digital Circuit Multiplication System).

Указанные системы DCMS повышают эффективность передачи всех видов сигналов, передаваемых по соединительным линиям между станциями телефонной сети: речевых и факсимильных сигналов, а также данных, передаваемых в полосе частот канала тональной частоты 300...3400 Гц (Voice Band Data - VBD).

Сигналы телефонной сети, поступающие на вход аппаратуры DCME по многим каналам (соединительным линиям - trunks) сжимаются и передаются к противоположной станции по тракту (так называемому, "несущему каналу" - bearer), скорость передачи в котором существенно меньше суммарной скорости передачи по соединительным линиям. На приемной стороне осуществляется восстановление исходных сигналов.

Концентрация каналов достигается благодаря комплексному использованию разнообразных приемов:

распознавание вида передаваемой информации (речь, факс или данные) и раздельное, оптимальное для каждого вида преобразование сигнала;

исключение паузы речевых сигналов - операция, называемая цифровой интерполяцией речи (Digital Speech Interpolation - DSI);

низкоскоростное кодирование речевых сигналов (Speech Low Rate Encoding - S-LRE), в результате чего скорость передачи понижается с 64 кбит/с (в случае применения стандартных ИКМ-кодеков) до 32, 16, 8 кбит/с и даже ниже;

введение режима переменной скорости передачи (Variable Bit Rate - VBR);

применение метода модуляции-демодуляции факсимильных сообщений и др.

1.3 Концентраторы UltraNet

Система сети UltraNet состоит из семейства высокоскоростных программ для объединенных сетей и аппаратных изделий, способных обеспечить совокупную пропускную способность в один гигабайт в секунду. UltraNet производится и реализуется на рынке компанией Ultra Network Technologies. UltraNet обычно используется для соединения высокоскоростных компьютерных систем, таких как суперкомпьютеры, минисуперкомпьютеры, универсальные вычислительные машины, устройства обслуживания и АРМ. UltraNet может быть сама соединена с другой сетью (например, Ethernet и Token Ring) через роутеры, которые выполняют функции межсетевого интерфейса.

Концентратор в UltraNet является центральной точкой связи для главных вычислительных машин сети UltraNet. Он содержит высокоскоростную внутреннюю параллельную шину (UltraBus), объединяющую все процессоры в пределах этого концентратора. UltraBus отвечает за коммутируемую информацию в сети UltraNet. Концентраторы UltraNet обеспечивают быстрое согласование, управление перегрузкой каналов связи и прямое подключение каналов.

1.4 Концентраторы Fast Ethernet

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet. Ее основными достоинствами являются:

увеличение пропускной способности сегментов сети до 100 Мб/c;

сохранение метода случайного доступа Ethernet;

сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары и оптоволоконного кабеля.

Указанные свойства позволяют осуществлять постепенный переход от сетей 10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к скоростным сетям, сохраняющим значительную преемственность с хорошо знакомой технологией: Fast Ethernet не требует коренного переобучения персонала и замены оборудования во всех узлах сети. Официальный стандарт 100Base-T (802.3u) установил три различных спецификации для физического уровня (в терминах семиуровневой модели OSI) для поддержки следующих типов кабельных систем:

100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP Category 5, или экранированной витой паре STP Type 1;

100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP Category 3, 4 или 5;

100Base-FX для многомодового оптоволоконного кабеля.

Концентраторы SuperStack II Hub 100 компании 3Com реализуют идеи каскадируемых концентраторов, реализованные компанией 3Com впервые для концентраторов LinkBuilder FMS II, для технологии Fast Ethernet.

Семейство SuperStack II Hub 100 наследует все преимущества концентраторов LinkBuilder FMS II - объединение до 8 концентраторов в стек, общую шину для всех концентраторов, SNMP/RMON управление от одного модуля управления на стек. В семейство входят концентраторы SuperStack II Hub 100 TХ и SuperStack II Hub 100 T4, первый появившийся на рынке концентратор, поддерживающий технологию Fast Ethernet на 4 витых парах категории 3.

Управление всей системой SuperStack осуществляется с помощью интегрированной системы управления сетями Transcend компании 3Com, работающей в средах наиболее популярных открытых платформ - UNIX, Windows, NMS и OS/2.

Концентратор BayStack 100Base-T Hub компании Bay Networks имеет 12 портов 100Base-TX с разъемами RJ-45. Концентратор имеет два слота расширения. Первый слот расширения может использоваться для установки либо модуля управления с поддержкой SNMP/RMON управления, либо для установки дополнительного интерфейсного модуля с 12 портами 100Base-TX. Второй слот расширения предназначен для установки адаптера 100Base-FX с разъемом SC.

В стек можно объединять до 6 концентраторов 100Base-T Hub, что для управляемого стека дает 132 порта FastEthernet.

1.5 Концентраторы FDDI

Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Концентраторы FDDI выпускаются как в отдельных конструктивах с фиксированным количеством портов, так и в виде модулей для корпоративных концентраторов на основе шасси, таких как System 5000 компании Bay Networks или LANplex 6000 компании 3Com.

Концентратор FDDI 2914-04 компании Bay Networks. Модель 2914-04 - это концентратор FDDI, выполненный в отдельном корпусе и имеющий 14 портов. Все порты поддерживают многомодовый оптоволоконный кабель 50/125 или 62.5/125 мкм.

12 портов сконфигурированы как порты типа M для соединения со станциями с одиночным подключением, а два порта являются портами А и В для подключения концентратора к двойному кольцу. Порты А и В могут быть также сконфигурированы как М-порты, тогда концентратор может объединять до 14 станций типа SAS.

Концентратор имеет два МАС-узла - первичный и локальный. Локальный используется для поддержки процедуры плавного включения станций в кольцо, не требующей его реинициализации.

Модуль концентратора FDDI для коммутатора LANplex 6000 компании 3Com. Данный модуль устанавливается в любой слот шасси LANplex 6000. Модуль выпускается в двух исполнениях - на 6 портов для многомодового оптоволоконного кабеля, или на 12 портов неэкранированной витой пары категории 5. Каждый порт может быть сконфигурирован как порт М для поддержки станций SAS или как порт А или В для поддержки станций DAS.

Модуль поддерживает спецификацию SMT 7.3 управление станцией, а также позволяет управлять им по протоколу SNMP, так как в него встроен агент SNMP/SMT proxy.

1.6 Концентраторы 100VG-AnyLAN

В качестве альтернативы технологии Fast Ethernet, фирмы AT&T и HP выдвинули проект новой технологии со скоростью передачи данных 100 Мб/с - 100Base-VG. В этом проекте было предложено усовершенствовать метод доступа с учетом потребности мультимедийных приложений, при этом сохранить совместимость формата пакета с форматом пакета сетей 802.3. В сентябре 1993 года по инициативе фирм IBM и HP был образован комитет IEEE 802.12, который занялся стандартизацией новой технологии. Проект был расширен за счет поддержки в одной сети кадров не только формата Ethernet, но и формата Token Ring. В результате новая технология получила название 100VG-AnyLAN, то есть технология для любых сетей (Any LAN - любые сети), имея в виду, что в локальных сетях технологии Ethernet и Token Ring используются в подавляющем количестве узлов.

Летом 1995 года технология 100VG-AnyLAN получила статус стандарта IEEE 802.12.

В технологии 100VG-AnyLAN определены новый метод доступа Demand Priority и новая схема квартетного кодирования Quartet Coding, использующая избыточный код 5В/6В.

Метод доступа Demand Priority основан на передаче концентратору функций арбитра, решающего проблему доступа к разделяемой среде. Метод Demand Priority повышает коэффициент использования пропускной способности сети за счет введения простого, детерминированного метода разделения общей среды, использующего два уровня приоритетов: низкий - для обычных приложений и высокий - для мультимедийных.

Технология 100VG-AnyLAN имеет меньшую популярность среди производителей коммуникационного оборудования, чем конкурирующее предложение - технология Fast Ethernet. Компании, которые не поддерживают технологию 100VG-AnyLAN, объясняют это тем, что для большинства сегодняшних приложений и сетей достаточно возможностей технологии Fast Ethernet, которая не так заметно отличается от привычной большинству пользователей технологии Ethernet. В более далекой перспективе эти производители предлагают использовать для мультимедийных приложений технологию АТМ, а не 100VG-AnyLAN.

Тем не менее, число сторонников технологии 100VG-AnyLAN растет и насчитывает около 30 компаний. Среди них находятся не только копании Hewlett-Packard и IBM, но и такие лидеры как Cisco Systems, Cabletron, D-Link и другие. Все эти компании поддерживают обе конкурирующие технологии в своих продуктах, выпуская модули с портами как Fast Ethernet, так и 100VG-AnyLAN.

Концентратор 100VG Hub-15 компании Hewlett-Packard. Концентратор 100VG Hub-15 является наиболее широко применяемым устройством для построения сегментов в технологии 100VG-AnyLAN. Этот концентратор имеет 15 портов RJ-45 для непосредственного подключения рабочих станций 100VG с помощью кабеля на неэкранированной витой паре.

Концентратор реализует передачу кадров Ethernet между своими 15 портами на основе протокола Demand Priority, обеспечивая около 96% пропускной способности 100 Мб/с для передачи полезной информации. Для связи с концентратором верхнего уровня 100VG Hub-15 имеет специальный порт Uplink, с помощью которого концентраторы 100VG можно каскадировать.

Кроме этого, концентратор снабжен двумя портами (In и Out) для организации общей для стека шины управления.

По аналогии с 12/24/48-портовыми концентраторами НРAdvanceStack 10Base-T, 100VG Hub-15 обладает слотом расширения, который обеспечивает следующие возможности:

установку в дополнительный слот модуля, реализующего управление по протоколу SNMP;

реализацию функций HP EASE (Embedded Advanced Sampling Environment);

установку модулей мостов и маршрутизаторов.

Концентратор может поставляться с установленным в слот расширения модулем SNMP-управления или без него. Установленный в любой из 16 концентраторов 100VG стека модуль НР AdvanceStack 100VG SNMP/Bridge даст возможность управлять по протоколу SNMP всеми концентраторами стека.

Кроме того, модуль НР AdvanceStack 100VG SNMP/Bridge предоставляет возможность организовать мост между сегментом 100VG-AnyLAN и сегментом 10Base-T, построенном на концентраторах HP AdvanceStack или других концентраторах 10Base-T.

Управлять концентратором 100VG Hub-15 можно тремя способами:

1. Базовые средства управления: для сетей, которые не требуют SNMP-управления. Вместе с каждым концентратором НР AdvanceStack 100VG Hub-15 поставляется основанное на Windows программное обеспечение HP Stack Manager, которое управляет базовыми конфигурациями, осуществляет мониторинг и устранение неполадок в стеке, оперативно отображая состояние устройства и позволяя быстро пересматривать, конфигурировать и диагностировать порты.

2. SNMP-управление: для более крупных сетей с более интенсивным трафиком. Чтобы получить дополнительные возможности управления, нужно просто добавить модуль HP AdvanceStack 100VG SNMP/Bridge и программное обеспечение HP OpenView InterConnect Manager. Такая комбинация обеспечивает необходимые средства сетевого управления, подобные стандартному SNMP, универсальную и частные базы MIB, автоматическое отображение конфигурации сети, информирование о событиях и неисправностях, загрузку и выгрузку встроенных программ.

3. Расширенные средства управления: для сетей, которые требуют оптимальной производительности. В комбинации с такими приложениями, как Traffic Expert или Traffic Monitor, средства EASE, которые обеспечиваются при установке в любой концентратор стека модуля HP AdvanceStack 100VG SNMP/Bridge, позволяют оптимизировать производительность сети посредством одного стека. При этом графически указываются потенциальные участки возникновения неполадок, идентифицируется, кто использует те или иные сетевые ресурсы, и показываются образцы трафика.

1.7 Концентратор доступа DSL - Stinger

Сегодня наблюдается тенденция роста потребностей в новых широкополосных услугах [4]. Спрос на эти услуги можно реализовать с помощью технологии DSL, применение которой не требует дополнительных инвестиций. Она позволяет увеличить емкость медных проводов существующих кабелей практически в 2 раза, при этом скорость передачи возрастает в 30 раз (по сравнению с той, которую обеспечивают современные аналоговые модемы).

Операторы связи и поставщики услуг, используя преимущества технологий DSL и ATM, получают возможность извлекать дополнительные доходы. Организуя по обычной витой паре телефонных проводов высокоскоростной канал передачи данных, технология DSL обеспечивает быстрый доступ к сети и дает возможность предложить клиентам широкий спектр услуг на базе пакетной передачи голоса, видео и данных. В то же время применение технологии ATM позволяет сократить издержки, поднять производительность и коренным образом изменить способ передачи данных по магистральным сетям. Поэтому критичным становится фактор производительности и интеграции концентратора DSLAM на границе сети и коммутаторов ATM в ядре сети.

Stinger - концентратор доступа DSL нового поколения, изначально предназначенный для выполнения этой задачи. Его бесшинная архитектура дает возможность преодолеть ограничения по масштабируемости и пропускной способности, накладываемые конструктивными особенностями шины. Использование технологии ATM для внутренней связи упрощает передачу данных. Расширенная модульность облегчает наращивание и модернизацию Stinger, и в то же время предусматривает резервирование. Можно также осуществлять непосредственную модернизацию системных интеллектуальных функций в соответствии с перспективными технологиями. В результате получаем расширяемый и масшта6ируемый концентратор доступа DSL.

Stinger поддерживает протокол АТМ, а также наиболее распространенные технологии доступа DSL: ADSL (полноскоростная и G.Lite) и HDSL. Одно устройство Stinger поддерживает 672 порта xDSL и четыре интерфейса ОС-3с/STM-1. В стандартной семифутовой стойке можно установить три устройства Stinger, что соответствует более 2000 портов DSL. Это самая высокая плотность портов по сравнению с плотностью концентраторов доступа DSL, имеющихся на рынке.

С учетом статистической природы цифрового трафика в концентраторе Stinger для объединения трафика используется не мультиплексирование, а внутренняя высокоскоростная коммутация АТМ. При этом повышается эффективность передачи внутреннего трафика. так как в портах (с отсутствующим или периодическим трафиком) не занимается полоса пропускания. Stinger поддерживает до восьми виртуальных соединений (PVC или SVC) на одного абонента и буфер (более 150 ячеек) на одно соединение. Это позволяет быстро и равномерно передавать по сети трафик, имеющий импульсный характер.

Модульная архитектура концентратора Stinger с функциями резервирования разработана с учетом быстрого обнаружения, диагностирования и устранения линейных и аппаратных повреждений. В случае отказа модуля или порта Stinger автоматически подает сигнал тревоги и подключает резервный блок. Неисправный модуль или порт автоматически отключается, причем модуль может быть заменен в "горячем" режиме.

Для обеспечения бесперебойной работы линии предусмотрена возможность локального и удаленного тестирования шлейфа с помощью дополнительного тестового модуля. Модули Stinger с функциями линейной защиты помогают добиться минимальных отказов, защищая оборудование от бросков тока и напряжения. В рабочем состоянии сеть поддерживается с помощью резервных интерфейсов пучков, распределенной системы питания и саморегулирующейся системы вентиляции (для поддержки постоянной внутренней температуры).

Максимально высокая плотность портов и масштабируемость обеспечивается следующими базовыми модулями:

модуль коммутации и управления (CM) - высокоскоростная коммутационная матрица - "сердце" Stinger; поддерживает функции контроля за качеством обслуживания и системного контроля (начальная загрузка, установка виртуальных соединений, конфигурация и управление);

линейный интерфейсный модуль (LIM); выпускаются различные типы LIM для Stringer, каждый из которых поддерживает разные виды линейного кодирования DSL, число портов в модулях - от 12 до 48. Кроме объединения виртуальных каналов для передачи на коммутационную матрицу модуля управления, каждый модуль LIM реализует упомянутые выше функции обеспечения качества обслуживания и системного контроля;

транковые модули (ТМ); для Stinger выпускаются транковые модули ОС-3 и DS-3 (каждый с двумя портами). Порты могут использоваться как независимо, так и для резервирования;

модуль защиты линии (LPM); для Stinger выпускаются четыре модели модулей защиты, две из которых поддерживают резервирование LIM 1:n. Обе версии выпускаются в исполнении 24 и 48 портов.

Дополнительные модули Stinger выполняют следующие специальные функции:

модуль резервирования интерфейса (IRM) обеспечивает резервный путь к вторичному модулю LIM при использовании Stinger для поддержки одного вида DSL;

тестовый модуль медного шлейфа (CLT); две модели модуля CLT позволяют проводить тестирование шлейфа и определять параметры любой линии, подключенной к Stinger. Одна модель предназначена для подключения внешнего тестового оборудования, вторая включает встроенное тестовое оборудование. Управление обеими моделями осуществляется дистанционно через систему Navis, что не требует присутствия на станции технического персонала при необходимости подключения или тестирования линии.

1.8 Постановка задачи

Проведя анализ по применяемым видам цифровых концентраторов, рассмотрев их функции и принципы работы разработаем имитационную модель функционирования цифрового концентратора.

Для этого необходимо рассмотреть общие вопросы и принципы моделирования, рассмотреть особенности выбранного языка моделирования и учитывая их разработать алгоритм модели будущего концентратора. Опираясь на алгоритм составить программное обеспечение имитирующее работу цифрового концентратора.

Затем необходимо выполнить технико-экономический расчет, отражающий всю смету затрат на производство данного программного продукта.

Дать рекомендации по созданию безопасных, простых, полностью отвечающих функциональным требованиям условий труда в компьютерном зале.

Таким образом, учитывая вышеизложенное, для реализации поставленной задачи необходимо:

рассмотреть общие вопросы моделирования;

рассмотреть особенности используемого языка моделирования;

разработать алгоритм модели цифрового концентратора;

составить программное обеспечение, имитирующее работу цифрового концентратора, на выбранном языке моделирования.

2. Моделирование на GPSS

2.1 Общие вопросы моделирования

Имитационное моделирование обеспечивает возможность испытания, оценки и проведения экспериментов с предлагаемой системой без каких-либо непосредственных воздействий на нее [5]. При имитационном моделировании проводится эксперимент с программой, которая является моделью системы. Несколько часов, недель или лет работы исследуемой системы могут быть промоделированы на ЭВМ за несколько минут. В большинстве случаев модель является не точным аналогом системы, а скорее ее символическим изображением. Однако такая модель позволяет производить измерения, которые невозможно произвести каким-либо другим способом.

Преимущества моделирования (в отличие от натуральных экспериментов) объясняется следующими факторами:

стоимость натуральных экспериментов почти всегда больше стоимости машинных экспериментов с моделью;

измерение ряда показателей качества функционирования на реальных системах принципиально не возможно и может быть проведено только при изменении самой системы (например, для измерения времени реакции ВС на внешние сигналы, запросы необходимо определенным образом изменять и надстраивать операционную систему ВС);

при выработке рекомендаций по модернизации системы невозможно провести эксперимент с еще не существующей структурой;

условия работы, при которых нужно провести эксперимент, могут быть недопустимыми для реальной системы;

натуральный эксперимент часто невозможен из-за чрезвычайно больших интервалов времени между моментами смены состояний системы (например, при исследовании показателей надежности устройств, редко выходящих из строя);

машинный эксперимент возможен и с моделями еще не созданных систем.

Первым шагом при анализе любой конкретной системы является выделение элементов системы и формулирование логических правил, управляющих взаимодействием этих элементов. Полученное в результате описание называется моделью системы. Модель обычно включает в себя те аспекты системы, которые представляют интерес или нуждаются в исследовании.

Для общих задач система моделирования должна предоставлять пользователю достаточно краткий и в то же время применимый к широкому классу систем язык моделирования. Исследование разнообразных дискретных систем показало, что любая система может быть описана при помощи необходимого набора абстрактных элементов, называемых объектами. Логические правила поведения таких систем описываются аналогичным в каждом случае набором операций.

Наиболее распространенным методом описания систем является составление блок-диаграмм. Блок-диаграмма - графическое представление операций, происходящих внутри системы. Другими словами, блок-диаграмма описывает взаимодействие событий внутри системы. Линии, соединяющие блоки, указывают маршруты потоков сообщений или описывают последовательность выполняемых событий. В случае нескольких вариантов действий от блока отходят несколько линий. Если же к блоку подходят несколько линий, то это означает, что выполняемая операция является общей для двух или более последовательностей блоков. Выбор логических путей может основываться на статистических или логических условиях, действующих в момент выбора.

Блок-диаграммы получили широкое применение при описании систем, но форма представления обычно зависит и от самой системы, и от специалиста, описывающего эту систему. Поэтому, при построении блок-диаграмм, следует соблюдать определенные условия, являющиеся основой создания программы на языке моделирования.

Объекты в моделируемой системе предназначены для различных целей. Выбор объектов в конкретной моделируемой системе зависит от характеристик модели и, в некоторых случаях, от специалиста, составляющего модель. Совершенно не обязательно, чтобы в одной модели участвовали все типы объектов. Обязательным является лишь то, что в каждой модели должны быть блоки и сообщения, иначе просчитать ее будет невозможно. Какие объекты, помимо сообщений и блоков, будут включены в модель, будет зависеть от того, какие именно используются блоки и операнды блоков (которые могут повлечь появление операторов описания других объектов).

После того, как система описана, исходя из операций, которые она выполняет, ее нужно описать на нужном алгоритмическом языке, используя блоки, которые выполняют соответствующие операции в модели.

Ниже, в главе 3, приводится алгоритм имитационной модели функционирования концентратора и программа на языке моделирования GPSS.

цифровой концентратор моделирование сеть

2.2 Особенности языка моделирования GPSS


Подобные документы

  • Історія виникнення Fast Ethernet. Правила побудови Fast Ethernet мереж, їх відмінність від правил конфігурування Ethernet. Фізичний рівень технології Fast Ethernet. Варіанти кабельних систем: волоконно-оптичний багатомодовий, вита пара, коаксіальний.

    реферат [190,6 K], добавлен 05.02.2015

  • Технология Ethernet, построение схемы сети и алгоритм работы. Показатели работы сети до и после ввода дополнительных станций, результатов аналитического и имитационного моделирования. Запуск процесса моделирования и анализ результатов базовой модели.

    курсовая работа [357,5 K], добавлен 17.04.2012

  • Организация телефонной сети. Услуги цифрового доступа. Система передачи данных, обеспечивающая полнодуплексный цифровой синхронный обмен данными. Служба передачи цифровых данных. Основные стандарты цифровых систем. Уровни мультиплексирования Т-системы.

    презентация [674,7 K], добавлен 28.01.2015

  • Общая характеристика и организационная структура предприятия. Достоинства и недостатки сети, построенной по технологии 100VG-AnyLAN. Выбор типа кабеля, этапы и правила его прокладки. Требования надежности локальной сети и расчет ее главных параметров.

    курсовая работа [288,7 K], добавлен 25.04.2015

  • Понятие моделей источников цифровых сигналов. Программы схемотехнического моделирования цифровых устройств. Настройка параметров моделирования. Определение максимального быстродействия. Модели цифровых компонентов, основные методы их разработки.

    курсовая работа [2,4 M], добавлен 12.11.2014

  • Устройства записи и хранения информации. Преимущества сетевых систем цифрового видеонаблюдения перед аналоговыми. Устройства, необходимые для работы компьютерной сети. Программные платформы систем видеонаблюдения. Сетевые устройства хранения NAS.

    курсовая работа [2,6 M], добавлен 30.01.2016

  • Проектирование расширения коммутационной и абонентской станции для городской телефонной сети. Назначение и построение цифровой системы коммутации "Омега". Структура и принципы работы концентратора абонентской нагрузки, коммутатора цифровых сигналов.

    дипломная работа [956,9 K], добавлен 21.11.2011

  • Требования к серверу. Выбор сетевых программных средств. Оптимизация и поиск неисправностей в работающей сети. Структура Fast Ethernet. Ортогональное частотное разделение каналов с мультиплексированием. Классификация беспроводного сетевого оборудования.

    дипломная работа [5,9 M], добавлен 30.08.2010

  • Классификация линий передачи по назначению. Отличия цифровых каналов от прямопроводных соединений. Основные методы передачи данных в ЦПС. Ethernet для связи УВК с рабочими станциями ДСП и ШНЦ. Передача данных в системах МПЦ через общедоступные сети.

    реферат [65,1 K], добавлен 30.12.2010

  • Алгоритмы сети Ethernet/Fast Ethernet: метод управления обменом доступа; вычисления циклической контрольной суммы (помехоустойчивого циклического кода) пакета. Транспортный протокол сетевого уровня, ориентированный на поток. Протокол управления передачей.

    контрольная работа [149,6 K], добавлен 14.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.