Микрофон: устройство, принцип действия, применение

Микрофон как устройство обработки, усиления звуковых частот и передачи на расстояния звуковой информации. Устройство и электрические характеристики микрофонов в сочетании с звукоусилительной и записывающей аппаратурой. Функциональные виды микрофонов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 05.09.2012
Размер файла 266,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ

ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ»

Исторический факультет

Реферат

по дисциплине «Технические и аудиовизуальные средства обучения»

Микрофон , устройство, принцип действия, применение.

Выполнила:

студентка 1 курса

Мульнючкина М.В.

Проверил:

К. ф-м.н. Я.И. Микицей

Хабаровск, 2011г.

Содержание

Введение

1. История микрофона

2. Устройство микрофона

3. Применение

Заключение

Список литературы

Введение

Для обработки и передачи на расстояния звуковой и визуальной информации звук и оптическое изображение необходимо представить в форме электрических сигналов.

Звук преобразуют в электрический сигнал посредством аппаратов, названных микрофоном. Микрофон это устройство для преобразования и усиления звуковых частот.

Микрофон решает такую проблему, как громкость голоса. С помощью микрофона привлекается внимание в больших помещениях.

1. История микрофона

Вначале наибольшее распространение получил угольный микрофон Эдисона, об изобретении которого также независимо заявляли Г.Махальский в 1878 и П.М. Голубицкий в 1883. Угольный микрофон до сих пор используется в аппаратах аналоговой телефонии. Действие его основывается на изменении сопротивления между зёрнами угольного порошка при изменении давления на их совокупность.

Конденсаторный микрофон был изобретён американским учёным Э. Венте в 1917 году. В нём звук воздействует на тонкую металлическую мембрану, изменяя расстояние между мембраной и металлическим корпусом. Тем самым образуемый мембраной и корпусом конденсатор меняет ёмкость. Если подвести к пластинам постоянное напряжение, изменение ёмкости вызовет ток через конденсатор, тем самым образуя электрический сигнал во внешней цепи.

Более массовыми стали динамические микрофоны, отличающиеся от угольных гораздо лучшей линейностью характеристик и хорошими частотными свойствами, а от конденсаторных -- более приемлемыми электрическими свойствами.

Первым динамическим микрофоном стал изобретённый в 1924 году немецкими учёными Э. Герлахом и В. Шоттки электродинамический микрофон ленточного типа. Они расположили в магнитном поле гофрированную ленточку из очень тонкой (ок. 2 мкм) алюминиевой фольги. Такие микрофоны до сих пор применяются в студийной записи благодаря чрезвычайно высоким частотным характеристикам, однако их чувствительность невелика, выходное сопротивление очень мало (доли Ома), что значительно осложняло проектирование усилителей. Кроме того, достаточная чувствительность достижима только при значительной площади ленточки (а значит, и размерах магнита), в результате такие микрофоны имеют большие размеры и массу по сравнению со всеми остальными типами.

Пьезоэлектрический микрофон, сконструированный советскими учёными С.Н. Ржевкиным и А.И. Яковлевым в 1925 году, имеет в качестве датчика звукового давления пластинку из вещества, обладающего пьезоэлектрическими свойствами. Работа в качестве датчика давления позволила создать первые гидрофоны и записать сверхнизкочастотные звуки, характерные для морских обитателей.

В 1931 году американские учёные Э. Венте и А. Терас изобрели динамический микрофон с катушкой, приклееной к тонкой мембране из полистирола или фольги. В отличие от ленточного, он имел существенно более высокое выходное сопротивление (десятки Ом и сотни кило Ом), мог быть изготовлен в меньших размерах и является обратимым.

Совершенствование характеристик именно этих микрофонов, в сочетании с совершенствованием звукоусилительной и звукозаписывающей аппаратуры, позволило развиться индустрии звукозаписи. Создание малых по размеру (даже несмотря на массу постоянного магнита, необходимого для работы микрофона), а также чрезвычайно чувствительных и узконаправленных динамических микрофонов в заметной степени изменило представление о приватности и породило ряд изменений в законодательстве (в частности, о применении подслушивающих устройств).

Тогда же разработанные электромагнитные микрофоны, в отличие от электродинамических, имеют закреплённый на мембране постоянный магнит и неподвижную катушку. Благодаря отсутствию жёстких требований к массе катушки (характерном для динамических микрофонов) такие микрофоны делались высокоомными, а также порой имели многоотводные катушки, что делало их более универсальными. Такие микрофоны, наряду с пьезоэлектрическими, позволили создать эффективные слуховые аппараты, а также ларингофоны.

Электретный микрофон, изобретённый японским учёным Ёгути в начале 20-х гг. XX века по принципу действия и конструкции близок к конденсаторному, однако в качестве неподвижной обкладки конденсатора и источника постоянного напряжения выступает пластина из электрета. Долгое время такие микрофоны были относительно дороги, а их очень высокое выходное сопротивление (как и конденсаторных, единицы мегаОм и выше) заставляло применять исключительно ламповые схемы.

Создание полевых транзисторов привело к появлению чрезвычайно эффективных, миниатюрных и лёгких электретных микрофонов, совмещённых с собранным в том же корпусе предусилителем на полевом транзисторе.

2. Устройство микрофона

Принцип действия микрофона с подвижной катушкой

Конденсаторный микрофон Октава МК-319 внутри

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Свойства акустико-механической системы сильно зависят от того, воздействует ли звуковое давление на одну сторону диафрагмы (микрофон давления) или на обе стороны, а во втором случае от того, симметрично ли это воздействие (микрофон градиента давления) или на одну из сторон диафрагмы действуют колебания, непосредственно возбуждающие её, а на вторую -- прошедшие через какое-либо механическое или акустическое сопротивление или систему задержки времени (асимметричный микрофон градиента давления).

Большое влияние на характеристики микрофона оказывает его механоэлектрическая часть

Динамический (электродинамический) микрофон -- наиболее распространённый тип конструкции микрофона. Он представляет собой мембрану, соединённую с лёгким токопроводом, который помещен в сильное магнитное поле, создаваемое постоянным магнитом. Колебания давления воздуха (звук) воздействуют на мембрану и приводят в движение токопровод. Когда токопровод пересекает силовые линии магнитного поля, в нем наводится ЭДС индукции. ЭДС индукции пропорциональна как амплитуде колебаний мембраны, так и частоте колебаний.

В отличие от конденсаторных, динамические микрофоны не требуют фантомного питания.

Динамический микрофон практически аналогичен по конструкции динамической головке (динамику, громкоговорителю). Это, в сущности, «обращение» динамика: вместо подачи напряжения на катушку динамика для создания звука с этой катушки снимается напряжение, созданное внешним звуком.

В ранней радиолюбительской практике динамики нередко использовались в качестве динамического микрофона, а некоторые радиостанции специально проектировались под использование в качестве и микрофона, и динамика одного устройства. Однако обычно динамик и микрофон имеют разное электрическое сопротивление, поэтому при использовании одного вместо другого можно необратимо испортить устройство.

Динамический микрофон конструктивно несколько отличается от динамика: у него другая конструкция мембраны, катушка содержит бомльшее количество витков и намотана гораздо более тонким проводом.

Классификация по типу проводника

В электродинамическом микрофоне катушечного типа применена диафрагма, связанная с катушкой индуктивности, находящейся в кольцевом зазоре магнитной системы. При колебаниях диафрагмы под действием звуковой волны витки катушки пересекают магнитные силовые линии и в катушке наводится эдс, создающая переменное напряжение. Такой микрофон надёжен в эксплуатации.

В электродинамическом микрофоне ленточного типа вместо катушки в магнитном поле располагается гофрированная ленточка из алюминиевой фольги. Такой микрофон применяется главным образом в студиях звукозаписи.

Конденсамторный микрофомн -- тип конструкции микрофона.

Представляет собой конденсатор, одна из обкладок которого выполнена из эластичного материала (обычно полимерная плёнка с нанесённой металлизацией), которая при звуковых колебаниях изменяет ёмкость конденсатора. Если конденсатор заряжен, то изменение ёмкости конденсатора приводит к изменению напряжения, которое и является полезным сигналом с микрофона. Для работы такого микрофона между обкладками должно быть приложено поляризующее напряжение, 60-80 вольт в более старых микрофонах, а в моделях после 60-70х годов 48 вольт. Такое напряжение питания в настоящее время стало стандартом. Именно с таким фантомным питанием выпускаются предусилители и звуковые карты. Конденсаторный микрофон имеет очень высокое выходное сопротивление. В связи с этим, в непосредственной близости к микрофону (внутри его корпуса) располагают предусилитель с высоким (порядка 1 ГОм) входным сопротивлением, выполненный на электронной лампе или полевом транзисторе. Как правило, напряжение для поляризации и питания предусилителя подаётся по сигнальным проводам (фантомное питание).

Конденсаторные микрофоны обладают весьма равномерной амплитудно-частотной характеристикой и обеспечивают высококачественный захват звука, в связи с чем широко используются в студиях звукозаписи, на радио и телевидении. Недостатками их являются высокая стоимость, необходимость во внешнем питании и высокая чувствительность к ударам и климатическим воздействиям -- влажности воздуха и перепадам температуры, что не позволяет использовать их в полевых условиях.

Существует тип конденсаторного микрофона -- электретный микрофон, который свободен от большинства перечисленных недостатков

Электремтный микрофомн -- разновидность конденсаторного микрофона.

Принцип действия электретного конденсаторного микрофона основан на способности некоторых диэлектрических материалов (электретов) сохранять поверхностную неоднородность распределения заряда в течение длительного времени.

Тонкая плёнка из гомоэлектрета помещается в зазор конденсаторного микрофона (то есть конденсатора, у которого одна из обкладок (мембрана) имеет возможность перемещаться под действием внешнего акустического сигнала) либо наносится на одну из обкладок. Это приводит к появлению некоторого постоянного заряда конденсатора. При изменении ёмкости, вследствие смещения мембраны, на конденсаторе проявляется изменение напряжения, соответствующее акустическому сигналу.

Принцип действия гетероэлектретного микрофона

В таком микрофоне сама гетероэлектретная плёнка служит мембраной. При её деформации на её поверхностях возникают разноимённые заряды, которые можно зарегистрировать, расположив электроды непосредственно на поверхности плёнки (на поверхность напыляют тонкий слой металла (алюминий, золото, серебро и т. п.).

Особенности подключения

Угольный микрофон -- один из первых типов микрофонов. Угольный микрофон содержит угольный порошок, размещённый между двумя металлическими пластинами и заключённый в герметичную капсулу. Стенки капсулы или одна из металлических пластин соединяется с мембраной. При изменении давления на угольный порошок изменяется площадь контакта между отдельными зёрнышками угля, и, в результате, изменяется сопротивление между металлическими пластинами. Если пропускать между пластинами постоянный ток, напряжение между пластинами будет зависеть от давления на мембрану .

3. Применение

Угольный микрофон из телефонного аппарата

Угольный микрофон практически не требует усиления сигнала, сигнал с его выхода можно подавать непосредственно на высокоомный наушник или громкоговоритель. Из-за этого свойства угольные микрофоны использовались до недавнего времени в телефонных аппаратах, их использование освобождало телефонный аппарат от дорогостоящих и дефицитных в то время полупроводниковых деталей либо громоздких, хрупких и энергоёмких усилителей на радиолампах. Классический телефонный аппарат с дисковым номеронабирателем обычно содержит угольный микрофон (однако, в аппаратах более поздних лет выпуска часто применяются динамические или электретные микрофоны, часто объединенные в единую конструкцию с усилителем, взаимозаменяемую с угольным микрофоном).

Однако угольный микрофон отличается плохой амплитудно-частотной характеристикой и узкой полосой пропускания (он нечувствителен к слишком низким и слишком высоким частотам), высоким уровнем шумов и искажений. Кроме того, в отличие от наиболее распространённого динамического микрофона, угольный требует питания постоянным током. Сейчас появились дешёвые и доступные полупроводниковые устройства, которые позволяют использовать микрофоны других типов. Поэтому в современных устройствах угольные микрофоны практически не применяются.

Типичная схема предусилителя на встроенном полевом транзисторе. Внешнее напряжение питания подаётся на U+; отделённая конденсатором переменная составляющая сигнала снимается с «Output»; резистор устанавливает режим работы транзистора и выходной импеданс.

В отличие от динамических микрофонов, имеющих низкое электрическое сопротивление катушки (~50Ом? 1 кОм), электретный микрофон имеет чрезвычайно высокий импеданс (имеющий емкостный характер, порядка десятков пФ), что вынуждает подключать их к усилителям с высоким входным сопротивлением. В конструкцию практически всех электретных микрофонов входит предусилитель («преобразователь сопротивления», «согласователь импеданса») на полевых транзисторах, реже на миниатюрных радиолампах с входным сопротивлением порядка 1 ГОм и выходным сопротивлением в сотни Ом, находящийся в непосредственной близости от капсюля. Поэтому, несмотря на отсутствие необходимости в поляризующем напряжении, такие микрофоны требуют внешнего источника электропитания.

Функциональные виды микрофонов

· Студийный микрофон

· Измерительный микрофон («искусственное ухо»)

· Микрофонный капсюль для телефонных аппаратов

· Микрофон для применения в радиогарнитурах

· Микрофон для скрытного ношения

· Ларингофон

· Гидрофон

Характеристики микрофонов

Схематическое обозначение микрофона

Микрофоны любого типа оцениваются следующими характеристиками:

1. чувствительность

2. амплитудно-частотная характеристика

3. акустическая характеристика микрофона

4. характеристика направленности

5. уровень собственных шумов микрофона

Чувствительность

Чувствительность микрофона определяется отношением напряжения на выходе микрофона к звуковому давлению Р0 в свободном звуковом поле, т. е. при отсутствии сигнала. При распространении синусоидальной звуковой волны в направлении акустической оси микрофона, это направление называется осевой чувствительностью: M0 = U / P0(мВ/н/м?)

Акустическая ось совпадает с осью симметрии микрофона. Если конструкция микрофона не имеет оси симметрии, то направление акустической оси указывается в технических условиях. Чувствительность современных микрофонов составляет от 1-2 (динамические микрофоны) до 10-15 (конденсаторные микрофоны) мВ/Па

Амплитудно-частотная характеристика

АЧХ микрофонов Октава МК-319 и Shure SM58

Амплитудно-частотная характеристика (АЧХ), или просто частотная характеристика - это зависимость осевой чувствительности от частоты звуковых колебаний. Эта характеристика связана с зависимостью чувствительности микрофона от частоты звуковых колебаний. Неравномерность амплитудно-частотной характеристики измеряют в децибелах как отношение чувствительности микрофона на определенной частоте к чувствительности на средней частоте, например 1000 Гц.

Акустическая характеристика

Влияние звукового поля микрофона оценивается акустической характеристикой, которая определяется отношением силы, действующей на диафрагму микрофона, и звуковым давлением в свободном звуковом поле:

A = F/P,

а потому, что чувствительность микрофона

M = U/P

можно представить как

U/P = U/F * F/P

микрофон звук запись усиление

и выразить через А. Тогда получим:

M = A * U / F.

Отношение напряжения на выходе микрофона к силе, действующей на диафрагму U/F, характеризует микрофон как электромеханический преобразователь. Акустическая характеристика определяет характеристику направленности микрофона. По виду акустической характеристики, а следовательно и характеристики направленности, отличают три типа микрофонов, как приемников звука: приемники давления; градиента давления; комбинированные.

Характеристика направленности

Направленность микрофонов. Представление в полярных координатах

приемники давления

Ненаправленный

приемники градиента давления

Двунаправленный
«Восьмерка»

комбинированные

Кардиоид

Гиперкардиоид

Характеристикой направленности называют зависимость чувствительности микрофона от направления падения звуковой волны по отношению к оси микрофона. Она определяется отношением чувствительности М? при падении звуковой волны под углом ? относительно акустической оси микрофона к его осевой чувствительности:

? = M?/M0

Направленность микрофона означает его возможное расположение относительно источников звука. Если чувствительность не зависит от угла падения звуковой волны, т. е. ? = 1, то микрофон называют ненаправленным, и источники звука могут располагаться вокруг него. А если чувствительность зависит от угла, то источники звука должны располагаться в пространственном угле, в пределах которого чувствительность микрофона мало отличается от осевой чувствительности.

Ненаправленные микрофоны

В микрофонах - приемниках давления сила, действующая на диафрагму, определяется звуковым давлением у поверхности диафрагмы. Звуковое поле может действовать только на одну сторону диафрагмы. Вторая сторона конструктивно защищена. Если размеры микрофона малы по сравнению с длиной звуковой волны, то микрофон не изменяет звукового поля. А если больше, тогда за счет дифракции звуковых волн давление меняется. На низких частотах от 1000 Гц и ниже такие микрофоны не имеют направленного действия.

Ненаправленные микрофоны удобны, например, для записи разговора людей, сидящих за круглым столом.

Микрофоны двустороннего направления

В микрофонах - приемниках градиента давления сила, действующая на движущуюся систему микрофона, определяется разностью звуковых давлений на двух сторонах диафрагмы. То есть, звуковое поле действует на две стороны диафрагмы. Характеристика направленности имеет вид восьмерки.

Двусторонние микрофоны удобны, например, для записи разговора двух собеседников, сидящих друг напротив друга.

Микрофоны одностороннего направления

Односторонняя направленность достигается в микрофонах комбинированного типа. Их диаграммы направленности близки по форме к кардиоиде, поэтому нередко их называют кардиоидными. Модификации микрофонов, имеющих еще меньшую направленность, чем кардиоидные, называют суперкардиоидными и гиперкардиоидными, однако эти разновидности, в отличие от кардиоидного микрофона, также чувствительны к сигналам с противоположной стороны.

Эти микрофоны имеют определенные преимущества в эксплуатации: источник звука располагается с одной стороны микрофона в пределах достаточно широкого пространственного угла, а звуки, распространяющиеся за его пределами микрофон не воспринимает.

Уровень шумов

Уровень собственных шумов микрофона Nш определяется отношением эффективного напряжения на выходе микрофона при отсутствии звукового поля Uш к напряжению U1</sub при наличии звукового поля с эффективным давлением в 0,1 н/м?:

Nш = 20 lg Uш/U1, дБ.

Напряжение Uш обусловлено главным образом тепловыми шумами в опорах электрической схемы микрофона.

Заключение

Можно сделать несколько выводов. Микрофон нужен для усиления звука. Он необходим для того, чтобы звук было слышно и слышно отчетливо.

Принцип работы микрофона заключается в том, что давление звуковых колебаний воздуха, воды или твердого вещества действует на тонкую мембрану микрофона. В свою очередь, колебания мембраны возбуждают электрические колебания; в зависимости от типа микрофона для этого используются явление электромагнитной индукции, изменение ёмкости конденсаторов или пьезоэлектрический эффект.

Очень много видов микрофона. В зависимости от видов микрофонов принцип действия разный. Их применение тоже, например,с помощью двустороннего микрофона можно записывать голос сабеседника. Их применение зависит от вида.

Список литературы

1. Коджаспирова, Г.М. Технические средства обучения и методика их применения - М,2001

2. Воронин Ю.А. Технические и аудиовизуальные средства обучения: Учебное пособие / Ю.А.Воронин. - Воронеж: Воронежский государственный педагогический университет, 2001.

Размещено на Allbest.ru


Подобные документы

  • Динамический микрофон — электроакустический прибор, преобразовывающий звуковые колебания в колебания электрического тока, устройство ввода. История, классификация; типы микрофонов по принципу действия, функциональные виды, характеристики, применение.

    презентация [465,8 K], добавлен 11.10.2011

  • Микрофоны электромагнитной системы. Угольные, катушечные и ленточные микрофоны. Частотная характеристика, маркировка микрофонов электродинамической системы. Недостатки конденсаторных микрофонов. Микрофон электростатической системы, созданный Вентом.

    реферат [252,3 K], добавлен 16.11.2010

  • Изобретение инструмента для усиления слабых звуков. Современный микрофон как устройство для преобразования акустического сигнала в электрический с сохранением волновых характеристик. Жидкостный, угольный, ленточный, динамический и конденсаторный микрофоны

    реферат [224,1 K], добавлен 22.11.2010

  • Сущность и сферы использования микрофона. История изобретения и принцип работы конденсаторного, динамического, пьезоэлектрического, электретного микрофонов. Воздействие давления звуковых волн на мембрану, вследствие чего возникают электрические колебания.

    презентация [8,3 M], добавлен 16.04.2012

  • Классификация микрофонов по особенностям приёма звуковых колебаний, принципу преобразования акустических сигналов в электрические и по классам качества. Взаимодействие мембраны со звуковым полем. Направленность микрофона и чувствительность приёмника.

    контрольная работа [183,2 K], добавлен 16.11.2010

  • Описание устройства и принципа работы динамических, ленточных, конденсаторных и электретных микрофонов. Преимущества использования и области применения однонаправленных (кардиоидного, суперкардиоидного), всенаправленных и двунаправленных микрофонов.

    реферат [776,1 K], добавлен 19.12.2011

  • Принципы работы существующего оборудования громкоговорящей связи. Технологические, инструментальные и методические способы подавления шумов и наводок в аудиотехнике. Дифференциальный метод подключения микрофонов. Автоматическая регулировка усиления.

    курсовая работа [1,5 M], добавлен 21.02.2012

  • Звуковая экспликация рассказа А.П. Чехова "Казак" и "Смерть Чиновника". Характеристики формата HDCAM-SR. Структурная схема соединения оборудования на площадке с учётом видео- и аудио-синхросигнала. Обоснование выбора микрофонов и их характеристики.

    курсовая работа [336,8 K], добавлен 15.02.2013

  • Изучение предназначения усилителя звуковых частот, усилителя низких частот или усилителя мощности звуковой частоты - прибора для усиления электрических колебаний, соответствующих слышимому человеком звуковому диапазону частот (обычно от 6 до 20000 Гц).

    реферат [4,6 M], добавлен 27.10.2010

  • Звуковая зкспликация выбранных эпизодов. Структурная схема соединения оборудования на площадке с учётом видео, звукового сигнала и сигнала синхронизации для каждых сцен. Обоснование выбора микрофонов, их характеристики, назначение в выбранных эпизодах.

    курсовая работа [1,4 M], добавлен 29.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.