Разработка источника бесперебойного питания

Типы источников бесперебойного питания, их возможности и преимущества технологии двойного преобразования. Выбор и основание функциональной схемы. Расчет узлов принципиальной схемы. Технико-экономическое обоснование проекта. Мероприятия по охране труда.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 17.11.2010
Размер файла 703,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Регистр статуса

Регистр статуса (03h) содержит арифметические флаги АЛУ, состояние контроллера при сбросе и биты выбора страниц для памяти данных. Регистр доступен для любой команды так же, как любой другой регистр. Однако, биты и устанавливаются аппаратно и не могут быть записаны в статус программно. Это следует иметь в виду при выполнении команды с использованием регистра статуса. Например, команда CLRF 03h обнулит все биты, кроме битов и , а затем установит бит Z=1. После выполнения этой команды регистр статуса может и не иметь нулевое значение (из-за битов и ) 03h=000??100. Поэтому рекомендуется для изменения регистра статуса использовать только команды битовой установки BCF, BSF, MOVWF, которые не изменяют остальные биты статуса. Воздействие всех команд на биты статуса можно посмотреть в “Описании команд”.

Программные флаги статуса

Таблица3.5.

Размещение флагов в регистре статуса.

b7

b6

b5

b4

B3

b2

b1

b0

03h=

IRP

RP1

RP0

Z

DC

C

C - Флаг переноса/заема:

Для команд ADDWF и SUBWF. Этот бит устанавливается, если в результате операции из самого старшего разряда происходит перенос. Вычитание осуществляется путем прибавления дополнительного кода второго операнда. При выполнении команд сдвига этот бит всегда загружается из младшего или старшего бита сдвигаемого источника.

3.6.4 Организация встроенного ПЗУ

Программный счетчик в PIC16F84 имеет ширину 13 бит и способен адресовать 8Кх14бит объема программной памяти. Однако, физически на кристалле имеется только 1Кх14 памяти (адреса 0000h-03FFh). Обращение к адресам выше 3FFh фактически есть адресация в тот же первый килобайт. Вектор сброса находится по адресу 0000h, вектор прерывания находится по адресу 0004h.

Таблица3.6.

Организация встроенного ПЗУ.

PC <12:0>

Stack Level 1

Stack Level 2

. . . . . . . . . . . .

Stack Level 8

Reset Vector

0000h

Interruрt Vector

0004h

On-Chiр Program Memory

0005h

03FFh

0400h

1FFFh

EEPROM PIC16F84 рассчитан на ограниченное число циклов стирания/записи. Чтобы записать в программную память, кристалл должен быть переведен в специальный режим при котором на ножку подается напряжение программирования Vрrg, а питание Vdd должно находиться в пределах 4.5 В ...5.5В. PIC16F84 непригоден для применений, в которых часто модифицируется программа. Запись в программную память осуществляется побитно, последовательно с использованием только двух ножек. Паспортное значение количества записей в программную память PIC16F84 равно 100(min) и 1000 (tiр), практически-же микросхемы выдерживают несколько тысяч перезаписей. Число перезаписей памяти данных (64 байта) достанет 1000000.

3.6.5 Данные в EEPROM

Долговременная Память данных EEPROM.

Память данных EEPROM позволяет прочитать и записать байт информации. При записи байта автоматически стирается предыдущее значение и записываются новые данные (стирание перед записью). Все эти операции производит встроенный автомат записи EEPROM. Содержимое ячеек этой памяти сохраняется при выключении питания. Кристалл PIC16F84 имеет память данных 64х8 EEPROM бит, которая позволяет запись и чтение во время нормальной работы (во всем диапазоне питающих напряжений). Эта память не принадлежит области регистров ОЗУ. Доступ к ней осуществляется через два регистра: EEDATA (08h), который содержит в себе восьмибитовые данные для чтения/записи и EEADR (09h), который содержит в себе адрес ячейки к которой идет обращение. Дополнительно имеется два управляющих регистра: EECON1 (88h) и EECON2 (89h).

3.7 Блок схема алгоритма

3.7.1 Главная программа

3.7.2 Подпрограмма

Листинг программного обеспечения.

#include <p16f84.inc>

list p=16f84

processor 16F84

bank0 macro

bcf STATUS,RP0 ;set bank0

endm

bank1 macro

bsf STATUS,RP0 ;set bank1

endm

org 0x0000

begin

call init

bank0

movlw 0x05

movwf 0x0c

loop btfsc PORTB,1 ;esli rb1=1

goto rele_on ;rele - on (220 on)

;rb1=0

btfss PORTA,2 ;test battarey

goto low_batt ;esli ra2=1 (bat rabotaet)

;generirovat'

bsf PORTB,4

call delay34

bcf PORTB,4

call delay16

bsf PORTB,5

call delay34

bcf PORTB,5

decfsz 0x0c, ;

goto loop1

;esli 0x0c=0 (1 raz iz 5)

movlw 0x05

movwf 0x0c ;to

btfss PORTB,2 ;proverka napraz. generat.

Goto sound ;esli napr.gener.

;low - sound

bcf PORTB,7

nop

nop

nop

goto loop_sound

movf PORTB,0 ;W<-PORTB

xorlw b'10000000' ;invers. RB7

movwf PORTB

goto loop

loop1

nop

nop

nop

nop

nop

nop

nop

goto loop

rele_on

bsf PORTB,3

goto loop

low_batt

movlw 0xff ;pischit ~0.2s

movwf 0x11

m6 movlw 0x03

movwf 0x12

snd movlw d'83' ;f=2khz

movwf 0x10

m3 decfsz 0x10

goto m3

movf PORTB,0 ;W<-PORTB

xorlw b'10000000' ;invers. RB7

movwf PORTB

decfsz 0x11

goto snd

decfsz 0x12

goto m6

;molchit ~0.2s

bcf PORTB,7

movlw 0xff

movwf 0x12

m5 movwf 0x11

m4 decfsz 0x11

goto m4

decfsz 0x12

goto m5

goto loop ;snachala

init

bank0

clrf PORTA

clrf PORTB

bank1

movlw B'00011111'

movwf TRISA

movlw B'01000111'

movwf TRISB

return

delay16

movlw 0x03

movwf 0x10

m1 decfsz 0x10

goto m1

nop

nop

return

delay34

movlw 0x09

movwf 0x10

m2 decfsz 0x10

goto m2

nop

nop

return

end

4. Расчетно-проектировочный раздел

4.1 Назначение и области применения

Входной источник питания преобразует переменный ток сети (разумеется, когда она подключена) в постоянный ток, необходимый для аккумуляторной батареи. Выходной источник питания делает то же самое в обратном порядке: он преобразует постоянный ток аккумуляторной батареи в переменный ток, который может потреблять компьютер. Источником напряжения постоянного тока ( это напряжение подается на выходной источник) является входной источник (если он работает) или аккумуляторная батарея. В любом случае переменный ток на выходе стабилен, без каких-либо прерываний выходного напряжения, независимо от состояния сети переменного тока на входе.

В источнике бесперебойного питания введен переключатель, который позволяет устранить многие проблемы. Он переключает источники питания, когда исчезает напряжение в сети или нужно зарядить аккумуляторы. Здесь материальная выгода достигается ценой кратко временного исчезновения выходного напряжения.

В нормальных условиях переключатель подает входное переменное напряжение непосредственно на выход. При исчезновении входного напряжения, схема управления источника бесперебойного питания подключает (с помощью переключателя) выходной источник питания к компьютеру. В результате в нормальных условиях источники питания отключены, т.е. источник бесперебойного питания не перегревается, полная нагрузка входного источника уменьшается, а стоимость источника бесперебойного питания резко падает. Мощность источников питания в составе источника бесперебойного питания определяет мощность компьютера (и других периферийных устройств), которые может обеспечить источник бесперебойного питания. Ёмкость аккумуляторов определяет время поддержания напряжения при его исчезновении в сети.

Источник бесперебойного питания не только защищает компьютер, но и управляет своим состоянием.

Управление аккумуляторной батареей. Источник бесперебойного питания следит за емкостью аккумуляторной батареи и уровнем ее зарядки. Он подает сигнал тревоги при разрядке аккумуляторов и выдает сообщение если нужно заменить аккумуляторы.

Интерфейс с компьютером и программное обеспечение. Соединив компьютер через последовательный порт с источником бесперебойного питания, с помощью программного обеспечения можно следить за его состоянием и управлять его работой.

Защита по низкому и высокому напряжению. Источник бесперебойного питания не только защищает компьютер от исчезновения напряжения в сети, но и следит за понижением и повышением подаваемого напряжения. Когда подаваемое напряжение выходит за допустимые пределы, источник бесперебойного питания корректирует его до заданных значений, необходимых для работы компьютера.

4.2 Разработка структурной схемы

Разработка структурной схемы является начальным этапом проектирования любого электронного устройства.

Структурной называется схема, которая определяет основные функциональные части изделия и связи между ними. Структурная схема лишь в общих чертах раскрывает назначение устройства и его функциональных частей, а также взаимосвязи между ними, и служит лишь для общего ознакомления с изделием.

Составные части проектируемого устройства изображаются упрощенно в виде прямоугольников произвольной формы, т. е. с применением условно-графических обозначений. Внутри каждого прямоугольника, функционального узла устройства, указаны наименования, которые очень кратко описывают предназначение конкретного блока.

На основании выполненного аналитического и согласно перечня выполняемых функций разработанное устройство содержит в своем составе:

понижающий трансформатор;

аккумулятор с напряжением 24 В;

преобразователь постоянного напряжения 24В в переменное 220 В/50 Гц;

зарядное устройство для аккумулятора;

- схемы сравнения уровней напряжения;

- блок управления.

Исходя из этого функциональная, схема ИБП имеет вид в соответствии с рисунком 2.1.

Рис.2.1.Структурная схема ИБП

Назначение блоков следующее:

- выпрямитель - включает в себя понижающий трансформатор и зарядное устройство для аккумулятора, величина выходного напряжения на выходе блока +29В;

- аккумулятор- обеспечивает постоянное напряжение +24В в аварийном режиме, которое затем преобразуется в переменное 220В, а так же является источником напряжения для стабилизатора в аварийном и нормальном режиме;

- стабилизатор- обеспечивает постоянное напряжение питания +5В для микросхем устройства, также является источником опорных напряжений для схем компараторов;

- инвертор - преобразует постоянное напряжение аккумулятора +24В в переменное 220В частотой 50 Гц в аварийном режиме;

- компаратор 1- выполняет сравнение уровня напряжения с выхода выпрямителя и аккумулятора, в случае, если напряжение на аккумуляторе больше - вырабатывается управляющий сигнал, который соответствует аварийному режиму (напряжение сети меньше допустимого значения);

- компаратор 2 - выполняет сравнение уровня напряжения с выхода аккумулятора и фиксированного значения Uоп2, в случае, если напряжение на аккумуляторе меньше - вырабатывается управляющий сигнал, который соответствует режиму разряженного аккумулятора (напряжение аккумулятора меньше допустимого значения);

- компаратор 3 - в аварийном режиме выполняет сравнение уровня пониженного напряжения с выхода инвертора и фиксированного значения Uоп3, в случае, если напряжение на выходе инвертора меньше - вырабатывается управляющий сигнал, который соответствует режиму при котором ИБП не обеспечивает заданное значение на выходе источника (напряжение источника меньше допустимого значения);

- ключ 1 - обеспечивает коммутацию сети и нагрузки в нормальном режиме;

- ключ 2 - обеспечивает коммутацию аккумулятора и нагрузки в аварийном режиме;

- блок управления - обрабатывает управляющие сигналы с выходов компараторов и в зависимости от состояния компаратора 1 - управляет ключами 1 и 2, переходя в аварийный режим работы и индикатором “Аварийный режим”; состояния компаратора 2 - управляет индикатором “Аккумулятор разряжен”; состояния компаратора 3 - управляет индикатором “Смените источник питания”;

- индикация - обеспечивает светодиодную индикацию для трех режимов работы - “Аварийный режим”, “Аккумулятор разряжен”, “Смените источник питания”.

4.3 Разработка принципиальной схемы

4.3.1 Расчет узлов и блоков

Расчет схемы блока выпрямителя:

Выпрямитель включает в себя понижающий трансформатор Тр1 и два диодных моста VD1-VD4, VD5-VD8. Принципиальная схема выпрямителя имеет вид в соответствии с рисунком 3.1.

Рис.3.1. Принципиальная схема выпрямителя и компаратора 1

При наличии напряжения сети выпрямитель обеспечивает оптимальный режим заряда внешней аккумуляторной батареи (АКБ), состоящей из двух последовательно соединенных свинцово-кислотных аккумуляторов с номинальным напряжение 12 В и емкостью 17 А/ч каждый. Полная мощность двух последовательно соединенных аккумуляторов будет составлять 24•17=408 (В•А)/ч.

В качестве аккумуляторных батарей применим герметичные необслуживаемые свинцово-кислотные аккумуляторные батареи АКБ -17 производителя Alarm Power, имеющие параметры: 12В/17,0 А/ч, максимальный ток заряда 3 А, 181х76х167 мм, 6,1 кг, -10…+50єС (оптимально 20єС), [6].

Заряд АКБ происходит напряжением 27-29 В при максимальном токе заряда 3 А. Исходя из параметров АКБ рассчитываем выпрямитель VD1-VD4, VD5-VD8 и выбираем тип трансформатора.

Расчет мостовой схемы выпрямителя. Согласно справочных данных справедливо соотношение:

Uобр max/Uо = 1,57, (3.1)

где Uобр max - максимальное обратное напряжение диода, В;

Uо - постоянное выпрямленное напряжение, В.

Iср. пр /Iо = 0,5, (3.2)

где Iср. пр - средний прямой ток диода, А;

Iо - постоянный выпрямленный ток, А.

Iпр max /Iо = 1,57, (3.3)

где I пр max - максимальный прямой ток диода, А.

Определим режим работы диодов, учитывая что Iо=3 А, Uо=29 В:

Uобр max = 1,57?Uо=1. 57?29 = 45.53 В;

Iср. пр = 0,5?Iо = 0.5?3 = 1.5 А;

Iпр max = 1.57?Iо = 1.57?3 = 4.71 А.

Выбираем диоды, исходя их условия:

Uобр max (диода) > Uобр max = 45.53 В;

Iср. пр (диода) > Iср. пр = 1.5 А;

Iпр max (диода) > Iпр max = 4.71 А.

В качестве диодов VD1 ч VD4, VD5 ч VD8 выбираем диод типа КД202В, имеющего параметры: Uобр max (диода) = 70 В, Iср. пр (диода) = 5 А, Iпр max (диода) = 5 А, Uпр (диода) = 0,9 В.

Расчет фильтра на выходе выпрямителя. В качестве фильтра применяем емкость С1, С2 Значение емкости определим, исходя из желаемого коэффициента пульсаций на выходе фильтра. Задаем Кп ф = 0.1.

Величину емкости фильтра определим по формуле:

Сф = tр/(2 Кп ф?R0), (3.4)

где tр ? 7 мс - время разряда емкости при f =50 Гц;

R0=U0/I0 =29/3=9.7 Ом - эквивалентная нагрузка.

Таким образом Сф = 7?10-3 / (2?0.1?9.7) ? 3.6?10-3 Ф.

Выбираем конденсатор из ряда Е24:

С1, С2 - К-50-31- 40 В- 4700 мкФ ±20%.

Расчет сетевого трансформатора.

Действующее значение вторичного напряжения трансформатора равно:

U2 =

Uо? (1+Кп)+2Uпр

=

29? (1+0.1)+2?0.9

= 23.8 В, (3.5)

v2

v2

где: Uпр = 0,9 В - прямое падение напряжения на диодах мостового выпрямителя.

Полная габаритная мощность трансформатора равна:

Sттро= бтр?Uо?Iо=1.66•29•3=144.42 ВА, (3.6)

где б тр = 1.66 - справочное значение для мостового выпрямителя, нагрузка которого начинается с емкостного элемента.

Так как полная мощность двух последовательно соединенных аккумуляторов будет составлять 24•17=408 (В•А)/ч, то в качестве габаритной мощности трансформатора примем значение Sт =400 ВА.

Для мостового выпрямителя действующее значение тока вторичной обмотки трансформатора равно:

I2 = 1.11?Iо = 1.11?3= 3.33 А. (3.7)

Выбираем стандартный трансформатор из условия:

Sт > 400 ВА;

U2 > 23.8 В;

I2 > 3.33 А.

Выбираем трансформатор ТПП321 - 200,0 на стержневом сердечнике ПЛМ 27х40х58, имеющий параметры, [13]:

Sн = 200 ВА; U1 = 127/220 В; I1 = 2.03/1.15 А; I2 = 4 А; f = 50 Гц.

Для обеспечения расчетной мощности и тока вторичной обмотки применим параллельное включение трансформаторов. Так как трансформаторы имеют равные коэффициенты и напряжения к.з., то параллельное включение обеспечивает

Sн = 2?200 = 400 ВА, I2 = 2?4 = 8 А.

Схема включения обмоток для получения напряжения U2 =23.8 В имеет вид в соответствии с рисунком.3.2.

Рис.3.2. Схема включения обмоток трансформатора

4.4 Расчет схемы блока инвертора

Инвертор состоит из усилителя по току, на двух ключах, которые поочередно работают, и повышающего трансформатора Тр2. Принципиальная схема инвертора имеет вид в соответствии с рисунком 3.3.

Микроконтроллер К1816ВЕ751 задает импульсный сигнал длительностью 45 мкс на вход ключа VT1 инвертора. После подачи сигнала по истечению 45 мкс ключ VT1 закрывается и через 5мкс открывается ключ VT4. Ключ VT4 открывается тоже на 45мкс. Этот сигнал усиливается по току и подается на вход повышающего трансформатора Тр2. Поочередное включение и отключение ключей создает на входе трансформатора Тр2 переменный магнитный поток, что обеспечивает переменный ток на выходе с трансформатора Тр2. Напряжение на трансформатор Тр2 подается с аккумуляторной батареи 24В.

Рис.3.3. Принципиальная схема выпрямителя и компаратора 1

Микроконтроллер К1816ВЕ751 задает импульсный сигнал длительностью 45мкс на вход ключа VT1 инвертора. После подачи сигнала по истечению 45мкс ключ VT1 закрывается и через 5мкс открывается ключ VT4. Ключ VT4 открывается тоже на 45мкс. Этот сигнал усиливается по току и подается на вход повышающего трансформатора Тр2. Поочередное включение и отключение ключей создает на входе трансформатора Тр2 переменный магнитный поток, что обеспечивает переменный ток на выходе с трансформатора Тр2. Напряжение на трансформатор Тр2 подается с аккумуляторной батареи 24В.

Рассчитаем индуктивность первичной обмотки и максимальный ток

исходя из известных параметров схемы:

Uпит = 220 В - действующее значение напряжения;

Рн = 400 Вт - выходная мощность;

г = 0.5 - скважность импульсов (задаемся значением);

f = 44 кГц - рабочая частота.

(3.8)

(3.9)

Для изготовления трансформатора Т выбираем разъемный Ш-образный

магнитопровод марки Ш8x8 с зазором из феррита 1500 НМ.

Его параметры:

L = 32, H=16, h=11.5, S = 8, 10 = 8, l1=7.5? д=1(все параметры, мм).

Длина магнитной линии lс = 75.1 мм, площадь поперечного сечения Sc=69.2 мм2.

Так как магнитопровод имеет воздушный зазор, магнитное сопротивление которого много больше магнитного сопротивления магнитопровода, то при определении количества витков индуктивности первичной обмотки вместо длины магнитной линии можно использовать длину воздушного зазора и его магнитную проницаемость.

Определим количество витков первичной обмотки исходя из требуемой индуктивности и известных параметров магнитопровода:

(3.10)

Количество витков вторичной обмотки находим из условия U1/U2=w1/w2, напряжение вторичной обмотки U21=24 В и U22=10 В, на первичной обмотке 310 В, отсюда w21=7 витков и w22=3 витка.

Определим сечение проводов. Для этого находим действующие значения токов в обмотках:

(3.11)

Где j - плотность тока в проводнике, выбираем 4 А/мм2.

Iэф1=1.83 А, Iэф21=0.13 А, Iэф22=0.06 А.

Определим диаметр проводов:

(3.12)

d1=0.76 мм, d21=0.20 мм, d22=0.10 мм.

Выбираем обмоточные провода ПЭВТВ-2 с диаметрами 0.8 мм и 0.21 мм.

Расчет параметров транзисторов инвертора.

Расчет транзисторов VT3 и VT6. Оконечные транзисторы VT3 и VT6 выбираем из условия:

Iк max > 3.33А,

Uкэ max > 24 В.

Выбираем транзистор КТ827А(n-p-n).

Параметры транзистора: Iк max=20 А, Uкэ max=90 В, Рк maxт=125 Вт, h21Э=750, IКБО?1mА, Тпер max=150 ?С, Тпер max=125 ?С,

Амплитуда тока базы транзисторов VT3 и VT6 равна:

I Бm3,6 =

I Кm3,6

=

3.33

= 4.4?10-3 А. (3.13)

в 3,6

750

Расчет транзисторов VT2 и V56. Для обеспечения тока базы транзисторов VT3 и VT6 используем транзисторы VT2 и VT5. Ток коллектора транзисторов выбираем из условия:

IКm 2,5 =(10 ч 20) IБm3,6, (3.14)

IКm 2,5 =10IБm3,6=10•4.4?10-3 = 44 мА.

Транзисторы VT2 и VT5 выбираем из условия:

Iк max > 44мА,

Uкэ max > 24 В.

Выбираем транзистор КТ 315 Д (n-p-n).

Параметры транзистора: Iк max=100 mА, Uкэ max=40 В, Рк max=0.15 Вт, h21Э ? 20, IКБО ? 1 mА, Тпер max=120 ?С, IЭБО < 30 мкА.

Тогда ток базы транзисторов VT2 и VT5 равен:

I Бm2,5 =

I Кm2,5

=

0.044

= 2.2?10-3 А. (3.15)

в 5,6

20

Расчет сопротивлений R12 и R17. Сопротивления делителей R12 и R17 определяем из выражения:R12 = R17 = U БЭ3,6/ IКm 2,5= 0.7/44?10-3 = 15.9 Ом, (3.16)

Из ряда Е24 выбираем: R12, R17- МЛТ - 0.125-20 Ом ±5%.

Расчет сопротивлений R11 и R16. Сопротивления делителей R11 и R16 определяем из выражения:

(3.17)

Напряжение на коллекторах транзисторов выбираем из условия

24- UБЭ 2,5 - ДU = 24-0.7-5 =18.3 В > UКm 2,5, (3.18)

где ДU=3ч5В - запас по питанию при разряженном режиме работы аккумулятора.

Принимаем UКm 2,5=18 В. Тогда из выражения (3.17) находим:

Ом.

Из ряда Е24 выбираем: R11, R16 - МЛТ - 0.125-360 Ом ±5%.

Расчет транзисторов VT1 и VT4, сопротивлений R10 и R15. Управление ключами VT1, VT4 осуществляется высоким выходным сигналом микроконтроллер К1816ВЕ751. Используя справочные данные [10] на микроконтроллер, определяем условие управления транзисторами VT1, VT4 от МК:

I1вых Р0imax =0,3 мА> IБm 1,4. (3.19)

Задаваясь током управления I0вых Рi=0.1 мА (с целью надежного насыщения транзистора), рассчитаем номинал токоограничительного резистора R10, R15:

Ом. (3.20)

Из ряда Е24 выбираем: R10, R15- МЛТ - 0.125-4.3 кОм ±5%.

Входные транзисторы VT1 и VT4 выбираем из условия:

Iк max > 1мА,

Uкэ max > 24 В.

Выбираем транзистор КТ 315 Д (n-p-n).

Параметры транзистора: Iк max=100 mА, Uкэ max=40 В, Рк max=0.15 Вт, h21Э ? 20, IКБО ? 1 mА, Тпер max=120 ?С, IЭБО < 30 мкА.

Расчет сопротивлений R9 и R14. Переход транзисторов в режим насыщения будет выполняться при условии:

в 1,4• I Бm1,4 > UБm2,5/R9,14 , (3.21) где UБm2,5 = 24- UБЭ 2,5 - ДU = 24-0.7-5 =18.3 В - напряжение на базе транзисторов VT2 и VT5,

ДU=3ч5В - запас по питанию при разряженном режиме работы аккумулятора.

20•0.0001=0.002 А >18.3/R9,14,

R9,14 > 9150 Ом.

Из ряда Е24 выбираем:

R9, R14- МЛТ - 0.125- 20 кОм ±5%.

Ток коллектора транзисторов в режиме насыщения при разряженном режиме работы аккумулятора будет ограничен до значения

I Кm1,4 = UБm2,5/R9,14 =18.3/910 = 0.0201 А. (3.22)

Расчет сопротивлений R8 и R13. Сопротивления R8 и R13 определяем выражения:

R8 = R13 > U БЭ2,5/ IКm 1,4= 0.7/20.1?10-3 = 34.8 Ом. (3.23)

Из ряда Е24 выбираем:

R8, R13- МЛТ - 0.125- 910 Ом ±5%

4.5 Расчет схемы блоков компараторов

Исходя из описания работы функциональной схемы ИБП, выходное напряжение компараторов должно изменяться в пределах от 0 В до +5 В. Данным условиям соответствует сдвоенный операционный усилитель с внутренней частотной коррекцией и защитой входа от перегрузок 140УД20А, предназначенный для использования в активных фильтрах, сумматорах, компараторах мультивибраторах и т.д., [ 1,81].

Параметры усилителя при Т = 25 ?С приведены в таблице 3.1.

Таблица 3.1

5 Параметры ОУ 140УД20А при U ип = ±15 В

U ип1,

В

U ип2,

В

U ип.min,

В

Vвых,

В/мкс

Uвых, В

Rн min, кОм

I пот, mA

I вх, нA

Uсм, mВ

Д Uсм/ДТ, мкВ/град

КU

+15±1,5

-15±1,5

±5

2,5

>0.3

2

? 2,8

? 200

±5

±2

? 50000

Микросхема позволяет применять однополярное питание [ 1,81] и согласно таблицы 3.1 позволяет иметь питание U ип = +5 В.

Назначение выводов и использование микросхемы с однополярным питанием имеет вид в соответствии с рисунком 3.5.

Рис.3.5. Назначение выводов ОУ 140УД20А

Компаратор 1 -сравнивает напряжение на выходе выпрямителя с напряжение с выхода аккумулятора в аварийном режиме. Если напряжение на выходе выпрямителя меньше, то напряжение на выходе компаратора равно 0 В, что соответствует низкому уровню сигнала (лог.0) для блока управления. Схема подключения компаратора 1 имеет вид в соответствии с рисунком 3.1.

На неинвертирующий вход DA1.1 подается напряжение с выхода выпрямителя VD5-VD8 через делитель R1, R2, R3 с коэффициентом деления обеспечивающим напряжение +5 В. Исходя из параметров ОУ (см. таблицу 3.1) и выпрямленного напряжения + 29 В выбираем сопротивления из ряда Е24 R1=47 кОм, R3=5.1 кОм. Сопротивление R2=10 кОм переменное и обеспечивает плавную подстройку напряжения срабатывания компаратора.

Напряжение на неинвертирующем входе определяется выражением

(3.24)

где R2* - регулируемая часть сопротивления R2, кОм.

На инвертирующий вход DA1.1 подается напряжение от источника питания +5 В через делитель R4, R5 с коэффициентом деления меньше единицы. Исходя из параметров ОУ (см. таблицу 3.1), выбираем сопротивления из ряда Е24 R5=91 кОм, R4=10 кОм.

Напряжение на инвертирующем входе равно

(3.25)

Согласно [13] выбираем резистор:

R1 - МЛТ - 0.125- 47 кОм ±5%;

R2 - СП-2-2а - 0.5 - 10 кОм ±10%;

R3 - МЛТ- 0.125 - 5.1 кОм ±5%;

R4 - МЛТ- 0.125 - 10 кОм ±5%;

R5 - МЛТ - 0.125- 91 кОм ±5%;

6 - МЛТ- 0.125 - 10 кОм ±5%.

Компаратор 2- сравнивает напряжение с выхода аккумулятора с опорным напряжением Uоп2 в аварийном режиме. Если напряжение на выходе аккумулятора меньше, то напряжение на выходе компаратора равно 0 В, что соответствует низкому уровню сигнала (лог.0) для блока управления. Схема подключения компаратора 2 имеет вид в соответствии с рисунком 3.6.

На неинвертирующий вход DA1.2 подается напряжение + 24В с выхода аккумулятора через делитель R18, R19, R20 с коэффициентом деления обеспечивающим напряжение +5 В. Расчет делителя аналогичен расчету напряжения инвертирующего входа компаратора 1. Сопротивление R19 позволяет точно установить напряжение разряженного аккумулятора.

На инвертирующий вход DA1.2 подается напряжение от источника питания +5 В через делитель R21, R22 с коэффициентом деления меньше единицы. Данное напряжение будет являться Uоп2. Расчет делителя аналогичен расчету напряжения инвертирующего входа компаратора 1.

Согласно [13] выбираем резистор:

R18 - МЛТ - 0.125- 47 кОм ±5%;

R19 - СП-2-2а - 0.5 - 10 кОм ±10%;

R20 - МЛТ- 0.125 - 5.1 кОм ±5%;

R21 - МЛТ- 0.125 - 10 кОм ±5%;

R22 - МЛТ - 0.125- 91 кОм ±5%;

R23 - МЛТ- 0.125 - 10 кОм ±5%.

Рис.3.6. Схема подключения компаратора 2

Емкость C3 предназначена для сглаживания пульсаций напряжения от аккумулятора. Согласно [13] выбираем конденсатор: С3 - К-50-31- 40 В- 4700 мкФ ±20%.

Компаратор 3- сравнивает пониженное напряжение с выхода инвертора опорным напряжением Uоп3 в аварийном режиме. Если напряжение на выходе инвертора меньше, то напряжение на выходе компаратора равно 0 В, что соответствует низкому уровню сигнала (лог.0) для блока управления. Схема подключения компаратора 3 имеет вид в соответствии с рисунком 3.3.

На неинвертирующий вход DA2.1 подается напряжение с выхода выпрямителя инвертора VD9-VD12 через делитель R24, R25, R26 с коэффициентом деления обеспечивающим напряжение +5 В.

Согласно расчетов п.3.2 действующее значение напряжения на входе выпрямителя VD9-VD12 равно U2=10 В, см. рис.3.3 и рис.3.4. Так как в п.3.1 был произведен выбор диодов мостового выпрямителя при напряжении U2=23.8 В, то диоды выбираем по данным предыдущего расчета.

Выбираем диоды, исходя их условия:

Uобр max (диода) > Uобр max = 45.53 В;

Iср. пр (диода) > Iср. пр = 1.5 А;

Iпр max (диода) > Iпр max = 4.71 А.

В качестве диодов VD9 ч VD12 выбираем диод типа КД213А имеющего параметры: Uобр max (диода) =200 В, Iср. пр (диода) =1.5 А, Iпр max (диода) =10 А, Uпр (диода)= 1В, частотный рабочий диапазон равен 50 кГц. Постоянная составляющая на выходе мостового выпрямителя равна

U2/U0=1.11, (3.26)

U0=U2/1.11=10/1.11=9 В.

Расчет делителя аналогичен расчету напряжения инвертирующего входа компаратора 1. Сопротивление R25 обеспечивает плавную подстройку напряжения срабатывания компаратора.

На инвертирующий вход DA2.21 подается напряжение от источника питания +5 В через делитель R27, R28 с коэффициентом деления меньше единицы. Данное напряжение будет являться Uоп3. Расчет делителя аналогичен расчету напряжения инвертирующего входа компаратора 1.

Согласно [13] выбираем резистор:

R24 - МЛТ - 0.125- 47 кОм ±5%;

R25 - СП-2-2а - 0.5 - 10 кОм ±10%;

R26 - МЛТ- 0.125 - 5.1 кОм ±5%;

R27 - МЛТ- 0.125 - 10 кОм ±5%;

R28 - МЛТ - 0.125- 91 кОм ±5%;

R29 - МЛТ- 0.125 - 10 кОм ±5%.

Емкость C34 предназначена для сглаживания пульсаций напряжения от выпрямителя инвертора. Согласно [13] выбираем конденсатор:

С4 - К-50-31- 40 В- 4700 мкФ ±20%.

4.6 Расчет схемы блока управления, ключей, индикации

В качестве устройства управления используем однокристальный микроконтроллер семейства МК51 К1816ВЕ751. Описание контроллера К1816ВЕ751 и общие сведения о микроконтроллерах МК51 приведены в приложении А.

Схема электрическая принципиальная блока управления ключами и светодиодной индикации имеет вид в соответствии с рисунком 3.7.

Прибор выполнен на основе однокристального микроконтроллера К1816ВЕ751, работающего с внутренней памятью программ, что обеспечивается подачей высокого уровня напряжения на вывод (=1). Для генерации тактовой частоты fCLK микроконтроллера к выводам XTAL1 и XTAL2 подключен кварцевый резонатор ZQ1 на частоту 4.8 МГц. Конденсаторы С2, С3 обеспечивают надежный запуск внутреннего генератора МК при включении питания. Цепочка С1, R1 служит для начальной установки (сброса) МК при подачи электропитания. Конденсатор С4 служит для фильтрации импульсных помех, возникающих на выводах источника питания при работе цифровых микросхем.

Рис.3.7. Схема электрическая принципиальная блока управления ключами и светодиодной индикации

Приведенные параметры являются типовой схемой подключения и расчету не подлежат.

Согласно [13] выбираем резисторы и конденсаторы:

R30 - МЛТ - 0.125- 8.2 кОм ±5%;

C5, C6 - КТ4-21-100 В - 20 пФ±20%;

C7 - К-50-31- 40 В- 10 мкФ ±20%;

C8 - К-53-1- 30 В- 0.1 мкФ ±20%;

Расчет ключей. Ключи обеспечивает коммутацию сети и нагрузки в нормальном и аварийном режиме. Таким образом, они должны обеспечивать коммутацию напряжения и тока:

Uком = 220 В, Iком =400/220= 1.8 А.

Выбираем исходя из этих параметров в качестве ключей двухконтактное реле РЭС-22 типа РФ 4.500.130.

Электрическая принципиальная схема реле имеет вид в соответствии с рисунком 3.8.

Рис.3.8. Электрическая принципиальная схема реле РЭС-22

Параметры реле типа РФ 4.500.130:

- параметры катушки управления Rобм=2500 Ом, Iсраб=10.5 мА, Iотп=2.5 мА;

- параметры силовых контактов Uком = 220 В, Iком =0.5 А.

При расчете ток коммутации Iком =400/220= 1.8 А, поэтому применяем параллельное соединение силовых контактов согласно рисунка 3.9.

Так как срабатывание реле происходит при токе Iсраб=10.5 мА, а максимальный выходной ток линии порта Р3 не превышает 1,6 мA, то для управления реле применяем транзисторный ключ VT7, VT8.

Выбираем транзистор типа КТ502А с параметрами:

Iк max=150 мА; Uкэ max= 25 В; Uкэ нас = 0,6 В; Pк max = 350 мВт; в= 120.

Максимально необходимый ток базы:

(3.27)

Рис.3.9. Схема соединения линий коммутации реле РЭС-22

Отпиранием электрического ключа управляет низкий уровень (логический 0) на выводе Р3.3 и Р3.4. Используя справочные данные [10] на микроконтроллер К1816ВЕ751, проверяем возможность управления транзистором VT7, VT8 от МК:

I0вых Р3imax =1,6 Ма> IБ VT7,8max = 0.09 Ма.

Задаваясь током управления I0вых Р3i=1 Ма (с целью надежного насыщения транзистора), рассчитаем номинал токоограничительного резистора R31, R32:

6 (3.28)

Выбираем номинал R31, R32 равным 4,3 кОм. Номинал резисторов R33, R34, служащих для более надежного отпирания и запирания транзисторов выбираем равным также 4,3 кОм.

Согласно [13] выбираем резисторы и конденсаторы:

R31, R32, R33, R34 - МЛТ - 0.125- 4.3 кОм ±5%.

Расчет индикации. Светодиодная индикацию обеспечивает три режима работы - “Аварийный режим”, “Аккумулятор разряжен”, “Смените источник питания”. В качестве индикаторов VD13, VD14, VD15 применяем светодиоды типа АЛ336Б. Параметры светодиодов: Uпр=2.0 В, Iпр=10 мА. Диоды подключены к МК через мощные инверторы с открытым коллектором DD2.1, DD2.2, DD2.3 (микросхема К155ЛН5). Это объясняется тем, что максимальный выходной ток линии порта Р3 не превышает 1,6 мA [10], а для нормального свечения светодиода необходимо задать через него ток 10 мA . Инвертор микросхемы К155ЛН5 обеспечивает:

I0вых=40 мА при U0вых=0.7 В, I1пот=48 мА [2].

Таким образом включение светодиодов следует производить выводом логического 0 на выход инвертора. Так как после начальной установки (сброса) МК все его порты настроены на ввод информации, т.е. на их выводах будут логические 1, то в программе работы МК необходимо сразу же после включения электропитания вывести логический 0 в разряды Р3.5, Р3.6, Р3.7 для гашения светодиодов.

Рассчитаем номиналы токоограничительных резисторов R35, R36, R37:

Ом. (3.29)

Согласно [13] выбираем из ряда Е24 резисторы:

R35, R36, R37 - МЛТ - 0.125- 220 Ом ±5%.

4.7 Расчет блока стабилизатора

Стабилизатор обеспечивает постоянное напряжение питания +5В для микросхем устройства, также является источником опорных напряжений для схем компараторов.

Мощность потребляемая ИМС, ОЭВМ, светодиодной индикацией и ключами равна:

Рпот=3•РDAМК+3•РVDDD+2•Ркл, (3.30)

где Р=Uип•Iпот - активная мощность потребляемая элементами схемы.

Используя данные расчетов п.3.1-3.4 и приложения А находим

Рпот=3•5•2.8+5•220 +3•2•10+5•48+2•5•10.5=1547 мВт.

С учетом мощности потребляемой активными сопротивлениями цепи принимаем Рпот=2 Вт.

Ток который должен обеспечивать стабилизатор равен:

Iстабпот/Uип=2/5=0.4 А. (3.31)

В качестве схемы стабилизатора выбираем ИМС типа К142ЕН4. Справочные параметры ИМС приведены в таблице 3.2.

Таблица 3.2 - Справочные параметры ИМС К142ЕН4

Uвх min, В

Uвх max, В

Iвых max, mA

К нс U, %

К нс I, %

Uвых, В

Pрас max, Вт

? 9

? 45

? 103

? 0,05

? 0,25

3 ч 30

? 6

Схема подключения ИМС имеет вид согласно рисунка 3.10. ИМС является регулируемым стабилизатором напряжения повышенной защиты от перегрева и перегрузки по току.

Рис.3.10. Схема подключения ИМС К142ЕН4

Рекомендуемые справочные значения C9, C10, R38 и R39 равны:

C9= 2.2 мкФ, C10= 4700 нФ, R38= 1.6 кОм, R39= 22кОм.

Согласно [13] выбираем резисторы и конденсаторы:

R38 - МЛТ - 0.125- 1.6 кОм ±5%;

R39 - СП-2-2а - 0.5 - 22 кОм ±10%;

C9 - К-53-25- 40 В- 2.2 мкФ ±20%;

C10 - К-53-25- 40 В- 4.7 мкФ ±20%.

4.8 Выбор элементной базы

Описание и общие сведения о микроконтроллере К1816ВЕ751

Восьмиразрядные высокопроизводительные однокристальные микроЭВМ (ОМЭВМ) семейства МК51 выполнены по высококачественной п-МОП технологий (серия 1816) и КМОП технологии (серия 1830).

Использование ОМЭВМ семейства МК51 по сравнению с МК48 обеспечивает увеличение. объема памяти команд и памяти данных. Новые возможности ввода-вывода и периферийных устройств расширяют диапазон применения и снижают общие затраты системы. В зависимости от условий использования, быстродействие системы увеличивается минимум в два с половиной раза и максимум в десять раз.

Семейство МК51 включает пять модификаций ОМЭВМ (имеющих идентичные основные характеристики), основное различие между которыми состоит в реализации памяти программ и мощности потребления.

ОМЭВМ КР1816ВЕ51 и КР1830ВЕ51 содержат масочно-программируемое в процессе изготовления кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. За счет использования внешних микросхем памяти общий объем памяти программ может быть расширен до 64 Кбайт.

ОМЭВМ КМ1816ВЕ751 содержит ППЗУ емкостью 4096 байт со стиранием ультрафиолетовым излучением и удобна на этапе разработки системы при отладке программ, а также при производстве небольшими партиями или при создании систем, требующих в процессе эксплуатации периодической подстройки. За счет использования внешних микросхем памяти общий объем памяти программ может быть расширен до 64 Кбайт.

ОМЭВМ КР1816ВЕ31 и КР1830ВЕ31 не содержат встроенной памяти программ, однако могут использовать до 64 Кбайт внешней постоянной или перепрограммируемой памяти программ и эффективно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.Каждая из перечисленных выше микросхем является соответственно аналогом БИС 8051, 80С51, 8751, 8031, 80С31 семейства MCS-51 фирмы Intel (США).

Каждая ОМЭВМ рассматриваемого семейства содержит встроенное ОЗУ памяти данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних микросхем ЗУПВ.

Общий объем памяти ОМЭВМ семейства МК51 может достигать 128 Кбайт: 64 Кбайт памяти программ и 64 Кбайт памяти данных.

При разработке на базе ОМЭВМ более сложных систем могут быть использованы стандартные ИС с байтовой организацией, например, серии КР580. В дальнейшем обозначение "МК51" будет общим для всех моделей семейства, за исключением случаев, которые будут оговорены особо.

ОМЭВМ содержат все узлы, необходимые для автономной работы:

1) центральный восьмиразрядный процессор;

2) память программ объемом 4 Кбайт (только КМ1816ВЕ751, КР1816ВЕ51 и КР1830ВЕ51);

3) память данных объемом 128 байт;

4) четыре восьмиразрядных программируемых канала ввода-вывода;

5) два 16-битовых многорежимных таймера/счетчика;

6) систему прерываний с пятью векторами и двумя уровнями;

7) последовательный интерфейс;

8) тактовый генератор.

Система команд ОМЭВМ содержит 111 базовых команд с форматом 1, 2, или 3 байта.

ОМЭВМ имеет:

- 32 РОН;

- 128 определяемых пользователем программно-управляемых флагов;

- набор регистров специальных функций.

РОН и определяемые пользователем программно-управляемые флаги расположены в адресном пространстве внутреннего ОЗУ данных. Регистры специальных функций (SFR, SPECIAL FUNCTION REGISTERS) с указанием их адресов приведены в таблице 1.3.2.1.

Таблица 1.3.2.1

Регистры специальных функций

Ниже кратко описываются функции регистров, приведенных в таблице А1.

АСС - регистр аккумулятора. Команды, предназначенные для работы с аккумулятором, используют мнемонику "А", например, MOV A, P2. Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символическое имя пятого бита аккумулятора при использовании ассемблера ASM51 будет следующим: АСС. 5.Регистр В. Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.Регистр состояния программы. Регистр PSW содержит информацию о состоянии программы.Указатель стека SP. 8-битовый регистр, содержимое которого инкрементируется перед записью данных в стек при выполнении команд PUSH и CALL. При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н. При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроЭВМ. Указатель данных. Указатель данных (DPTR) состоит из старшего байта (DPH) и младшего байта (DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использоваться как 16-битовый регистр или как два независимых восьмибитовых регистра.

Порт0-ПортЗ. Регистрами специальных функций Р0, Р1, P2, РЗ являются регистры-"защелки" соответственно портов Р0, Р1, P2, РЗ.

Буфер последовательного порта. SBUF представляет собой два отдельных регистра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически инициирует его передачу через последовательный порт. Когда данные читаются из SBUF, они выбираются из буфера приемника.

Регистры таймера. Регистровые пары (TH0,TL0) и (TH1.TL1) образуют 16-битовые регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.

Регистры управления. Регистры специальных функций IP, IE, TMOD, TCON, SCON и PCON содержат биты управления и биты состояния системы прерываний, таймеров/счетчиков и последовательного порта.

ОМЭВМ при функционировании обеспечивает:

- минимальное время выполнения команд сложения - 1 мкс;

- аппаратное умножение и деление с минимальным временем выполнения команд умножения/деления - 4 мкс

В ОМЭВМ предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LC-цепочки или внешнего генератора.

Архитектура семейства МК51 несмотря на то, что она основана на архитектуре семейства МК48, все же не является полностью совместимой с ней. В новом семействе имеется ряд новых режимов адресации, дополнительные инструкции, расширенное адресное пространство и ряд других аппаратных отличий. Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичную и двоично-десятичную арифметику, индикацию переполнения и определения четности/нечетности, возможность реализации логического процессора.

Важнейшей и отличительной чертой архитектуры семейства МК51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и использоваться в логических вычислениях.

Тогда как поддержка простых типов данных (при существующей тенденции к увеличению длины слова) может с первого взгляда показаться шагом назад, это качество делает микроЭВМ семейства МК51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы последних по своей сути предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров. Все эти свойства в целом называются булевым процессором семейства МК51. Благодаря такому мощному АЛУ набор инструкций микроЭВМ семейства МК51 одинаково хорошо подходит как для применений управления в реальном масштабе времени, так и для алгоритмов с большим объемом данных.

Сравнительные данные микросхем приведены в таблице 1.3.2.2

Таблица 1.3.2.2

Сравнительные данные ОМЭВМ семейства МК51

Микросхема

Объем внутренней памяти программ, Кбайт

Тип памяти

Объем внутренней памяти данных, байт

Максимальная частота тактовых сигналов, МГц

Потребляемый ток, мА

КР1816ВЕ31

-

Внеш.

128

12

150

КР1816ВЕ51

4

ПЗУ

128

12

150

КР1816ВЕ751

4

ППЗУ

128

12

220

КР1830ВЕ31

-

Внеш

128

12

18

КР1830ВЕ51

4

ПХУ

128

12

18

В качестве диодов VD1 ч VD4, VD5 ч VD8 выберу диод типа КД202В, имеющий параметры: Uобр max (диода) = 70 В, Iср. пр (диода) = 5 А, Iпр max (диода) = 5 А, Uпр (диода) = 0,9 В.

Выберу конденсаторы из ряда Е24:

С1, С2 - К-50-31- 40 В- 4700 мкФ ±20%.

С3 - К-50-31- 40 В- 4700 мкФ ±20%.

С4 - К-50-31- 40 В- 4700 мкФ ±20%.

C5, C6 - КТ4-21-100 В - 20 пФ±20%;

C7 - К-50-31- 40 В- 10 мкФ ±20%;

C8 - К-53-1- 30 В- 0.1 мкФ ±20%;

C9 - К-53-25- 40 В- 2.2 мкФ ±20%;

C10 - К-53-25- 40 В- 4.7 мкФ ±20%.

В качестве трансформатора выберу трансформатор ТПП321 - 200,0 на стержневом сердечнике ПЛМ 27х40х58, имеющий параметры

Sн = 200 ВА; U1 = 127/220 В; I1 = 2.03/1.15 А; I2 = 4 А; f = 50 Гц.

В качестве обмоточных проводов выберу провода ПЭВТВ-2 с диаметрами 0.8 мм и 0.21 мм.

В качестве транзисторов VT3 и VT6 выберу транзисторы КТ827А(n-p-n). Параметры транзистора: Iк max=20 А, Uкэ max=90 В, Рк maxт=125 Вт, h21Э=750, IКБО?1mА, Тпер max=150 ?С, Тпер max=125 ?С

В качестве транзисторов VT1 - VT2 выберу транзистор КТ315Д (n-p-n).

Параметры транзистора: Iк max=100 mА, Uкэ max=40 В, Рк max=0.15 Вт, h21Э ? 20, IКБО ? 1 mА, Тпер max=120 ?С, IЭБО < 30 мкА

Из ряда Е24 выберу резисторы:

R1 - МЛТ - 0.125- 47 кОм ±5%;

R2 - СП-2-2а - 0.5 - 10 кОм ±10%;

R3 - МЛТ- 0.125 - 5.1 кОм ±5%;

R4 - МЛТ- 0.125 - 10 кОм ±5%;

R5 - МЛТ - 0.125- 91 кОм ±5%;

R6 - МЛТ- 0.125 - 10 кОм ±5%.

R8, R13- МЛТ - 0.125- 910 Ом ±5%

R9, R14- МЛТ - 0.125- 20 кОм ±5%.

R10, R15- МЛТ - 0.125-4.3 кОм ±5%.

R11, R16 - МЛТ - 0.125-360 Ом ±5%.

R12, R17- МЛТ - 0.125 - 20 Ом ±5%.

R18 - МЛТ - 0.125- 47 кОм ±5%;

R19 - СП-2-2а - 0.5 - 10 кОм ±10%;

R20 - МЛТ- 0.125 - 5.1 кОм ±5%;

R21 - МЛТ- 0.125 - 10 кОм ±5%;

R22 - МЛТ - 0.125- 91 кОм ±5%;

R23 - МЛТ- 0.125 - 10 кОм ±5%.

R24 - МЛТ - 0.125- 47 кОм ±5%;

R25 - СП-2-2а - 0.5 - 10 кОм ±10%;

R26 - МЛТ- 0.125 - 5.1 кОм ±5%;

R27 - МЛТ- 0.125 - 10 кОм ±5%;

R28 - МЛТ - 0.125- 91 кОм ±5%;

R29 - МЛТ- 0.125 - 10 кОм ±5%.

R30 - МЛТ - 0.125- 8.2 кОм ±5%;

R31, R32, R33, R34 - МЛТ - 0.125- 4.3 кОм ±5%.

R35, R36, R37 - МЛТ - 0.125- 220 Ом ±5%.

R38 - МЛТ - 0.125- 1.6 кОм ±5%;

R39 - СП-2-2а - 0.5 - 22 кОм ±10%;

В качестве диодов VD9 ч VD12 выберу диоды типа КД213А имеющие параметры: Uобр max (диода) =200 В, Iср. пр (диода) =1.5 А, Iпр max (диода) =10 А, Uпр (диода)= 1В, частотный рабочий диапазон равен 50 кГц.

Исходя из параметров в качестве ключей выберу двухконтактное реле РЭС-22 типа РФ 4.500.130

В качестве транзисторов VT7 - VT8 выберу транзисторы типа КТ502А с параметрами: Iк max=150 мА; Uкэ max= 25 В; Uкэ нас = 0,6 В; Pк max = 350 мВт; в= 120.

4.9 Описание принципа действия

Разработанное устройство поддерживает два режима работы:

1) нормальный режим работы - нагрузка получает питание непосредственно от сети 220В;

2) аварийный режим работы - нагрузка получает питание от источника бесперебойного питания в случае, если напряжение сети отсутствует или менее значения нижнего предела напряжения сети.

Нормальный режим работы системы резервного электропитания:

В нормальном режиме напряжение на выходе выпрямителя больше, чем напряжение с выхода аккумулятора, поэтому напряжение на выходе компаратора 1 равно +5В, что соответствует высокому уровню сигнала (лог.1) для блока управления.

В качестве блока управления используется однокристальный микроконтроллера семейства МК51 (К1816ВЕ751). Состояние лог.1 соответствует нормальному режиму работы системы резервного электропитания, а значит, блок управления формирует управляющие сигналы для ключ 1 и 2 при которых ключ 1 - замкнут), напряжение сети подается на нагрузку), а ключ 2 - разомкнут (аккумулятор отключен от инвертора).

В этом режиме происходит заряд аккумулятора, а питание микросхем устройства осуществляется от стабилизатора подключенного к аккумулятору.

Состояние сигналов на выходе компаратора 2 и 3 равно +5 В и 0 В и в данном случае блоком управления не обрабатывается.

Аварийный режим работы системы резервного электропитания:


Подобные документы

  • Техническое обоснование структурной схемы и разработка универсального источника бесперебойного питания с цифровым управлением. Электрический расчет силовых элементов и структурной схемы Line-interractive устройства. Расчет себестоимости блока питания.

    дипломная работа [883,1 K], добавлен 09.07.2013

  • Обзор аналогов изделия. Описание структурной схемы. Описание схемы электрической принципиальной. Разработка и расчет узлов схемы электрической принципиальной. Обоснование выбора элементов схемы. Расчет печатной платы. Тепловой расчет.

    дипломная работа [622,7 K], добавлен 14.06.2006

  • Выбор электрической принципиальной, структурной и функциональной схемы источника питания. Расчёт помехоподавляющего фильтра. Моделирование схемы питания генератора импульсов. Выбор схемы сетевого выпрямителя. Расчёт стабилизатора первого канала.

    курсовая работа [1,0 M], добавлен 04.06.2013

  • Изучение устройства и принципа работы источников бесперебойного питания (ИБП). Разработка универсального ИБП с возможностью его использования в любой аппаратуре мощностью до 600 Вт, начиная с персонального компьютера и заканчивая медицинской аппаратурой.

    дипломная работа [996,9 K], добавлен 16.07.2010

  • Изучение принципов построения и описание электрической принципиальной схемы импульсных источников питания. Технические характеристики и диагностика неисправностей импульсных блоков питания. Техника безопасности и операции по ремонту источников питания.

    курсовая работа [427,5 K], добавлен 09.06.2015

  • Методика проектирования маломощного стабилизированного источника питания, разработка его структурной и принципиальной схем. Расчет и выбор основных элементов принципиальной схемы: трансформатора, выпрямителя, фильтра, стабилизатора и охладителя.

    курсовая работа [1,6 M], добавлен 02.09.2009

  • Обзор литературы по усилителям мощности. Описание электрической схемы проектируемого устройства - усилителя переменного тока. Разработка схемы вторичного источника питания. Выбор и расчет элементов схемы электронного устройства и источника питания.

    реферат [491,0 K], добавлен 28.12.2014

  • Цифровой делитель частоты: сущность и предназначение. Разработка функциональной и принципиальной схемы устройства. Определение источника питания для счетчика, гальванической развязки и операционного усилителя. Расчет устройств принципиальной схемы.

    курсовая работа [1,8 M], добавлен 24.09.2012

  • Разработка импульсного лабораторного источника вторичного электропитания, предназначенного для питания лабораторных макетов и низковольтных устройств. Конструкторский анализ схемы и расчет характеристик надежности. Экономическое обоснование проекта.

    дипломная работа [3,6 M], добавлен 11.03.2012

  • Синтез функциональной схемы. Строение функциональной схемы. Выбор элементной базы и реализация функциональных блоков схемы. Назначение основных сигналов схемы. Описание работы принципиальной схемы. Устранение помех в цепях питания. Описание программы.

    курсовая работа [85,7 K], добавлен 15.09.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.