Блок питания мониторов
Особенности построения источников питания мониторов. Коррекция коэффициента мощности. Цепи запуска и синхронизации, стабилизации и защиты, выпрямители импульсного напряжения в источнике питания мониторов SAMSUNG. Диагностика и ремонт источников питания.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 04.09.2010 |
Размер файла | 3,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Д. Метод воздействия. Основан на анализе реакции схемы на различные манипуляции, производимые техником:
изменение положений движков установочных переменных резисторов (если они имеются);
перемыкание выводов транзисторов в цепях постоянного тока (эмиттер с базой, эмиттер с коллектором);
изменение напряжения питающей сети (с контролем по осциллографу работы схемы ШИМ);
поднесение жала горячего паяльника к корпусу сомнительного радиоэлемента и т.п. манипуляции.
Е. Метод электропрогона. Позволяет отыскать периодически повторяющиеся дефекты и проверить качество произведенного ремонта (в последнем случае прогон должен составлять не менее 4 часов).
Ж. Метод простука. Позволяет выявить дефекты монтажа на включенном ИБП путем покачивания элементов, подергивания за проводники, постукивания по шасси резиновым молоточком и др.
3. Метод эквивалентов. Основан на временном отсоединении части схемы и замене ее совокупностью элементов, оказывающих на нее такое же воздействие. Подобными участками схемы могут быть генераторы импульсов, вспомогательные источники постоянного напряжения, эквиваленты нагрузок.
При этом любые конкретные характеристики блока, полученные из документации на него, либо считанные с его корпуса, могут и должны быть использованы при его ремонте.
При устранении неисправности техник должен не только применять эти методы в чистом виде, но и комбинировать их.
8.1 Ключевые моменты, которые необходимо учитывать при поиске неисправностей ИБП
Характерными причинами возникновения аварийных режимов в схеме ИБП являются: "броски" сетевого напряжения, вызывающие увеличение амплитуды импульса на коллекторе ключевого транзистора; короткое замыкание в цепи нагрузки; лавинообразное нарастание тока коллектора из-за насыщения магнитопровода импульсного трансформатора, например, из-за изменения характеристики намагничивания магнитопровода при перегреве или случайного увеличения длительности импульса, открывающего транзистора.
Одной из самых характерных неисправностей является "пробой" диодов выпрямительного моста или мощных ключевых транзисторов, ведущий к возникновению КЗ в первичной цепи ИБП. Пробой диодов выпрямительного моста может привести к ситуации, когда на электролитические сглаживающие емкости сетевого фильтра будет непосредственно попадать переменное напряжение сети. При этом электролитические конденсаторы, стоящие на выходе выпрямительного моста, взрываются.
КЗ в первичной цепи ИВП может возникать, в основном, по двум причинам:
из-за изменения параметров элементов базовых цепей мощных ключевых транзисторов (например, в результате старения, температурного воздействия и др.);
из-за подключения компьютера к розетке, установленной в сети, нагружаемой, помимо средств вычислительной техники, сильноточными установками (станками, сварочными аппаратами, сушилками и т.д.).
В результате в сети могут возникать импульсные помехи, амплитудой до 1 кВ, которые приводят, как правило, к "пробою" по участку коллектор-эмиттер мощных ключевых транзисторов.
Третьей причиной КЗ в первичной цепи ИБП является безграмотность ремонтного персонала, проводящего измерения заземленным осциллографом в первичной цепи ИВП!
При КЗ в первичной цепи ИБП выгорает (со взрывом) токоограничивающий терморезистор с отрицательным ТКС. Это происходит после замены сгоревшего предохранителя и повторного включения в сеть, если осталась не устраненной основная причина КЗ. Поскольку достать данные резисторы иногда бывает трудно, специалисты, проводящие ремонт ИБП, порой просто устанавливают коротко замыкающую перемычку на то место, где должен стоять терморезистор.
Рис.11. Цоколевка интегральных трехвыводных стабилизаторов в корпусе типа ТО-220.
Обращаем Ваше внимание также на то, что при замене мощных ключевых транзисторов лучше всего использовать транзисторы того же типа и той же фирмы-изготовителя. В противном случае установка транзисторов другого типа может привести либо к выходу их из строя, либо к несрабатыванию схемы пуска ИБП (в случае использования более мощных, чем стояли в схеме ранее, транзисторов).
Второй характерной неисправностью ИБП является выход из строя управляющей микросхемы типа TL494.
Исправность микросхемы можно установить, оценивая работу отдельных ее функциональных узлов (без выпаивания из схемы ИБП). Для этого может быть рекомендована следующая методика:
Операция 1. Проверка исправности генератора DA6 и опорного источника DA5.
Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Исправность генератора DA6 оценивается по наличию пилообразного напряжения амплитудой 3,2В на выводе 5 микросхемы (при условии исправности частотозадающих конденсатора и резистора, подключенных к выводам 5 и 6 микросхемы, соответственно).
Исправность опорного источника DA5 оценивается по наличию на выводе 14 микросхемы постоянного напряжения +5В, которое не должно изменяться при изменении питающего напряжения на выводе 12 от +7В до +40В.
Операция 2. Проверка исправности цифрового тракта.
Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Исправность цифрового тракта оценивается по наличию на выводах 8 и 11 микросхемы (в случае включения выходных транзисторов микросхемы по схеме с ОЭ) или на выводах 9 и 10 (в случае их включения по схеме с ОК) прямоугольных последовательностей импульсов в момент подачи питания.
Проверить наличие фазового сдвига между последовательностями выходных импульсов, который должен составлять половину периода.
Разорвать печатную дорожку (предварительно сняв питание с вывода 12 микросхемы), замыкающую 14 и 13 выводы микросхемы, и соединить 13 вывод с 7 ("корпус"). Убедиться в отсутствие фазового сдвига между последовательностями выходных импульсов на выводах 8 и 11 (либо 9 и 10).
Операция 3. Проверка исправности компаратора "мертвой зоны" DA1.
Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Убедиться в исчезновении выходных импульсов на выводах 8 и 11 при замыкании вывода 14 микросхемы с выводом 4.
Операция 4. Проверка исправности компаратора ШИМ DA2.
Не включая ИБЛ в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Убедиться в исчезновении выходных импульсов на выводах 8 и 11 при замыкании вывода 14 микросхемы с выводом 3.
Операция 5. Проверка исправности усилителя ошибки DA3.
Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Проконтролировать уровень напряжения на выводе 2, которое должно отличаться от нуля. Изменяя напряжение на выводе 1, подаваемое от отдельного источника питания, в пределах от 0,3В до 6В, проконтролировать изменение напряжения на выводе 3 микросхемы.
Операция б. Проверка усилителя ошибки DA4. Не включая ИБП в сеть, подать на вывод 12 управляющей микросхемы питающее напряжение 10-15В от отдельного источника.
Проконтролировать уровень напряжения на выводе 3, предварительно выставив усилитель
DA3 в состояние "жесткого 0" на выходе. Для этого напряжение на выводе 2 должно превышать напряжение на выводе 1. Проконтролировать появление напряжения на выводе 3 при превышении потенциалом, подаваемым на вывод 16, потенциала, приложенного к выводу 15.
Третьей характерной неисправностью является выход из строя выпрямительных диодов во вторичных цепях ИБП (как правило, это пробой или уменьшение обратного сопротивления диода).
Необходимо делать правильный выбор заменяемого диода по току, граничной частоте переключения и обратному напряжению!
Не забывайте, что в канале выработки +5В стоят диоды Шоттки, а в остальных каналах - обычные кремниевые диоды!
Напоминаем Вам о необходимости обеспечения хорошего теплоотвода для выпрямительных диодов в каналах выработки +5В и +12В!
При контроле выпрямительных диодов желательно выпаивать их из схемы, т.к., как правило, параллельно им подключены многочисленные элементы, и контроль диодов без выпаивания их из схемы в этом случае становится некорректным.
Обращаем Ваше внимание на то, что ИБП может вырабатывать все выходные напряжения, а сигнал PG будет равен 0В, и процессор будет заблокирован.
Не забывайте, что в схему выработки сигнала PG входит достаточно много элементов, которые тоже могут выйти из строя.
Перечисленные неисправности являются основными и, как правило, несложными для поиска.
Имейте ввиду: иногда сбои, возникающие в схеме ИБП в процессе проведения измерений, приводят к аварийным режимам работы силовых транзисторов. Сбои могут вызываться увеличением значения монтажной емкости элементов схемы ИБП в месте подсоединения измерительных щупов прибора!
Сетевой предохранитель (3-5А) всегда расположен на монтажной плате ИБП и практически защищает сеть от коротких замыканий в ИБП, а не ИБП от перегрузок.
Практически всегда перегорание сетевого предохранителя сигнализирует о выходе ИБП из строя.
Своеобразным индикатором работающего ИБП может служить вращение вентилятора, который запускается выходным напряжением +12В (либо - 12В). Однако для вывода ИБП в номинальный режим и корректного контроля всех выходных напряжений ИБП необходима внешняя нагрузка либо на системную плату, либо на сопротивления, обеспечивающие получение всего диапазона токовых нагрузок, указанных в таблице 2, Для оценки работоспособности ИБП в первом приближении можно воспользоваться нагрузочным резистором с номиналом порядка 0,5 Ом и рассеиваемой мощностью не менее 50Вт по каналу выработки +5В.
Исправный ИБП должен работать бесшумно. Это следует из того, что частота преобразования находится за пределом верхнего порога диапазона слышимости. Единственным источником акустического шума является работающий вентилятор.
Если кроме гудения вентилятора прослушиваются писк, "цыканье" или другие звуки, то это одназначно свидетельствует о неисправности ИБП или о его нахождении в аварийном режиме! В этом случае следует немедленно выключить ИБП из сети и устранить неисправность.
Для более сложных случаев выхода из строя ИБП необходимо хорошо представлять принципы работы ИБП, причинно-следственную взаимосвязь отдельных узлов схемы и, конечно, иметь принципиальную схему данного блока питания.
9. Элементная база ИБП и способы ее диагностики. Резисторы
Постоянные резисторы, применяемые в схемах ИБП, можно сгруппировать в два основных класса: проволочные и композиционные.
Эквивалентная схема резистора зависит от типа резистора и процесса его изготовления.
Однако для большинства случаев пригодна схема, представленная на рис.12, в.
В типичном композиционном резисторе изображенная здесь шунтирующая емкость имеет значение порядка 0,1-0,5пф.
Величина индуктивности определяется в основном выводами, за исключением проволочных резисторов, у которых основной вклад в индуктивность вносит сам резистор.
За исключением проволочных резисторов или резисторов других типов с очень малым сопротивлением, при анализе схемы индуктивностью резистора обычно можно пренебречь.
Однако индуктивность резистора делает его чувствительным к наводкам от внешних магнитных полей. Шунтирующая емкость существенна лишь для высокоомных резисторов.
Зарубежные фирмы изготовители обычно используют кодированное обозначение параметров резисторов в виде набора цветных колец на их корпусах.
Рис. 12. Эквивалентные схемы радиоэлементов: а) - конденсатора; б) - катушки индуктивности; в) - резистора.
При этом каждому цвету соответствует своя цифра. Обычные резисторы метятся с помощью четырех колец.
При этом первое кольцо соответствует первой цифре номинала резистора, второе кольцо - второй цифре.
Третье кольцо указывает на степень множителя 10.
Четвертое кольцо указывает на производственный допуск на отклонение номинала резистора (табл.4).
Рис. 13. Пример цветовой маркировки резисторов и их габаритные размеры в зависимости от допустимой рассеиваемой мощности.
Пример цветовой кольцевой маркировки резисторов показан на рис.13.
Прецизионные резисторы метятся по пятикольцевой системе.
В этом случае первое кольцо соответствует первой цифре номинала, второе - второй цифре, третье - третьей цифре, четвертое - степени множителя 10 и пятое - допуску.
Определение номинала резистора следует начинать с кольца, расположенного ближе к одному из торцов резистора, либо имеющего большую, чем все остальные кольца, ширину.
В схемах ИБП могут встречаться резисторы, маркировка которых отличается от стандартной. Такие резисторы либо вообще не имеют маркировки, либо промаркированы одним черным кольцом.
Сопротивление таких резисторов составляют малые доли Ома и они фактически являются резисторами с почти нулевым сопротивлением.
Данные резисторы устанавливаются в некоторых ИБП на наиболее ответственных участках схемы и, по существу, выполняют функцию плавких предохранителей.
При превышении током, протекающем через эти резисторы, допустимой величины, резистор перегорает (состояние обрыва) и предохраняет элементы схемы от выхода из строя.
В зарубежной литературе такие резисторы известны под названием SAFETY
RESISTORS (защитные резисторы).
Неисправности резисторов, встречающиеся на практике можно подразделить на:
обрыв;
значительное увеличение номинального сопротивления.
Несмотря на то, что в технической литературе считаются невозможными случаи уменьшения номинального сопротивления резисторов, авторам на практике все же приходилось сталкиваться с такими случаями. По-видимому, такие неисправности связаны с технологическими особенностями изготовления таких резисторов.
Неисправность резистора далеко не всегда можно определить по его внешнему виду (потемнение, обгорание, отколупливание краски) !
На практике часты случаи, когда неисправный резистор по внешнему виду ничем не отличается от исправного. Выявить неисправный резистор в таких случаях можно только омической "прозвонкой" на соответствие номиналу после выпаивания его из схемы.
С другой стороны, потемнение резистора не всегда означает выход его из строя. Кроме того, потемнение резистора затрудняет определение его номинала по цветовому коду, нанесенному на его поверхность, т.к цвета колец становятся трудноотличимы друг от друга. В этих случаях выйти из положения можно либо получив нужную информацию из принципиальной схемы (если она имеется), либо по номиналу аналогичного резистора в аналогичной конструкции.
При определении номиналов маломощных резисторов, имеющих малые габариты, целесообразно использовать лупу, т.к сходные цвета (например, коричневый и фиолетовый; серый и серебристый; красный и оранжевый) трудно различимы невооруженным глазом.
9.1 Конденсаторы
Конденсаторы наиболее часто делятся на категории по материалу диэлектрика, из которого они изготовлены.
Внимание. Конденсаторы различных типов имеют характеристики, делающие их пригодными для одних и непригодными для других применений.
Реальный конденсатор не является чистой емкостью, а обладает также, как показано на эквивалентной схеме рис.12, а, сопротивлением и индуктивностью. Индуктивность L создается как выводами, так и структурой самого конденсатора; R2 является сопротивлением параллельной утечки, и его величина зависит от объемного удельного сопротивления материала диэлектрика; R1 - эффективное (действующее) последовательное сопротивление конденсатора, зависящее от тангенса угла потерь диэлектрика конденсатора.
Внимание. Одним из наиболее важных соображений при выборе типа конденсатора является его рабочая частота.
Максимальная частота, на которой конденсатор эффективно работает, ограничивается обычно индуктивностью конденсаторов и его выводов.
На некоторой частоте конденсатор имеет собственный резонанс со своей индуктивностью.
На частотах выше частоты собственного резонанса конденсатор имеет индуктивное сопротивление, увеличивающееся с частотой.
В таблице 5 указаны приблизительные диапазоны частот, в которых можно использовать конденсаторы различных типов.
Верхний частотный предел определяется собственным резонансом конденсатора или увеличением тангенса угла потерь на высоких частотах. Нижняя граница определяется наибольшим достижимым на практике значением емкости.
Бумажные и майларовые конденсаторы - это среднечастотные конденсаторы, имеющие относительно большие последовательное сопротивление и индуктивность.
Они используются обычно для фильтрации, шунтирования и развязки, а также во времязадающих цепях и цепях шумоподавления.
Слюдяные и керамические конденсаторы имеют очень малые последовательное сопротивление и индуктивность.
Это высокочастотные конденсаторы, которые обычно используются для высокочастотной фильтрация, шунтирования, как разделительные, времязадающие элементы и для частотного разделения.
Они обычно очень стабильны во времени, при изменении температуры и напряжения.
Конденсаторы из высокосортной керамики (с высокой диэлектрической постоянной) являются среднечастотными.
Они относительно нестабильны во времени, с изменением температуры и частоты.
Их основным преимуществом является высокое по сравнению со стандартными керамическими конденсаторами значения емкости на единицу объема.
Применяют их обычно для шунтирования, блокировки и развязки. Один из недостатков этих конденсаторов состоит в том, что переходные напряжения могут вызвать их повреждения.
Поэтому не рекомендуется использовать их в качестве шунтирующих конденсаторов, включенных непосредственно между шинами источника питания.
Полистирольные конденсаторы обладают исключительно малым последовательным сопротивлением и имеют очень стабильную характеристику емкость-частота.
Из всех перечисленных типов конденсаторов они наиболее близки к идеальному конденсатору.
Типичные области их применения - фильтрация, шунтирование, развязка, времязадающие цепи и шумоподавление.
Характеристики сухих танталовых электролитических конденсаторов аналогичны характеристикам алюминиевых электролитических конденсаторов.
Однако последовательное сопротивление у них меньше, а емкость на единицу объема больше, чем у последних.
Некоторые из твердотельных танталовых конденсаторов имеют достаточно малую индуктивность и могут применяться на несколько более высоких частотах, чем алюминиевые электролитические.
В общем они более стабильны во времени по отношению к изменениям температуры и при ударных нагрузках, чем алюминиевые конденсаторы.
Особое внимание следует уделить алюминиевым электролитическим конденсаторам, как элементам, наиболее часто, по сравнению с другими типами конденсаторов, подверженным выходу из строя.
Основным преимуществом электролитического конденсатора, обусловившего его широкое применение, является большая емкость, которую, можно получить в малом корпусе.
Однако алюминиевый электролитический конденсатор может иметь последовательное сопротивление 1Ом (типичное значение - около 0,1 Ом). Величина последовательного сопротивления увеличивается с ростом частоты (из-за потерь в диэлектрике) и уменьшением температуры.
Из-за больших размеров алюминиевые электролитические конденсаторы имеют также большую индуктивность, поэтому они являются низкочастотными конденсаторами и их не рекомендуется применять на частотах выше З0кГц.
Наиболее часто они используются для фильтрации, шунтирования и развязки на низких частотах.
При использовании на высоких частотах их необходимо шунтировать конденсатором малой емкости с малой собственной индуктивностью. Это необходимо из-за того, что, емкость электролитического конденсатора падает с ростом частоты.
При расчетах может быть использована эмпирическая зависимость, обеспечивающая хорошее приближение в области рабочих частот:
С = 0.77 ? Сном ? 0,001?f
где Сном - номинальная емкость конденсатора.
Например, конденсатор с номинальной емкостью 22мкф на частоте 800Гц будет представлять из себя емкость всего лишь в 5мкф!
Поэтому для обеспечения качественной фильтрации во всем диапазоне частот электролитический конденсатор необходимо шунтировать высокочастотным керамическим конденсатором, т.к. емкость электролитического конденсатора на высоких частотах очень незначительна.
Одним из недостатков электролитических конденсаторов является то, что они поляризованы и на них необходимо поддерживать постоянное напряжение соответствующей полярности, т.е. конденсатор может работать только с пульсирующим и не может работать с переменным током.
На практике часты случаи пробоя выпрямительных диодов.
В этих случаях конденсатор оказывается под воздействием переменного тока, протекающего через него в обоих направлениях.
Это ведет к быстрому разогреву конденсатора с последующим выходом из строя и возможностью взрыва.
Взрыв электролитического конденсатора может привести к травме!
Будьте осторожны при включении в сеть ремонтируемых ИБП! Не наклоняйтесь близко к схеме, пытаясь "увидеть" процессы, происходящие в ней - это опасно! Лишь только после того, как Вы убедились, что сразу при включении взрыва не произошло, Вы можете приступить к исследованию схемы к этому времени он как раз нагреется и приготовится рвануть... так что подождите несколько секунд.
Для увеличения срока службы электролитических конденсаторов они должны работать под напряжением, не превышающим 80% максимально допустимого паспортного значения рабочего напряжения.
Соединив два полярных конденсатора одинаковой емкости встречно-последовательно, можно получить неполярный конденсатор, способный работать в цепях переменного тока.
Результирующая емкость такого конденсатора равна половине емкости отдельного конденсатора, а допустимое напряжение - допустимому напряжению отдельного конденсатора.
При использовании электролитических конденсаторов в цепях переменного или пульсирующего постоянного тока напряжение пульсации не должно превышать максимально допустимого значения, которое оговаривается в справочниках.
В противном случае конденсатор будет перегреваться. Температура является основной причиной старения, и поэтому электролитические конденсаторы никогда не следует использовать при температуре, превышающей рекомендованное для них значение.
Именно поэтому на корпусе электролитического конденсатора зарубежного производства наносится не только его номинал и рабочее напряжение, но и предельно допустимое значение рабочей температуры.
Емкость электролитических конденсаторов обозначается на их корпусе в единицах или долях микрофарады, например: 100uF = 100мкф, 2.2uF = 2,2мкф.
Полярность электролитических конденсаторов зарубежного производства обозначается в виде значков (-), которые расположены вдоль всего корпуса конденсатора со стороны вывода его отрицательной обкладки.
Обозначения конденсаторов остальных типов различаются в зависимости от фирмы-изготовителя. При этом некоторые фирмы-изготовители используют кодированные обозначения номиналов конденсаторов.
Код состоит из трех цифр и выражает номинал конденсатора в пикофарадах, Первые две цифры кода являются значащими, а третья цифра представляет собой степень сомножителя 10.
Например, если на конденсаторе имеется надпись 472К, то его номинал 47 х 100 = 4700пф.
Практически встречающиеся неисправности конденсаторов можно разделить на:
обрыв (полная потеря емкости);
пробой (короткое замыкание между выводами);
значительное уменьшение емкости по отношению к номинальной;
повышенная утечка, т.е. возрастание постоянной составляющей тока через конденсатор.
Исправность конденсатора можно проверить путем выпаивания его из схемы и "прозвонки" с помощью омметра (на пробой), а также замера на измерителе емкости (на обрыв и соответствие номиналу).
При этом рекомендуется устанавливать максимальный предел измерения в случае использования стрелочного омметра.
Исправность электролитических конденсаторов, благодаря их большой емкости, может быть в первом приближении оценена по начальному отклонению стрелки омметра. При этом для сравнения полезно иметь под рукой заведомо исправный электролитический конденсатор такой же емкости, как и проверяемый.
В случае исправности проверяемого конденсатора отклонение стрелки должно быть приблизительно таким же, как и для эталонного конденсатора. Полярность подключения щупов омметра должна соответствовать полярности выводов конденсатора ( (+) омметра - к выводу положительной обкладки конденсатора).
При исправном конденсаторе стрелка омметра после отклонения должна медленно вернуться в начало шкалы.
Если этого не произошло и стрелка остановилась, не дойдя на значительное расстояние до начала шкалы, то проверяемый конденсатор имеет повышенное значение утечки и должен быть заменен.
Не забудьте разрядить конденсатор перед его проверкой путем кратковременного замыкания выводов с помощью отвертки или пинцета! Иначе вы рискуете вывести из строя свой измерительный прибор.
Обнаружение таких конденсаторов представляет собой особую сложность при ремонте.
Выпаивание и проверка с помощью омметра в этих случаях результата не дает.
Обнаружить такой конденсатор можно только по нарушению режима работы схемы в месте его установки.
В таких случаях лучше всего заменить подозреваемый конденсатор на заведомо исправный, либо собрать специальную схему для его проверки под напряжением.
Иногда встречаются случаи, когда в результате небрежного обращения с платой керамические конденсаторы, установленные на ней получают механические повреждения.
Такие конденсаторы сразу бросаются в глаза при внимательном осмотре платы.
Они имеют отколотые края, трещины и т.д. Несмотря на то, что они могут быть исправны, такие конденсаторы лучше всего сразу же заменить.
9.2 Трансформаторы и дроссели
Представляют собой частные случаи катушек индуктивности с магнитным сердечником.
В реальной катушке провод, из которого она навивается, обладает последовательным сопротивлением, а между витками обмотки имеется распределенная емкость.
Две катушки индуктивности, связанные друг с другом через общий магнитный сердечник, образуют трансформатор.
При этом реальные трансформаторы (в отличие от идеальных) имеют между вторичными и первичными обмотками емкость.
Эквивалентная схема катушки индуктивности показана на рис.12,6. Межвитковая емкость представлена здесь в виде шунтирующего конденсатора с сосредоточенными параметрами, так что на некоторой частоте имеется параллельный резонанс.
Эта частота резонанса определяет верхнюю частоту, на которой можно использовать катушку индуктивности.
Другой важной характеристикой катушек индуктивности является их чувствительность к паразитным магнитным полям и способность генерировать эти поля.
Поэтому к силовым импульсным трансформаторам ИБП предъявляют жесткие требования по обеспечению электромагнитной совместимости, по индуктивности рассеяния обмоток при условии обеспечения хорошего потокосцепления между обмотками, а также по конструкции с высокой прочностью изоляции (как правило, пробивное напряжение не менее 2кВ). Эти требования прежде всего обусловлены прямоугольностью формы напряжения с большой частотой (около З0кГц), а также большой амплитудой импульсов в каждом полупериоде напряжения.
Импульсные трансформаторы предназначены для передачи кратковременных электрических импульсов достаточно большой мощности.
Возникающие при этом искажения плоской части импульса определяются конечной величиной индуктивности первичной обмотки L1, а искажения фронта - индуктивностью рассеяния Ls.
Эти искажения фронтов импульсов вызываются паразитными колебаниями, возникающими в контуре, образованном индуктивностью рассеяния Ls и собственной емкостью С0.
Поэтому при выполнении импульсного трансформатора принимаются специальные меры для уменьшения этих паразитных параметров.
Меры эти в основном сводятся к следующему.
Обмотки располагают таким образом, чтобы между их выводами было приложено в процессе работы возможно меньше импульсное напряжение. Рекомендуется обмотку с меньшим числом витков располагать внутри, а с большим числом витков - снаружи катушки.
Для получения малой величины индуктивности рассеяния одну из обмоток наматывают в два слоя, между которыми помещают вторую обмотку.
В некоторых импульсных трансформаторах первичная и вторичная обмотки наматываются одновременно двумя проводами, так что витки одной обмотки располагаются между витками другой.
В качестве межслоевой и межобмоточной изоляции обычно используются пленки неорганических диэлектриков.
Сами трансформаторы пропитывают компаундами или лаками.
В силовых импульсных трансформаторах ИВП персональных компьютеров находят широкое применение Ш-образные ферритовые магнитопроводы, наиболее технологичные для процесса намотки обмоток и характеризующиеся высоким коэффициентом их заполнения.
Исходя из вышесказанного, можно сделать неутешительный вывод о том, что при выходе из строя силового импульсного трансформатора его ремонт или изготовление нового - дело весьма сложное и требует специального оборудования, материалов, оснастки и высокой квалификации.
Кроме того импульсный трансформатор является оригинальной неунифицированной деталью, которая разрабатывается и применяется для данной конкретной схемы ИВП и, как правило, не подходит для других схем.
При нарушении хотя бы одного из вышеперечисленных параметров в результате ремонта импульсного трансформатора, он будет работать неудовлетворительно, что приводит к нарушению оптимального соотношения потерь мощности на элементах ИВП и скорому повторному выходу ИБП из строя.
К счастью, силовые импульсные трансформаторы необратимо выходят из строя довольно редко, что объясняется их высокой надежностью, которая заложена в технологии их изготовления, т.к импульсный трансформатор является одним из самых ответственных элементов схемы ИБП.
Рассмотрим теперь основные особенности построения трансформаторов тока, которые используются во многих схемах ИБП в качестве датчика схемы токовой защиты.
Характерной особенностью трансформатора тока в отличие от трансформатора напряжения является то, что вторичная обмотка его должна быть обязательно замкнута на нагрузку, сопротивление которой не превышает определенного значения.
Разомкнутое состояние вторичной обмотки является аварийным режимом. Поясним это подробнее.
Т.к. ток первичной обмотки не изменяется при разрыве цепи вторичной обмотки, в отличие от трансформатора напряжения, то переменный магнитный поток в сердечнике имеет очень большую амплитуду из-за того, что отсутствует встречный компенсирующий магнитный поток, порождаемый током вторичной обмотки.
Скорость изменения магнитного потока при смене полярности тока, протекающего через первичную обмотку, также очень велика.
Поэтому будет очень велика ЭДС, наводимая этим потоком на разомкнутой вторичной обмотке. Величина этой ЭДС такова, что может привести к пробою изоляции.
Для безопасности работы в случае повреждения изоляции между первичной и вторичной обмотками, вторичная обмотка должна быть обязательно заземлена.
Кроме того, большая амплитуда переменного магнитного потока в сердечнике приводит к значительному возрастанию потерь на его перемагничивание. Поэтому трансформатор начинает сильно перегреваться.
В схеме ИБП PS-6220C, например, функцию нагрузки вторичной обмотки трансформатора тока Т4 выполняет резистор R42 (470 Ом) Трансформатор тока в рассматриваемом классе ИБП в основном имеет две конструктивные реализации. В одном варианте он представляет собой трансформатор на Ш-образном ферритовом сердечнике, на среднем керне которого расположен каркас с намотанной на него вторичной обмоткой. Первичная обмотка расположена поверх вторичной и представляет из себя один виток монтажного провода в пластмассовой изоляции (рис.14, а, б).
Рис.14. Встречающиеся на практике конструкции трансформатора тока на Ш-образном (а) и на кольцевом (б, в) сердечнике.
В другом варианте вторичная обмотка наматывается на кольцевой ферритовый сердечник, а первичной обмоткой является вывод конденсатора, который включен последовательно с первичной обмоткой силового трансформатора (рис.14, в).
Однако встречаются и другие варианты конструктивного исполнения трансформатора тока.
Дроссели выходных фильтров (кроме дросселя групповой стабилизации) представляют собой катушки индуктивности с однорядной намоткой из медного провода большого сечения на незамкнутом ферритовом сердечнике цилиндрической формы (ферритовые стержни).
Большое сечение провода объясняется значительной величиной выходных токов ИБП, а незамкнутая форма сердечника - работой дросселя с большим током подмагничивания.
Замкнутая форма сердечника в этом случае привела бы к вхождению его в магнитное насыщение и потере дросселем фильтрующих свойств.
Неисправности индуктивных элементов можно подразделить на:
обрыв в обмотке;
межвитковое замыкание;
межобмоточное замыкание (только для трансформаторов), замыкание (пробой) обмотки на сердечник;
потеря сердечником магнитных свойств (из-за перегрева, механических повреждений и т.д.).
Выход из строя выходных дросселей фильтров в ИБП явление крайне редкое из-за их высокой надежности.
Выход из строя трансформаторов часто можно определить при внешнем осмотре по потемнению отдельных участков наружной изоляции, появлению пузырьков воздуха под изоляцией, вспениванию и выделению из под изоляции пропиточного компаунда.
Целостность обмоток на "обрыв", а также наличие межобмоточного замыкания и замыкания какой-либо из обмоток на сердечник легко проверяются с помощью омической "прозвонки".
Остальные из перечисленных выше неисправностей поддаются обнаружению крайне сложно, так как омическое сопротивление обмоток трансформатора очень мало (единицы и даже доли Ом!).
Если есть подозрение на межвитковое замыкание или на потерю сердечником магнитных свойств, то трансформатор нуждается в замене на аналогичный.
9.3 Диоды
Диоды, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:
силовые выпрямительные низкочастотные (диоды входного сетевого моста и схемы пуска);
силовые выпрямительные высокочастотные вторичной стороны;
высоковольтные высокочастотные (рекуперационные диоды транзисторного инвертора);
низковольтные высокочастотные (применяемые в согласующем каскаде и сигнальных цепях защиты, а также схеме образования сигнала PG).
Выпрямительные низкочастотные диоды для входного выпрямительного моста выбираются при замене по следующим основным параметрам:
постоянному обратному напряжению Uo6p. (не менее 400В);
среднему прямому току Iпр. (не менее 2-4А в зависимости от мощности блока);
импульсному прямому току Iи. пр. (не менее 70-100А).
Для силовых выпрямительных высокочастотных диодов, кроме того, важным параметром служит время восстановления обратного сопротивления диода teoc, которое определяет длительность режима "сквозных токов" в схеме выпрямления. Это увеличивает коммутационные потери не только в диодах выпрямителя, но и в транзисторах инвертора. При этом элементы источника оказываются в режиме короткого замыкания, что создает условия для коммутационных выбросов на фронтах переключения, ведущих к отказу источника. Время teoc. должно быть в три-четыре раза меньше времени выключения транзистора и соответствовать teoc. = 0,3 - 0,5мкс. Вторым важным параметром этих диодов является прямое падение напряжений Unp., от значения которого зависит КПД выпрямителя. Это напряжение должно быть по возможности меньшим.
Сравнительно меньшее значение Unp. получается у диодов с барьером Шоттки. У данного типа диодов Unp. составляет 0,4-0,6В при токах до 100А, а время восстановления не более 0,1мкс. Недостатком диода является большой обратный ток и малое допустимое обратное напряжение (20 - 40В).
Для остальных диодов определяющим параметром является teoc.
Мощные выпрямительные диоды в каналах выработки +5В и +12В стоят на радиаторах, т.е. для обеспечения температурного режима работы этих диодов надо обеспечить хороший теплоотвод!
Характерной ошибкой ремонтников при замене вышедших из строя зарубежных диодов является незнание одной характерной особенности. Исторически сложилось так, что у диодов, выпускаемых отечественной промышленностью метка, как правило, наносится со стороны анода. Зарубежные диоды, как правило, имеют метку у катода.
Поэтому ремонтник, извлекая неисправный диод из платы, устанавливает на его место диод отечественного производства, стараясь при этом сохранить расположение метки.
В результате диод оказывается запаян "наоборот", что приводит к выводу ИБП из строя.
Однако необходимо отметить, что и для зарубежных, и для отечественных диодов расположение меток может быть и противоположным.
Поэтому необходимо перед установкой диода на плату разобраться в расположении выводов с помощью омметра, не доверяясь справочникам, в которых иногда встречаются досадные ошибки! Иногда ошибки при маркировке диодов бывают допущены на заводе изготовителе.
Практически встречающиеся неисправности диодов можно разделить на:
обрыв;
короткое замыкание (пробой);
уменьшение обратного сопротивления (утечка);
увеличение прямого сопротивления.
Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания диода из схемы.
Обращаем Ваше внимание на то, что иногда утечка диода проявляется только под напряжением!
Большие сложности возникают при выходе из строя стабилитронов и тиристоров в ИБП, которые обычно являются пороговыми и исполнительными элементами различных защитных схем.
Определение их типов и параметров часто бывает затруднено из-за отсутствия справочной информации и принципиальных схем на ИБП.
Произвольный подбор этих элементов чреват выходом из строя элементов ИБП, которые еще не "сгорели". Поэтому при таких сложных случаях необходимо "снять" принципиальную схему с печатной платы ИБП и тщательно проанализировать принцип ее работы, после чего попробовать подобрать элемент со сходными параметрами, либо попытаться достать аналогичный зарубежный элемент.
9.4 Транзисторы
Транзисторы, применяемые в рассматриваемом классе ИБП, можно условно подразделить на:
силовые высокочастотные (большой мощности);
сигнальные высокочастотные (малой мощности).
Силовые высокочастотные транзисторы применяются в качестве ключей полумостового инвертора и рассчитаны на работу со значительными токами и напряжениями.
Сигнальные транзисторы используются во всех остальных функциональных узлах схемы ИБП.
Во всех схемах рассматриваемого класса ИБП в качестве силовых ключей используются исключительно биполярные транзисторы обратного типа проводимости (n-p-п).
В качестве сигнальных используются транзисторы как прямого (p-n-р), так и обратного типа проводимости. При замене сигнальных транзисторов следует учитывать не только цифровое обозначение транзисторов, но и буквенные обозначения, которые нанесены на корпус. Транзисторы с разными буквенными обозначениями имеют различные параметры (прежде всего - коэффициент усиления по току)!
Практически встречающиеся неисправности транзисторов можно разделить на:
обрыв одного или обоих переходов;
короткое замыкание (пробой) по одному или обоим переходам;
уменьшение обратного сопротивления (утечка) одного или обоих переходов;
пробой по участку коллектор-эмиттер при целостности переходов коллектор-база и эмиттер-база. Все эти неисправности легко обнаруживаются при помощи омметра после выпаивания транзистора из схемы, т.к. каждый из переходов транзистора аналогичен диоду.
9.5 Интегральные стабилизаторы
Рис.15. Интегральные линейные регуляторы напряжения LM7805, LM7812.
Эти микросхемы содержат встроенную защиту от перегрузки по току и тепловую защиту от максимально допустимой температуры кристалла (175°С), что существенно повышает надежность микросхем.
Типовая схема включения этих стабилизаторов приведена на рис.17.
Конденсатор С1 - обычный фильтрующий конденсатор, который должен иметь емкость 1000мкф на 1А тока нагрузки.
Конденсатор С4 используется для сглаживания переходных процессов при внезапных повышениях потребляемого тока и должен иметь емкость примерно 100мкф на 1А тока нагрузки.
Рис.16. Выход ИМС 7805 на режим стабилизации при подаче входного напряжения.
Рис.17. Типовые схемы включения трехвыводных интегральных стабилизаторов положительного (а) и отрицательного (б) напряжений.
В рассматриваемом классе ИБП используются, в основном, для стабилизации отрицательных выходных напряжений трехвыводные интегральные стабилизаторы напряжения типа 7905, 7912 или 7805, 7812.
Структурная схема трехвыводных интегральных стабилизаторов 7805 (К142ЕН5А) и 7812 (К142ЕН8Б) приведена на рис.14.
Основные параметры этих стабилизаторов напряжения приведены в табл.6.
Входной конденсатор С2 устраняет генерацию при скачкообразном включении входного напряжения (Uex), которая возникает в стабилизаторе из-за влияния монтажных емкости и индуктивности соединительных проводов, образующих паразитный колебательный контур (рис.15),
Выходной конденсатор СЗ служит для защиты от переходных помеховых импульсов.
Обычно С2 и СЗ имеют емкость от 0,1 до 1 мкф и должны монтироваться как можно ближе к корпусу стабилизатора. Амплитуда высокочастотных колебаний может превышать максимально допустимое входное напряжение, что приводит к пробою микросхемы, поэтому наличие и исправность С2 является обязательным условием для работы схемы.
Иногда между входом и выходом интегрального стабилизатора включается диод (рис.16). В его отсутствии после выключения из сети ИБП конденсатор, стоящий на выходе стабилизатора разрядится через стабилизатор, что может привести к выходу его из строя.
Минимальное входное напряжение интегрального стабилизатора должно превышать выходное на 2,5В, т.е. для стабилизатора с фиксированным выходным напряжением +5В, например, минимальное входное напряжение составляет +7.5В.
Цоколевка корпусов интегральных стабилизаторов этих серий приведена на рис.80.
Заключение
Наибольшее распространение в схемотехнике источников питания мониторов получил импульсный источник питания, содержащий стабилизатор напряжения, регулирующий элемент которого работает в ключевом режиме.
Использование этого режима позволяет значительно улучшить ряд показателей формирователей питающих напряжений.
Так, импульсный источник питания, по сравнению с линейным, обладает высоким коэффициентом полезного действия (0,7...0,8), меньшей рассеиваемой мощностью выходного транзистора, а, следовательно, и облегченным тепловым режимом всего монитора в целом, малыми размерами импульсного трансформатора и сглаживающего фильтра.
К достоинствам импульсных источников питания относится и возможность групповой стабилизации одновременно нескольких источников питания, а также способность работы в широких пределах изменения сетевого напряжения (от 100 до 260 В).
Недостатками импульсных источников питания считают: высокий уровень радиопомех при функционировании и отсутствие гальванической развязки от сети переменного тока.
Источник питания монитора представляет собой сложное радиоэлектронное устройство, ремонт которого необходимо осуществлять, точно представляя его работу и владея навыками нахождения и устранения дефектов.
При ремонте рекомендуется комплексное использование всех доступных способов поиска неисправностей. При ремонте ИБП необходимо использовать следующие методы:
Метод анализа монтажа.
Б. Метод измерений
В. Метод исключения.
Г. Метод электропрогона.
Д. Метод воздействия.
Е. Метод эквивалентов.
Характерными причинами возникновения аварийных режимов в схеме ИБП являются: "броски" сетевого напряжения, вызывающие увеличение амплитуды импульса на коллекторе ключевого транзистора; короткое замыкание в цепи нагрузки; лавинообразное нарастание тока коллектора из-за насыщения магнитопровода импульсного трансформатора, например, из-за изменения характеристики намагничивания магнитопровода при перегреве или случайного увеличения длительности импульса, открывающего транзистора.
Одной из самых характерных неисправностей является "пробой" диодов выпрямительного моста или мощных ключевых транзисторов, ведущий к возникновению КЗ в первичной цепи ИБП. Пробой диодов выпрямительного моста может привести к ситуации, когда на электролитические сглаживающие емкости сетевого фильтра будет непосредственно попадать переменное напряжение сети. При этом электролитические конденсаторы, стоящие на выходе выпрямительного моста, взрываются.
Литература
1. Чальз Брукс и др. Аттестация А+. Москва. 2002.
2. Марк Минаси. Ваш ПК. Петербург. 2004
3. Гук М. Аппаратные средства IBM PC. Энциклопедия. - СПб.: "Питер", 2000. - 816 с: илл
4. Мураховский В.И., Евсеев Г.А. Железо ПК - 2002. Практическое руководство. - Москва: "ДЕСС КОМ", 2002. - 672 с: илл.
Периодические издания:
5. Компьютерра. Компьютерный еженедельник: 2001-2005. Компьютерра. Спецвыпуски: 2005.
6. HARD'nSOFT. Ежемесячный журнал: 2001-2005.
7. CHIP. Журнал информационных технологий: 2001-2005.
8. Мир ПК 2000-2005
9. Компьютер Пресс 2000-2005
10. Хакер 2002-2005
11. UPGRADE 2000-2005
Интернет-издания:
12. 3DNews.ru
13. 3DVelocity.com
14. AMDNow.ru
15. BoogleTech.com
16. Сontroler Reviews.com
17. DigitalWare.ru
18. HomeToys.com
19. iXBT.com
20. Motherboards.org
21. NVMax.ru
22. PCGuide.com
23. ReactorCritical.ru
24. Sandpile.org
Подобные документы
Изучение принципов построения и описание электрической принципиальной схемы импульсных источников питания. Технические характеристики и диагностика неисправностей импульсных блоков питания. Техника безопасности и операции по ремонту источников питания.
курсовая работа [427,5 K], добавлен 09.06.2015Конструкция блока питания для системного модуля персонального компьютера. Структурная схема импульсного блока питания. ШИМ регулирование силового каскада импульсного преобразователя. Импульсный усилитель мощности. Устройства для синхронизации импульсов.
дипломная работа [4,8 M], добавлен 19.02.2011Общие принципы построения импульсных источников питания. Организационно-экономический раздел: расчет сметы затрат на проектирование ИМС. Схема включения ИМС в составе импульсного источника питания. Разработка библиотеки элементов, схема электрическая.
дипломная работа [1,5 M], добавлен 01.11.2010Особенности построения и применения импульсных источников питания. Структура, схемотехническое решение и принцип действия импульсного блока питания. Разработка структуры прибора Master-Slave с применением современных интегральных микросхем TEA 2260.
дипломная работа [4,0 M], добавлен 04.03.2013Классификация средств электропитания, источников вторичного электропитания. Основные характеристики источников вторичного электропитания. Блоки питания видеомониторов. Блок схема питания видеомонитора EGA. Схема электрическая принципиальная.
курсовая работа [81,9 K], добавлен 07.05.2004Части стабилизированного источника питания. Синтезирование блока питания с компенсационным стабилизатором напряжения. Максимальный коллекторный ток регулирующего транзистора. Расчет измерительного и усилительного элементов, температурной компенсации.
курсовая работа [317,8 K], добавлен 23.12.2012Основные параметры источников питания. Настройка и регулировка нестабилизированных ИП (НИП). Регулировка стабилизированных ИП. Напряжение сети. Структурная схема стабилизатора компенсационного типа. Импульсные источники питания и их структурная схема.
реферат [262,5 K], добавлен 10.01.2009Особенности развития микроэлектронной техники в области построения БИС для узлов и трактов телевизионных приемников. Анализ схемы блока питания телевизора "Горизонт 736". Характеристика сетевого (трансформаторного) источника питания. Сущность выпрямителя.
контрольная работа [667,5 K], добавлен 28.04.2015Разработка источника питания с импульсным преобразователем напряжения, принципиальной схемы стабилизатора напряжения. Триггерная схема защиты от перегрузок. Схема цифрового отсчёта тока нагрузки. Выбор элементов импульсного преобразователя напряжения.
курсовая работа [89,3 K], добавлен 22.12.2012Изучение систем управления цветом. Анализ проблем полиграфии, связанных с работой со цветом. Изучение основных принципов калибровки мониторов. Обзор существующих программных и аппаратных средств калибровки мониторов. Нелинейность монитора-колориметра.
курсовая работа [691,3 K], добавлен 09.02.2013