Расчет надежности работы атмосферной оптической линии связи

Особенности систем передачи информации лазерной связи. История создания и развития лазерной технологии. Структура локальной вычислительной сети с применением атмосферных оптических линий связи. Рассмотрение имитационного моделирования системы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 28.10.2014
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

  • ВВЕДЕНИЕ
  • ГЛАВА 1. ОСОБЕННОСТИ СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ ЛАЗЕРНОЙ СВЯЗИ
    • 1.1 Технология лазерных сетей связи
    • 1.2 Преимущества систем лазерной связи
    • 1.3 История создания и развития лазерной технологии
    • 1.4 Основные результаты
  • ГЛАВА 2. АНАЛИЗ ПРИНЦИПОВ ПОСТРОЕНИЯ ЛАЗЕРНЫХ СВЯЗЕЙ
    • 2.1 Принцип работы лазеров
    • 2.2 Работа систем АЛС
    • 2.3 Промышленные системы АЛС
    • 2.4 Применение лазеров
    • 2.5 Космические системы связи
    • 2.6 Применение лазеров в космических системах связи
    • 2.7 Влияние атмосферы
    • 2.8 Основные результаты
  • ГЛАВА 3. FSO-СИСТЕМЫ
    • 3.1 Структура локальной вычислительной сети с применением атмосферных оптических линий связи
    • 3.2 Структура системы передачи данных с открытым атмосферным каналом
    • 3.3 Анализ возникающих проблем при использовании систем с открытым атмосферным каналом передачи данных для удаленного доступа
  • ГЛАВА 4. ИМИТАЦИОННОЕ МОДЕЛИРОАНИЕ ИССЛЕДУЕМОЙ СИСТЕМЫ
    • 4.1 Основные результаты
  • ГЛАВА 5. ЭКОНОМИЧЕСКАЯ ЧАСТЬ
    • 5.1 Резюме
    • 5.2 Анализ положения дел в отрасли
    • 5.3 Суть разрабатываемого проекта
    • 5.3.1 Назначение
    • 5.3.2Форма реализации
    • 5.4 Производственный план
    • 5.5 Организационный план
    • 5.6 Финансовый план
    • 5.7 Вывод
  • ГЛАВА 6. БЕЗОПАСНОСТЬ И САНИТАРНО-ГИГИЕНИЧЕСКИЕ УСЛОВИЯ ТРУДА НА РАБОЧЕМ МЕСТЕ
    • 6.1 Микроклимат рабочего помещения
    • 6.1.1. Расчет микроклимата в холодный период года
    • 6.1.2 Расчет систем воздушного отопления
    • 6.1.3 Расчет водяного отопления
    • 6.1.4 Расчет и оптимизация системы кондиционирования в теплый период года
    • 6.3 Расчет и анализ опасности поражения электрическим током
    • 6.4 Режим труда и отдыха при работе с ПЭВМ
    • 6.5 Выводы
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети будет исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

ГЛАВА 1. ОСОБЕННОСТИ СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ ЛАЗЕРНОЙ СВЯЗИ

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи, а так же быстрое развертывание и изменение конфигурации сети.

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера, в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Оптический диапазон имеет много характерных особенностей и за счет малой длины волны позволяет достичь высокой направленности излучения, существенно уменьшить размеры антенных систем, сформировать чрезвычайно узкие лазерные пучки и получить высокую концентрацию электромагнитного излучения в пространстве.

При передаче информации модулированными электромагнитными колебаниями необходимо, чтобы частота модуляции была в 10…100 раз меньше несущей частоты. Кроме того, частоты модуляции занимают некоторую полосу частот, и ширина ее определяется объемом передаваемой в единицу времени информации. Например, для передачи телеграфного текста требуется полоса частот 10 Гц, а для телевизионного изображения - полоса частот 107 Гц и несущая частота не менее 108 Гц. Радиодиапазон занимает полосу частот 104…108 Гц и полностью освоен. Информационная емкость канала связи в СВЧ-диапазоне (109..1012 Гц) выше, но в силу особенностей распространения СВЧ-излучения в атмосфере связь между станциями СВЧ-диапазона возможна только на расстоянии прямой видимости. В оптическом диапазоне только видимая область занимает полосу частот от 41014 до 1015 Гц. С помощью лазерного луча теоретически можно обеспечить передачу 1015/107 = 108 телевизионных каналов, что на несколько порядков превышает современные потребности, или 1013 телефонных разговоров. Таким образом, одним из преимуществ оптических линий связи является возможность передачи больших объемов информации, обусловленная сверхширокой полосой частот. Освоение оптического диапазона: создание лазерных источников света, чувствительных полупроводниковых приемников оптического излучения и разработка волоконных светодиодов с малыми потерями, - открывает новые возможности для создания систем связи.

Оптический диапазон открывает возможности создания информационных и управляющих систем с характеристиками, которые принципиально не достижимы в радиодиапазоне. К настоящему времени разработаны разнообразные наземные, авиационные и космические системы оптической связи, лазерной локации, лазерные системы аэрокосмического мониторинга природной среды, системы воздушной разведки, системы предупреждения столкновений подвижных объектов, лазерные системы стыковки космических аппаратов, системы лазерного наведения и лазерного управления оружием.

Потенциальные возможности лазерных информационных систем, как и в целом оптических методов передачи и обработки информации, весьма велики. Во многих задачах предельно достижимые характеристики ограничиваются лишь квантовыми эффектами. Однако в действительности потенциальные возможности оптического диапазона далеко не всегда удается эффективно реализовать на практике. Существует множество тому причин.

Огромное влияние на рабочие характеристики реальных лазерных систем оказывают неизбежные флюктуации в источниках лазерного излучения, случайные изменения параметров информационных процессов, воздействия различных помех, вероятностный характер операции фото детектирования. Многие информационные системы оптического диапазона строятся с использованием открытого (чаще всего атмосферного) канала. Для лазерного излучения атмосферный канал представляет собой канал со случайно-неоднородной средой распространения. Эффекты поглощения оптического излучения атмосферными газами, молекулярное и аэрозольное рассеяние, искажения пространственно-временной структуры и нарушение когерентности лазерного излучения - все это оказывает заметное влияние на энергетический потенциал, принципы обработки информационных сигналов и дальность действия создаваемых систем. Все перечисленные особенности показывают, что анализ лазерных информационных систем, оценка их потенциальных и реально достижимых характеристик не может проводиться без вероятностного исследования структуры информационных сигналов и помех.

На сегодняшний момент накоплены многочисленные результаты по вероятностному анализу различных лазерных систем. Однако большинство таких результатов представляются весьма разрозненными, они не базируются на едином подходе и их достаточно сложно использовать в практических задачах. Необходимость дополнительных детальных исследований вероятностной структуры сигналов, помех и в целом информационных процессов в радиооптике связана с необходимостью совершенствования математических моделей, решением задач оптимизации структуры сигналов и систем, разработкой новых перспективных алгоритмов передачи, приема, преобразования и обработки информации в оптических информационных системах.

Лазерная связь является альтернативой радио, кабельной и волоконно-оптической связи. Лазерные системы позволяют создать канал связи между двумя зданиями, находящимися на расстоянии до 1,2 км друг от друга, и передавать по нему телефонный трафик (скорость от 2 до 34 Мбит/с), данные (скорость до 155 Мбит/с) или их комбинацию. В отличие от беспроводных радиосистем лазерные системы связи обеспечивают высокие помехозащищенность и секретность передачи, так как получить несанкционированный доступ к информации можно только непосредственно от приемопередатчика.

Компания, которая воспользуется лазерной связью для создания основного (резервного) канала ближней связи, избавится не только от необходимости прокладывать новые проводные коммуникации, но также и от необходимости получать разрешение на право пользования радиочастотой. Кроме того, невысокий уровень затрат на организацию высокопроизводительного канала связи, а также небольшое время его ввода в эксплуатацию обеспечат быструю окупаемость вложенных средств. Таким образом, широкий спектр возможностей и несомненные преимущества лазерного оборудования делают его использование лучшим решением проблемы организации надежного канала связи между двумя зданиями.

1.1 Технология лазерных сетей связи

Лазерные сети связи широко применяются для преодоления сложных участков сети; экономии времени и средств на проектных работах и установке канала; конкурируют со стационарным радиорелейным и кабельным оборудованием при организации высокоскоростного доступа. Также сотовые операторы часто используют лазерные каналы для быстрого подключения неосвоенных районов, пока не протянут оптоволокно. Операторы сотовой и прочей беспроводной связи используют лазерные каналы связи для подключения базовых станций, область применения этой технологии распространяется на беспроводные телефонные сети.

Малые сроки инсталляции и независимость от традиционной проводной инфраструктуры позволяют использовать атмосферные линии для всевозможных временных мероприятий -- выставок, фестивалей -- и даже просто при необходимости временно расширить подключение к сети -- например при проведении разовой рекламной компании. При этом скорость такого временного канала может превышать 1 Гбит/с - хватит и на потоковое видео, и на серверную комнату.

В последнее время все большую популярность приобретает применение лазерных каналов при создании охранных периметров и в системах обеспечения безопасности благодаря скрытности канала и возможности передачи качественной видеоинформации от камер наблюдения в режиме реального времени. Основными применениями технологии в настоящее время остаются: доступ на последней миле, преодоление преград, а также связь локальных сетей.

Лазерная связь осуществляется путем передачи информации с помощью электромагнитных волн инфракрасного диапазона спектра. Механизмы поглощения света в прозрачной атмосфере во многом аналогичны происходящим в оптоволокне. В результате, в атмосфере свет распространяется в тех же окнах прозрачности -- 850, 1310 и 1550 нм, что позволяет использовать весьма распространенную элементную базу, применяемую в оптоволоконной технике, и заимствовать заметную часть наработок и технологий: микролинзы, оптические усилители, голографическая оптика и методы спектрального уплотнения каналов.

Лазерная линия связи состоит из двух идентичных станций, устанавливаемых напротив друг друга в пределах прямой видимости. Построение всех станций практически одинаково: интерфейсный модуль передатчика, модулятор, лазер, оптическая система передатчика и приемника, демодулятор и интерфейсный модуль приемника. Передатчик представляет собой излучатель на основе импульсного полупроводникового лазерного диода. Приемник в большинстве случаев имеет в своей основе скоростной pin-фотодиод или лавинный фотодиод. Передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Модулированные импульсы от источников инфракрасных волн передаются через атмосферу примерно так же, как сигнал по оптическому кабелю от применяемых в волоконно-оптических системах лазеров. Излучение полупроводникового лазера поступает на передающий объектив, а на принимающей стороне нерассеянная часть энергии лазерного луча через объектив попадает на фотоприемник, где оптические импульсы преобразуются в электрический информационный сигнал. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя.

Рис.1. Система спутниковой связи

Аналогичным образом в дуплексном режиме одновременно и независимо идет встречный поток данных. Системы лазерной связи -- двунаправленные, они способны одновременно как принимать, так и передавать сигнал. По существу, атмосферные оптические линии элементарны оптоволоконным: этот тезис только подтверждают пассивные атмосферные оптические линии, не содержащие во внешних антеннах никаких активных элементов. На вход такой атмосферной линии поступает оптический сигнал из специализированного световода. Принятый сигнал усиливается оптической системой и по специальному многомодовому оптоволокну с малой дисперсией поступает на вход конвертера. Отсутствие активных элементов позволяет не заботиться о подаче электропитания (проблемы с выпадением росы решаются с помощью специальных покрытий) и минимизировать стоимость выносного блока. Применение пассивной оптической антенны минимизирует ущерб от вандализма и обеспечивает повышенную защиту данных. Простейшая и наиболее часто встречающаяся архитектура, на базе которой создаются все прочие топологии, -- "точка--точка".

1.2 Преимущества систем лазерной связи

Преимущества беспроводных линий связи очевидны: это экономичность (так как не требуется рыть траншеи для укладки кабеля и арендовать землю); низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи; быстрое развертывание и изменение конфигурации сети; легкое преодоление препятствий - железных дорог, рек, гор и т. д.

Безопасность, для радиосистем, где перехват проблемы не составляет, единственная возможность защитить передаваемые данные -- зашифровать их. У "оптики" даже сам перехват и выделение информации представляет собой очень сложную задачу. В самом деле, далеко не всегда можно внедрить в канал связи полупрозрачное зеркало незаметно от владельца. А ведь полученные сведения нужно еще и расшифровать.

Конечно, абсолютной защиты от несанкционированного доступа не существует в принципе -- теоретически можно перехватить и "вскрыть" информацию, переданную любым из известных на сегодняшний день способом. Однако все упирается в целесообразность -- расходы порой значительно превышают ожидаемые "дивиденды". Поэтому атмосферные оптические системы уже сейчас используют банки и Министерство обороны.

При монтаже, радиосистемы и АОЛС отличаются мало -- и те, и другие могут быть установлены и запущены за считанные часы. Ни траншеи не надо рыть, ни столбы устанавливать; соответственно и расходы на монтаж несопоставимы с протяжкой оптоволокна или кабеля.

1.3 История создания и развития лазерной технологии

Слово "лазер" составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена так фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917г., когда Альберт Эйнштейн, впервые ввел представление о вынужденном испускании. Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В.А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В. А.Фабрикантом, предполагала использование микросистем с инверсной заселенностью уровней. Позднее, после окончания Великой Отечественной войны В.А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. (вместе с М.М. Вудынским и Ф.А. Бутаевой ) заявку на изобретения способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой "Предмет изобретения" было написано: "Способ усиления электромагнитных излучений отличающейся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточною по сравнению с равновесной концентрацию атомов, других частиц их систем на верхних энергетических уровнях, соответствующих возбужденным состояниями. Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики Н.Г. Басов и А.М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его "молекулярным генератором" (предполагалось использовать пучок молекул аммиака).

В 1954 г. молекулярный генератор, названный вскоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара - в Физическом институте имени П.Н. Лебедева Академии наук СССР (группой под руководством Н.Г. Басова и А.М. Прохорова).

Впоследствии от термина "мазер" и произошел термин лазер в результате замены буквы "М" буквой " Ь ". В основе работы как мазера, так и лазера лежит один и тот же принцип - принцип, сформулированный в 1951 г. В. А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его называли квантовой радиофизикой, а позднее стали называть квантовой электроникой.

Спустя десять лет после создания мазера, в 1964 г. на церемонии, посвященной вручению Нобелевской премии, академик А. М. Прохоров сказал: " Казалось бы, что после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы в оптическом диапазоне. Однако этого не случилось. Они были созданы только через пять-шесть лет. Здесь были две трудности. Первая трудность заключалась в том, что тогда не были предложены резонаторы для оптического диапазона длин волн, и вторая - не были предложены конкретные системы и методы получения инверсной заселенности в оптическом диапазоне.

Упомянутые А. М. Прохоровым шесть лет действительно были заполнены теми исследованиями, которые позволили, в конечном счете, перейти от мазера к лазеру. В 1955 г. Н.Г. Басов и А.М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г . Н. Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же 1957 г. В. А. Фабрикант и Ф. А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количествах водорода и гелия. В 1958 г. А. М. Прохоров и независимо от него американский физик Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; они (а также американец Р. Дикке) выдвинули идею применения в оптическом диапазоне не объемных (как в СВЧ диапазоне), а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки (сохранены торцовые отражатели, фиксирующие в пространстве ось резонатора) и линейные размеры резонатора выбраны большими по сравнению с длинной волны излучения.

В 1959 г. вышла в свет работа Н. Г. Басова, Б. М. Вула и Ю. М. Попова с теоретическим обоснованием идеи полупроводниковых квантовых генераторов и анализом условий их создания. Наконец, в 1960 г. появилась обосновательная статья Н. Г. Басова, О. Н. Крохина, Ю. М. Попова, в которой были всесторонне рассмотрены принципы создания и теория квантовых генераторов и усилителей в инфракрасном и видимом диапазонах. В конце статьи авторы писали:

"Отсутствие принципиальных ограничений позволяет надеяться на то, что в ближайшее время будут созданы генераторы и усилители в инфракрасном и оптическом диапазонах волн". Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера, В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого "оптического мазера" - лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого, имели серебряное покрытие (эти грани играли роль зеркала резонатора), периодически облучались зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика.

Начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Так начинается новый, "лазерный" период оптики. С начала своего возникновения лазерная техника развивается исключительно быстрыми темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые.

1.4 Основные результаты

В данной главе были рассмотрены принципы построения систем лазерной связи, а так же некоторые преимущества, такие как экономичность, безопасность. Ещё была приведена подробная история зарождения лазерной системы, её развитие и проникновение на рынки массового обслуживания и новейшие передовые технологии.

ГЛАВА 2. АНАЛИЗ ПРИНЦИПОВ ПОСТРОЕНИЯ ЛАЗЕРНЫХ СВЯЗЕЙ

В данной главе будет рассмотрена схема работы лазера, его применение в различных областях науки и техники, такие как космические системы связи, где уникальные свойства лазерного излучения обеспечили значительный прогресс, или привели к совершенно новым научным техническим решениям. Формирование и общее развитие радиооптики во многом определяется информационными задачами - задачами наблюдения и измерения, задачами передачи, приема и обработки больших массивов информации при обеспечении высокого быстродействия. Класс информационных радиооптических систем объединяет разнообразные и многочисленные лазерные системы, особенностью которых является использование оптического излучения в качестве носителя информации. При рассмотрении таких систем обычно можно выделить источник информации, передатчик информации, приемник и канал связи между передатчиком и приемником информации. Примерами подобных систем являются системы лазерной локации и навигации, системы оптической связи, лазерной дальнометрии, лазерного зондирования, лазерные измерительные системы и сенсорные системы, лазерные системы видения, системы лазерного наведения, прицеливания и управления оружием, системы лазерной и волоконно-оптической гироскопии, лазерной интерферометрии, лазерной спектроскопии, лазерной голографии и многие другие.

Общий принцип построения лазерных информационных систем и принцип радиооптической обработки информации условно можно представить в виде некоторой обобщенной модели. Исследование таких моделей позволяет выделить наиболее важные, характерные для радиооптики особенности преобразования процессов и анализа систем (рис.2)[2].

Рис.2. Обобщенная модель основных преобразований в лазерных информационных системах [2].

Основные операции и преобразования, показанные на этой модели, согласуются с типовыми моделями лазерных информационных систем. Помимо основных преобразований на обобщенной модели указаны и некоторые случайные факторы, характерные для радиооптики. Рассмотрение обобщенной модели лазерных информационных систем показывает, что построение и развитие статистической радиооптики должно проходить по двум основным направлениям - направлению вероятностного анализа и направлению статистического синтеза.

2.1 Принцип работы лазеров

Принципиальная схема лазера крайне проста: активный элемент, помещенный между двумя взаимно параллельными зеркалами. Зеркала образуют так называемый оптический резонатор; одно из зеркал делают слегка прозрачным, сквозь это зеркало из резонатора выходит лазерный луч. Чтобы началась генерацию лазерного излучения, необходимо "накачать" активный элемент энергией от некоторого источника (его называют устройством накачки).

Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы). В результате этого взаимодействия возбужденный атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть "цепная реакция" размножения одинаковых фотонов, "летящих" абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии. Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденных атомов в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.. Если число возбужденных атомов велико, и существует инверсная населенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет нарастающую лавину появления идентичных ему фотонов. Произойдет усиление спонтанного излучения при одновременном рождении (принципиально это возможно) большого числа спонтанно испущенных фотонов возникает большое число лавин, каждая из которых будет распространяться в своем направлении, заданном первоначальным фотоном соответствующей лавины Спонтанно родившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создают лавины фотонов, выходящие за пределы среды. В результате мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой монохроматичности так как каждая лавина инициировалась собственным первоначальным фотоном. Для того чтобы среду с инверсной населенностью можно было использовать для генерации лазерного луча, т. е. направленного луча с высокой монохроматичностью, необходимо "снимать" инверсную населенность с помощью первичных фотонов, уже обладающих одной и той же направленностью излучения и одной и той же энергией, совпадающей с энергией данного перехода в атоме. В этом случае мы будем иметь лазерный - усилитель света. Существует, однако, и другой вариант получения лазерного луча связанный с использованием системы обратной связи. Спонтанно родившиеся фотоны, направление распространения которых перпендикулярно плоскости зеркал, создают лавины фотонов, выходящие за пределы среды, же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут многократно усилившиеся в среде вследствие многократного отражения от зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга продольной оси среды, с инверсной населенностью обратная связь может, оказаться на столько эффективной, что излучение"вбок" можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используется в большинстве существующих лазеров.

2.2 Работа систем АЛС

Лазерная линия связи состоит из двух идентичных станций, устанавливаемых напротив друг друга в пределах прямой видимости - на крышах или стенах домов или на других высоких подставках. При установке станций для успешной работы необходимо учитывать следующие рекомендации:

на пути луча не должно быть препятствий, причем с учетом сезонных изменений (провисания проводов в теплое время года или при обледенении, появления на деревьях лиственного покрова, рост деревьев, снежные заносы зимой и т. д.);

не следует устанавливать блоки АЛС на лифтовых шахтах, около вытяжных вентиляторов, обслуживающих здания машин, колебания которых могут вызывать отклонение луча;

не следует монтировать блоки АЛС на консольных конструкциях, металлических надстройках и других сооружениях, которые могут изгибаться под действием тепловых и ветровых нагрузок;

не следует располагать блоки АЛС вблизи локальных источников тепла, находящихся в створе проложенной линии (вентиляционных выходов, систем кондиционирования воздуха, труб промышленных предприятий и т. п.);

при ориентации системы по направлению запад - восток необходимо учитывать возможные нарушения в работе АЛС в результате засветки приемника при восходе или заходе солнца;

следует избегать установки систем АЛС в непосредственной близости от мест скопления птиц, которые также могут создавать помехи для связи;

необходимо учитывать сильное влияние тумана на надежность АЛС и прокладывать линию на возможно большей высоте, где густота тумана меньше.

Построение всех станций АЛС практически одинаково: интерфейсный модуль, модулятор, лазер, оптическая система передатчика, оптическая система приемника, демодулятор и интерфейсный модуль приемника. Передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Затем сигнал преобразуется высокоэффективным инжекционным лазером в оптическое излучение ближнего ИК-диапазона (0,81-0,86 мкм), оптикой формируется в узкий пучок (2-4 мрад) и передается через атмосферу к приемнику. На противоположном пункте принимаемое оптическое излучение фокусируется приемным объективом на площадку высокочувствительного быстродействующего фотоприемника (лавинные или pin-фотодиоды), где детектируется. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя. Аналогичным образом в дуплексном режиме одновременно и независимо идет встречный поток данных. Кроме указанных основных узлов станция АЛС может быть снабжена монокуляром - целеуказателем и устройством автоматизированной юстировки. Наряду с этим могут быть предусмотрены системы термостабилизации, самодиагностики, индикации рабочих параметров и др. Нарушения в работе систем АЛС, как отмечалось выше, могут быть связаны с неблагоприятными погодными условиями (сильный туман или снегопад) и сильной турбулентностью атмосферы (замирания). Радует, что эти два фактора не совпадают по времени: замирания отсутствуют при тумане и снегопаде, однако характерны для ясной, cолнечной погоды. Поэтому, оценивая надежность связи, не нужно складывать ослабления сигнала из-за этих двух факторов. К атмосферным потерям следует добавить еще так называемые геометрические потери сигнала, зависящие от протяженности линии и угловой расходимости излучения. Например, при расходимости луча в 4 мрад, расстоянии 250 м и диаметре объектива приемника 10 см геометрические потери составляют 20 дБ, то есть улавливается всего 1% мощности лазера. С увеличением расстояния в два раза потеря мощности сигнала на фотоприемнике увеличивается в 4 раза. Если же начать уменьшать угловую расходимость, это может привести к росту потерь на турбулентность атмосферы.

2.3 Промышленные системы АЛС

Системы АЛС могут использоваться не только на "последней миле" каналов связи, но также и в качестве вставок в волоконно-оптические линии на отдельных труднопроходимых участках; для связи в горных условиях, в аэропортах, между отдельными зданиями одной организации (органы управления, торговые центры, промышленные предприятия, университетские городки, больничные комплексы, стройплощадки и т. д.); при создании разнесенных в пространстве локальных компьютерных сетей; при организации связи между центрами коммутации и базовыми станциями сотовых сетей; для оперативной прокладки линии при ограниченном времени на монтаж. Поэтому в последнее время возрастает интерес отечественных производителей к этому новому и перспективному сектору рынка. Внешний вид некоторых образцов выпускаемых в России терминалов АЛС представлен на первой обложке предыдущего номера настоящего журнала. Приведенные ниже параметры аппаратуры взяты из рекламных материалов фирм или получены непосредственно от изготовителей. Среди российских производителей аппаратуры для АЛС отметим прежде всего ФГУП НИИ "ПОЛЮС" (Москва), предлагающий свои лазерные передающие системы ЛПС-2 - ЛПС-100. Устройства предназначены для организации односторонней и дуплексной цифровой связи между объектами, находящимися на расстояниях от 0,2 до 3 км, со скоростью от 0,1 до 155 Мбит/с. В состав системы входят приемный и передающий модули, размещенные в герметичных кожухах с подогревом и имеющие окна для ввода и вывода излучения, а также разъемы электрического и волоконно-оптического кабелей. Диапазон рабочих температур от -50 до +50 oС, габариты приемопередатчика 179х172х351 мм, наработка на отказ не менее 10000 ч. В передающем модуле предусмотрена схема стабилизации и контроля работы лазера. Возможна установка дублирующего излучателя. ФГУП НИИ прецизионного приборостроения (Москва) совместно с АО "ТЕЛЕКОМ" создал серию аппаратуры атмосферных оптических линий связи типа АОЛТ, предназначенную для дуплексной передачи данных, голоса и видеосигнала в инфракрасном диапазоне. Ряд уникальных технических решений позволил получить значения допустимого ослабления мощности сигнала в атмосфере, приведенного к дистанции 1 км, в 54 дБ для АОЛТ 2-1М и 66 дБ для АОЛТ 1-1У. Наличие нескольких одновременно работающих и пространственно разнесенных передатчиков (до 8 штук) и много апертурная приемная антенна существенно повысили доступность канала связи и сделали его полностью устойчивым в условиях турбулентности атмосферы. В серии АОЛТ-У используется не имеющая аналогов система автоматического наведения. Оборудование выпускается с различными вариантами интерфейсов. Система телеметрии обеспечивает контроль всех необходимых параметров оборудования и линии в целом. Оборудование имеет сертификат соответствия Госкомсвязи России. Источник питания - 48В или другой по согласованию, рабочий диапазон температур от -40 до +50? С, габариты 410х410х580 мм, масса 21 кг, время наработки на отказ не менее 100000 ч., вероятность ошибки не более 10-9. Информационно-технологический центр (Новосибирск) предлагает разработанные беспроводные средства связи Орtolan - лазерные атмосферные линии (ЛАЛ) четырех модулей: ЛАЛ2+500, ЛАЛ2+1000, ЛАЛ2+2000 и ЛАЛ2+5000 (последнее число обозначает рабочую дальность в метрах). Последняя модификация может использоваться на расстояниях до 5 км в пределах прямой видимости. На расстояниях до 3 км дождь и снег не способны нарушить работу системы. Туман может ограничить дальность связи до 1,5 МДВ, однако установка системы на возвышенностях позволяет существенно снизить вероятность перерыва связи из-за туманов. Вероятность ошибок за счет турбулентности атмосферы представлена на рис. 4. Для защиты от помех и несанкционированного доступа передаваемая информация кодируется. Аппаратура имеет встроенную систему диагностики и контроля ошибок, обеспечивает автоматизированное наведение и мониторинг в реальном режиме времени. Встроенный контроллер обеспечивает отображение информации о работе системы и о состоянии оптического канала связи. Предусмотрен также обогрев (антиобледенитель) стекла. Наработка на отказ составляет 100 000 ч. Диапазон рабочих температур от -40 до +65 oС. Питание осуществляется от сети 220 В 50 Гц, габариты не более 285х245х405 мм. Государственный Рязанский приборный завод выпускает многоцелевую оптическую систему для телекоммуникаций МОСТ 100/500, имеющую скорость передачи от 2,048 до 100 Мбит/с. Максимально допустимая угловая нестабильность места установки должна быть не более 1 угловой минуты, а погрешность установки направления связи не более 30 угловых секунд. Рабочий интервал температур составляет от -40 до +40 С. Питание от сети 220 В 50 Гц. Научно-производственная компания "Катарсис" (Санкт-Петербург) поставляет беспроводные оптические каналы связи (БОКС) типа БОКС-10 МПД сетей Интернета со скоростью передачи 10 Мбит/с и 100 Мбит/с и для каналов Е1, Т1, ИКМ-30. Рабочая дистанция от 250 до 1000 м. Отличительной особенностью аппаратуры БОКС является использование в передатчике светодиодов на длину волны 850-890 мкм с выходной оптической мощностью 50-300 мВт и расходимостью луча 8 мрад. Питание приемопередатчика осуществляется от сети 220 В 50 Гц. Наработка на отказ не менее 100000 ч., рабочий диапазон температур от -40 до +50 oС, размеры модуля 505х142х250 мм, масса не более 8 кг. На российском рынке также имеется продукция зарубежной техники АЛС. Так, фирма Великобритании PAV DataSystemsLtd продает через фирму MicroMaxComputerIntelligence, Inc. (Москва) несколько систем АЛС серии SkyNET. Серия SkyNET-Ethernet работает с частотой 10 Мбит/сна расстояниях от 0,2 до 6 км, а SkyNETFastEthernet имеет скорость передачи данных 100 Мбит/с при дальностях от 0,25 до 4 км. Размеры приемопередатчика во всех сериях одинаковы и составляют 340х180х550 мм, масса 13 и 18 кг соответственно. В связи с молодостью лазерной связи еще не выработалась единая терминология. Отсюда разные названия одинаковых по назначению систем АЛС разных фирм: ЛПС, АОЛТ, ЛАЛ, МОСТ, БОКС и др. Госстандарту РФ следовало бы стандартизировать терминологию в данной области.

2.4 Применение лазеров

Появление лазеров сразу оказало и продолжает оказывать влияние на различные области науки и техники, где стало возможным применение лазеров для решения конкретных научных и технических задач. Проведенные исследования подтвердили возможность значительного улучшения многих оптических приборов и систем при использовании в качестве источника света лазеров и привели к созданию принципиально новых устройств (усилители яркости, квантовые гирометры, быстродействующие оптические схемы и др.). На глазах одного поколения произошло формирование новых научных и технических направлений - голографии, нелинейной и интегральной оптики, лазерных технологий, лазерной химии, использование лазеров для управляемого термоядерного синтеза и других задач энергетики. Уникальные свойства лазерного излучения обеспечили значительный прогресс или привели к совершенно новым научным и техническим решениям. Высокая монохроматичность и когерентность лазерного излучения обеспечивают успешное применение лазеров в спектроскопии, инициировании химических реакций, в разделении изотопов, в системах измерения линейных и угловых скоростей, во всех приложениях, основанных на использовании интерференции, в системах связи и светолокации. Особо следует, очевидно, выделить применение лазеров в голографии. Высокая плотность энергии и мощность лазерных пучков, возможность фокусировки лазерного излучения в пятно малых размеров используются в лазерных системах термоядерного синтеза, в таких технологических процессах, как лазерная резка, сварка, сверление, поверхностное закаливание и размерная обработка различных деталей. Эти же свойства и направленность лазерного излучения обеспечивают успешное применение лазеров в военной технике. Направленность лазерного излучения, его малая расходимость применяются при провешивании направлений (в строительстве, геодезии, картографии), для целенаведения и целеуказания, в локации, в том числе и для измерения расстояний до искусственных спутников Земли, в космических системах связи.

2.5 Космические системы связи

В космосе широко используются системы связи самого различного назначения: для передачи информации, для передачи сигналов команд и управления космическим аппаратом, для проведения траекторных измерений. Без систем космической связи не может обойтись ни один космический аппарат. Более широко используется радиосвязь, но в ряде случаев применяется и оптическая связь.

Системы космической связи можно разделить по направлению связи на три вида:

1) между земными пунктами связи и ИСЗ или другими КЛА;

2) между двумя или, -- несколькими земными пунктами связи через какие-либо аппараты или искусственные средства, расположенные в космосе;

3) между КЛА.

Рис.3. Принцип действия спутниковой системы связи

В зависимости от назначения линии связи, типа и назначения КЛА скорости передачи информации и применяемые средства могут быть резко различны. Например, значительно различаются линии связи земной пункт -- ИСЗ на низкой орбите и земной пункт -- дальний межпланетный КЛА. Для связи с ИСЗ характерны: большая скорость изменения направления связи, весьма малое время взаимной видимости, относительно небольшие дальности и соответственно достаточно большие уровни сигналов; для связи с дальними КЛА -- крайне малые уровни принимаемых сигналов, но значительно большее время взаимной видимости, поскольку изменение направления земной пункт -дальний КЛА определяется в основном скоростью суточного вращения Земли.

Основные особенности космических систем связи, отличающие их от наземных систем связи: непрерывное (часто весьма быстрое) изменение положения КЛА; необходимость знания текущих координат КЛА и наведения приемных и передающих антенн земного пункта связи на заданный КЛА; непрерывное изменение частоты принимаемых сигналов за счет Доплера эффекта; ограниченные и изменяющиеся во времени зоны взаимной видимости земного пункта и КЛА; ограниченная мощность бортовых передатчиков КЛА; большие дальности и вследствие этого работа с весьма малыми уровнями принимаемых сигналов. Все эти особенности вынуждают создавать спец. комплексы аппаратуры, включающие: наводящиеся антенны больших размеров; приемные устройства с малым уровнем шумов; высокоэффективные системы обнаружения, выделения и регистрации сигналов. Необходимость знания текущего положения КЛА требует периодического измерения его координат и вычисления параметров его траектории. Таким образом, система может существовать только при совместном действии измерительных средств (система траекторных измерений), вычислительного центра и комплекса управления КЛА. Для каналов в зависимости от их направления и назначения применяются различные диапазоны частот. Распределение частот и порядок их использования определяется регламентом радиосвязи.

Связь между земным пунктом и КЛА предназначается для обеспечения двухсторонней передачи всех видов необходимой информации. Линии Земля -- борт КЛА (3 -- Б) и борт КЛА -- Земля (Б -- 3) несут разную информационную нагрузку и имеют различный энергетический потенциал. Линия 3 -- Б обеспечивает передачу на КЛА сигналов команд управления, сигналов траекторных измерений, при обитаемых КК -- связь (телефон, телеграф, телевидение) с космонавтами. Линия Б -- 3 осуществляет: контроль управления, траекторные измерения, передачу телеметрических измерений и целевой информации (например, метеорологической, научной, навигации или др., в зависимости от назначения КЛА), а также связь экипажа с Землей в обитаемых КК. Линия Б -- 3, как правило, имеет значительно более низкий энергетический потенциал, т. к. мощность передатчика КЛА ниже мощности передатчика земной станции в линии 3 -- Б (обычные мощности на КЛА единицы -- десятки вт, на земной станции единицы -- десятки кет). Однако основной поток информации идет именно но линии Б -- 3. Это вынуждает применять на земных пунктах для приема информации с КЛА антенны с весьма большой эффективной площадью (десятки м), а в случае приема информации с межпланетных КЛА, поскольку мощность принимаемого сигнала уменьшается пропорционально квадрату расстояния, необходимы эффективные площади в сотни и тысячи м2. Эффективные площади 2--5 тыс. м2 достигаются только В уникальных дорогостоящих антенных системах. При этом может быть обеспечена телефонная связь на расстояния до Венеры и Марса.

Связь через ИСЗ обычно на большие расстояния обеспечивается по радиорелейным линиям прямой видимости, состоящим из двух оконечных и ряда промежуточных пунктов -- ретрансляторов. Расстояние между промежуточными пунктами определяется пределами прямой видимости. На Земле это обычно не более 50--70 км. При установке одного промежуточного ретранслятора на борту ИСЗ с высокой орбитой обеспечивается связь между двумя пунктами, удаленными на тысячи км. Связные ИСЗ могут применяться как в отдельных линиях связи, так и в сетях радиорелейных линий для передачи телевизионных программ, многоканальной телефонии и телеграфии и др. видов информации. Для связи могут использоваться ИСЗ, обращающиеся по различным орбитам и на разных высотах. Основные варианты орбит для связных ИСЗ: круговая стационарная, сильно вытянутая эллиптическая синхронная средневысокая круговая, низкая круговая.

ИСЗ на стационарной орбите постоянно находится над выбранной точкой экватора и обеспечивает круглосуточную связь между земными станциями на широтах меньше 75° в радиусе до 8000 км от точки, над которой расположен спутник. Три таких ИСЗ, находящихся на равном удалении вдоль экватора, осуществляют связь любых земных станций в пределах указа широт. Весьма удобны сильно вытянутые эллиптические синхронные орбиты с апогеем над центром обслуживаемой линии связи и с периодом обращения в половину или целые сутки. При надлежащем выборе угла наклонения и места расположения апогея орбиты спутник будет большую часть времени суток находиться в пределах видимости из заданного района. Для районов, расположенных на широтах выше 70° - 75°, этот вариант орбит оказывается наиболее выгодным.

Для работы с ИСЗ на стационарной или эллиптической синхронной орбите приходится использовать на земных пунктах связи антенны большого размера, т. к. расстояние ИСЗ -- земной пункт превышает 30 000 км и мощность принимаемых сигналов мала. ИСЗ на средне-высоких и низких круговых орбитах обеспечивают значительно большие мощности принимаемых сигналов.

Однако уменьшение высоты полета сокращает время взаимной видимости спутника и земного пункта связи, уменьшает возможные расстояния и приводит в конечном счете к значит, увеличению количества спутников, требуемых для непрерывной связи. Кроме того, усложняется система слежения и наведения антенн земных станций. При малой высоте полета непосредственная связь между удаленными пунктами невозможна и приходится применять систему радиолиний с задержанной ретрансляцией.

Однако уровни принимаемых сигналов достаточно велики и не нужны большие и дорогостоящие антенные системы, благодаря чему связь с низкими ИСЗ может проводиться даже небольшими подвижными пунктами. ИСЗ связи для ретрансляции сигналов может быть оснащен ретранслятором активным, обеспечивающим усиление ретранслируемых сигналов, или ретранслятором пассивным, т. е. отражателем. Пассивный ретранслятор может обслуживать радиосеть, состоящую из большого числа линий с различными частотами радиосигналов, т. к. отражатель отражает или рассеивает энергию многих одновременно приходящих радиосигналов, без взаимных помех. Активный ретранслятор может обслуживать сеть связи только с ограниченным числом линий, причем для устранения взаимных помех необходимо применять частотное, временное или кодовое разделение линий, поддерживать необходимый уровень сигналов и не допускать перегрузок ретранслятора. Кроме ИСЗ с пассивным ретранслятором в виде отражателя, были предложены и испытаны линии связи с рассеянными отражателями в виде пояса иголок и ионизированных частиц облака.

При работе с пассивными ретрансляторами для обеспечения необходимого уровня принимаемого сигнала приходится резко увеличивать мощность передатчиков земных станций или сужать полосу пропускания частот линий и понижать скорость передачи сообщений. Для экономичности связи применяют многоканальные линии радиосвязи и повышают скорость передачи сообщений, что приводит к необходимости увеличения полосы пропускания частот линией. Широкая полоса требуется также для ретрансляции телевидения. С расширением полосы пропускания растет опасность искажения сообщений помехами радиоприему, поскольку принимаемые радиосигналы слабы. Поэтому прием сообщений с допустимыми искажениями -- важнейшая задача, решаемая увеличением мощности радиосигналов, выбором частот связи, уменьшением уровня шумов радиоприемников, применением эффективного кодирования, выбором типа модуляции, способа приема и обработки радиосигналов при малом отношении сигнал/помеха и др. Напр., частоты радиосигналов выбирают в пределах от 1 до 10 Ггц, т. к. на меньших частотах резко растут помехи от шумов космоса, а на больших -- от шумов атмосферы; в первых каскадах усилителей радиоприемников земных станций используют малошумящие квантовые усилители и параметрические усилители, охлаждаемые жидким гелием.


Подобные документы

  • Общие сведения о радиорелейных и атмосферных оптических линиях связи, их сравнительная характеристика, оценка достоинств и недостатков практического использования. Методика расчета атмосферной оптической линии связи между двумя заданными точками.

    курсовая работа [829,0 K], добавлен 09.12.2014

  • Принцип работы атмосферных оптических линий связи, область применения и потенциальные потребители. Преимущество атмосферных оптических линий связи. Системы активного оптического наведения. Поглощение светового потока видимого и инфракрасного диапазонов.

    курсовая работа [27,7 K], добавлен 28.05.2014

  • Система атмосферной оптической связи, ее внутренняя структура и элементы, принцип работы и направления использования. Высокочастотное возбуждение активной среды. Выбор конструкции излучателя. Атмосферный канал связи, расчет данной оптической линии.

    дипломная работа [1,7 M], добавлен 25.01.2014

  • Разработка локальной сети передачи данных с выходом в Интернет для небольшого района города. Определение топологии сети связи. Проверка возможности реализации линий связи на медном проводнике трех категорий. Расчет поляризационной модовой дисперсии.

    курсовая работа [733,1 K], добавлен 19.10.2014

  • Преимущества оптических систем передачи перед системами передачи, работающими по металлическому кабелю. Конструкция оптических кабелей связи. Технические характеристики ОКМС-А-6/2(2,0)Сп-12(2)/4(2). Строительство волоконно-оптической линии связи.

    курсовая работа [602,7 K], добавлен 21.10.2014

  • Разработка схемы организации инфокоммуникационной сети связи железной дороги. Расчет параметров волоконно-оптических линий связи. Выбор типа волоконно-оптического кабеля и аппаратуры. Мероприятия по повышению надежности функционирования линий передачи.

    курсовая работа [2,6 M], добавлен 28.05.2012

  • Первичная сеть, включающая линии передачи и соответствующие узлы связи, образующие магистральную, дорожную и отделенческую сеть связи как основа железнодорожной связи. Конструкция и характеристика оптических кабелей связи, особенности ее строительства.

    курсовая работа [428,0 K], добавлен 21.10.2014

  • История разработки световодных систем и их опытной эксплуатация на железнодорожном транспорте. Рассмотрение возможности создания высокоскоростной волоконно-оптической линии внутризоновой связи, которая соединяет по кольцевой схеме районные центры.

    курсовая работа [523,1 K], добавлен 05.04.2011

  • Современные цифровые технологии передачи информации. Система RFTS в корпоративной сети связи. Методика проектирования магистральной ВОЛС, расчет магистрали Уфа-Самара. Различия в физических параметрах одномодового и многомодовых оптических кабелей.

    дипломная работа [4,2 M], добавлен 16.04.2015

  • Основные особенности трассы волоконно-оптических систем. Разработка аппаратуры синхронной цифровой иерархии. Расчёт необходимого числа каналов и выбор системы передачи. Выбор типа оптического кабеля и методы его прокладки. Надёжность линий связи.

    дипломная работа [1,2 M], добавлен 06.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.