Светоизлучающие диоды. Светодиодное освещение

Физические основы и принцип работы светоизлучающих диодов как полупроводниковых приборов, излучающих некогерентный свет. Применение и анализ преимуществ и недостатков светоизлучающего диода. Стоимость светодиодных ламп и перспективы использования в ЖКХ.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 03.03.2011
Размер файла 22,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

13

Министерство образования и науки Украины

Донбасская национальная академия строительства и архитектуры

Кафедра «Технология, организация и охрана труда в строительстве»

РЕФЕРАТ

на тему «Светоизлучающие диоды. Светодиодное освещение»

Выполнил

ст. гр. ГСХ-13Б

Дмитренко А.А.

Проверила

Кузьменко Л.В.

Макеевка 2010 г.

Содержание

Введение

1. Светоизлучающий диод. Принцип работы

2. Преимущества и недостатки светоизлучающего диода

3. Область применения

4. Стоимость светодиодного светильника, пути снижения себестоимости

5. Перспективы светодиодных ламп в сфере ЖКХ, на широком рынке

6. Использование светодиодных ламп для передачи информации в современных коммуникационных сетях

Заключение

Список используемой литературы

Введение

Светодиодные лампы - это современная альтернатива традиционной лампе накаливания.

Светодиодные энергосберегающие лампы предназначены для использования, как на улице, так и внутри помещения, сочетают в себе традиционное исполнение (цоколь Е-27, Е-14, MR-16, GU-10) и высокую надежность, отсутствие ультрафиолетового и инфракрасного излучения вредного для здоровья, высокую насыщенность и чистоту цвета.

1. Светоизлучающий диод. Принцип работы

Светодиод или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) -- полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока.

Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава, использованного в нем полупроводника.

Считается, что первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.

Как и в любом полупроводниковом диоде, в светодиоде имеется p-n переход. При пропускании электрического тока в прямом направлении, носители заряда -- электроны и дырки -- рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не всякие полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe).

Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают.

Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

2. Преимущества и недостатки светоизлучающего диода

Преимущества, которыми обладает светоизлучающий диод (СИД) по сравнению с традиционными лампами, позволяют с уверенностью утверждать, что появление новых типов осветительных приборов на основе СИД станет революционным технологическим прорывом в светотехнике. 

Впервые светодиоды стали использоваться в промышленной продукции во времена СССР в конце 60-х - начале 70-х гг. Тогда они не обладали требуемой для осветительных приборов светоотдачей, ресурс их был невелик, и светили они не белым цветом, как нужно, а красным или каким-то иным. Все упиралось в материалы. В 90-х гг. по понятным причинам работа над созданием светоизлучающих диодов была приостановлена. 

В мире же, наоборот, подобные работы велись нарастающими темпами, и был создан новый материал - нитрид галлия на сапфире, позволивший достичь свечения белого цвета. Особенно в этом плане преуспела японская компания Nichia и ее коллеги-конкуренты из других сопутствующих фирм, разработавшие пять технологических блоков процесса изготовления светильников: 

- рост кристаллов сапфира по методу Киропулоса;

- механическую обработку кристаллов сапфира, в т.ч. резку, шлифовку и полировку пластин до 14 класса;

- эпитаксиальное наращивание нитрида галлия на полированных подложках сапфира методом газотранспортных реакций;

- изготовление на эпитаксиальных структурах методом электронной литографии чипов светодиодов;

- сборочное производство (корпусирование) светодиодов.

В настоящее время в мире кристаллы светодиодов поставлены на массовое производство, и ежегодно общемировой прирост объемов их выпуска увеличивается на 30-40%. По результатам 2008 г., мировой рынок светодиодов достиг 25-30 млрд долл. 

В настоящее время разработана целая серия осветительных приборов, в т.ч. идентичных по цоколю лампам накаливания мощностью от 40 до 100 Вт, с энергопотреблением 4-10 Вт. Значительно расширены сферы, в которых могут быть использованы приборы. Фактически речь идет о возможной замене существующих ламп накаливания и люминесцентных ламп светильниками на СИД.

Можно отметить основные преимущества ламп на светодиодах:

- низкое энергопотребление - в 10 раз ниже, чем у обычной лампы накаливания, и на 20-25% ниже, чем у энергосберегающей люминесцентной лампы;

- лампы на светодиодах не требуют особой системы утилизации, т.к. они, в отличие от люминесцентных ламп, экологически безвредны. Светодиод не представляет вреда для экологии, его размеры относительно малы;

- пожаро- и взрывобезопасность;

- полная цветовая гамма излучения;

- высокий КПД. Современные светодиоды немного уступают по этому параметру только натриевым газоразрядным лампам. Однако натриевые лампы непригодны для освещения жилых помещений из-за низкого качества света;

- высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих);

- сверхдолгий срок работы - до 100 тыс. ч. Но и он не бесконечен -- при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости;

- спектр современных люминофорных диодов аналогичен спектру люминесцентных ламп, которые давно используются в быту. Схожесть спектра обусловлена тем, что в этих светодиодах также используется люминофор, преобразующий ультрафиолетовое или синее излучение в видимое с хорошим спектром;

- малая инерционность;

- малый угол излучения -- также может быть как достоинством, так и недостатком;

- безопасность -- не требуются высокие напряжения;

- нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

Недостатки ламп на светодиодах:

- основной недостаток -- высокая цена. Отношение цена/люмен у сверхъярких светодиодов в 50 -- 100 раз больше, чем у обычной лампы накаливания;

- низкая предельная температура:

мощные осветительные светодиоды требуют внешнего радиатора для охлаждения, потому что имеют неблагоприятное соотношение своих размеров к выделяемой тепловой мощности (они слишком мелкие) и не могут рассеять столько тепла, сколько выделяют (несмотря даже на более высокий КПД, чем у ламп накаливания). Осветительный светодиод мощностью 10 Ватт требует пассивный радиатор размером как у микропроцессора Pentium 4 без вентилятора. Такой большой радиатор не только удорожает конструкцию, но и с трудом может быть вписан в формат бытовых осветительных приборов;

- для питания светодиода от питающей сети необходим низковольтный источник питания постоянного тока, тоже с радиатором, что дополнительно увеличивает объём светильника, а его наличие дополнительно снижает общую надёжность и требует дополнительной защиты. Поэтому многие разработчики ограничиваются выпрямителем, а светодиоды включают последовательно;

- высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты без сглаживающего конденсатора, при его наличии пульсации малы;

- дешёвые массовые LED имеют светоотдачу 60-100 лм/Вт;

- спектр отличается от солнечного.

3. Область применения

Сейчас в РФ «освещено» около 60 самолетов типа Ту-134 и Ту-154, а также несколько десятков вертолетов фирмы ОАО «Камов». 
Совместно с флотом оснащаются подводные и надводные корабли аналогичными светодиодными светильниками. Кроме этого, разрабатываются приборы для освещения космических кораблей и МКС. 

Также разрабатываются различные осветительные приборы: для нумерации домов и улиц, заградительных огней, рекламных щитов, светофоров и табло обратного отсчета времени, освещения лифтов и подъездов домов.

Сейчас ведется работа для создания серии осветительных приборов, необходимых для жилищно-коммунального хозяйства, ТЭКа, транспорта и связи.

В плане уличного освещения ученые ориентируются на создание небольших тротуарных или парковых светильников, при этом разрабатывается светильник с энергопитанием от солнечных батарей. Другими словами, батарея, находящаяся над светодиодным светильником, вырабатывает энергию, которая накапливается в аккумуляторе, а ночью используется для освещения. Ввиду того, что энергопотребление у светодиодов низкое (5-10 Вт), солнечные батареи вполне могут обеспечивать данный светильник. 

Светодиодное освещение применяется в светотехнике для создания дизайнерского освещения в специальных современных дизайн - проектах. Надёжность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение, внутри натяжных потолков и т. д.).

Декоративная светодиодная подсветка в основном применяется для праздничной иллюминации. Для чего используется новогоднее украшение - светодиодная гирлянда. В период праздников, (в большей степени новогодних) их можно увидеть на улицах городов, они украшают деревья, фасады зданий и другие уличные объекты.

Светодиоды в душевой. Cromobox -- инновационные светодиодные двери для душевых комнат, изменяющие окраску в зависимости от температуры воды и времени суток. 

4. Стоимость светодиодного светильника, пути снижения себестоимости

Энергосберегающая люминесцентная лампа (если сравнивать с ней) марок Philips и Pila стоит 15-80 грн. Лампа на светодиодах даже при единичном пробном выпуске обходится в 100-200 грн.

Если наладить ее выпуск на автоматизированной линии, цена понизится. Но значительного снижения цены можно достичь при использовании в производстве собственных светодиодов, т.е., закупив линию их сборки, можно получить снижение цены до 30%.

Таким образом, цена будет фактически сопоставима с ценой люминисцентных энергосберегающих ламп, но здесь нужно учитывать, что светодиодная лампа по многим пунктам выгоднее. 

Также немаловажный аспект - таможенные налоговые льготы. В производстве используются импортные исходные комплектующие, и льготы, предусмотренные законом для особых экономических зон, принесут немалую выгоду. В частности, поэтому ожидается на выходе получать более дешевый продукт в виде светодиодных светильников и, соответственно, более массовое его производство.

5. Перспективы светодиодных ламп в сфере ЖКХ, на широком рынке

Если в жилищно-коммунальном и дорожном хозяйствах заменить традиционные лампы на светодиодные, то экономия электроэнергии в масштабах всей страны составит 20-25%, т.е. именно на столько можно сократить выработку электроэнергии. Налицо очевидная выгода. В целом, принимая многие факторы во внимание, ожидается, что рынок светодиодов в странах СНГ будет расти в геометрической прогрессии.

Таблица 1. Сравнительная характеристика ламп.

Тип светоизлучателя

Потребляемая
мощность, Вт

Срок службы, час.

Коэффициент 
преобразования
электроэнергии, %

Удельная 
эффективность,
Лм/Вт

Возможность получения 
основных цветов

Лампа накаливания

60

1000-2000

10-15

20-25

Дневной свет, цветные 
светофильтры

Люминесцентная лампа

20-30

6000-6500

20-25

40-80

Дневной свет, цветные 
светофильтры

Светоизлучающий диод

3-15

100000

60-65

70-100

Непосредственное 
получение красного, зеле- 
ного, синего, белого цветов

6. Использование светодиодных ламп для передачи информации в современных коммуникационных сетях

Ученые начинают разработку беспроводных сетей нового поколения, использующих не радиоволны, а видимый свет - и самые обычные светодиодные лампочки. Американские разработчики во главе с профессором Томасом Литтлом (Thomas Little) получили грант Национального фонда науки (NSF) на создание следующего поколения сетей беспроводных коммуникаций, основанного на совершенно неожиданном принципе - взамен радиоволн для передачи сигнала используется видимый свет. Ученые намерены использовать уже привычные сегодня энергоэффективные светодиодные лампы, освещающие помещение, в качестве передатчиков сигнала, превратив их в «умные лампы».

Основой технологии послужит одна из главных особенностей светоизлучающих диодов, которая отличает их от обычной лампы накаливания, -- способность быстро, незаметно для человека включаться и выключаться. Мерцание света, происходящее с большой частотой, позволит передавать информацию без заметных изменений в уровне освещенности комнаты.

«Представьте, что ваш компьютер, iPhone, телевизор, радио и кондиционер смогут взаимодействовать друг с другом и с вами, в любом месте помещения. Для этого достаточно включить свет - и не требуется ни единого провода,» - поясняет Томас Литтл. - Сеть связи, использующая светодиоды, параллельно еще и освещает комнату, не требует лишней энергии, высоконадежна и не “засоряется” другими источниками электромагнитного излучения».

По его мнению, такая сеть будет еще и более быстрой, и защищенной. Вдобавок, она не потребует целой кучи дополнительного сетевого оборудования: подходящие лампы уже сегодня используются весьма широко. Они способны включаться и выключаться с частотой до 10 млн Гц, что позволяет передавать данные со скоростью 10 Мбит/с (Wi-Fi соединения сегодня достигают цифры в 600 Мбит), но для «световой сети» это далеко не предел, ведь для передачи данных можно параллельно использовать несколько ламп.

Интересно, что такая технология может с успехом применяться и на улице - например, для связи между автомобилями. Сразу приходит на ум возможность использования ее для связи в устройствах «коллективной сигнализации», так называемый «Массовый противоугон».

Изначально прогнозируется скорость передачи данных от 1 до 10 Mbps. Однако разработчики заявляют, что потенциальная пропускная способность таких сетей может быть гораздо выше, чем у ныне существующих радиоволновых. Кроме того, поскольку видимый свет не проникает через непрозрачные поверхности, такие как стены, подобные сети будут лучше защищены от прослушивания, чем традиционные -- на радиочастотах.

Самым очевидным недостатком подобной технологии является, конечно, необходимость располагать сетевые устройства в зоне видимости светодиодной лампы. Но в сравнении с преимуществами и удобствами технологии это не кажется таким большим минусом.

Заключение

Инновационная светодиодная лампа - наиболее актуальный на сегодняшний день продукт новейших технологий, воплощенных в высококачественных, надежных электротехнических изделиях, которые прослужат долго. Использование светодиодных ламп позволит значительно сократить расходы на освещение, при этом не ухудшая его видимое качество и безопасность для здоровья человека и окружающей среды, а напротив - улучшая.

Принцип размещения ламп в помещениях не меняется, технологии позволяют выпускать светодиодную лампу с обычным цоколем, то есть переоборудовать ничего не нужно.

В дальнейшем ожидается настоящий бум по переоснащению на светодиодную технологию. В России уже запущены многомиллиардные проекты по постройке специализированных заводов для производства светодиодных ламп различного вида.

применение светоизлучающий диод лампа

Список используемой литературы

1. Сайт «Инженерные сети. ЖКХ», ссылка: «http://www.promvest.info»

2. Сайт «lightingnews», ссылка: «http://lightingnews.info»

3. Сайт «wikipedia», ссылка: «http://ru.wikipedia.org»

4. Сайт «РадиоКот», ссылка: «http://www.radiokot.ru»

5. Сайт «Игра света», ссылка: «http://www.igrasveta.ru»

6. Сайт «Караван», ссылка: «http://caravan.hobby.ru»

7. Сайт «Ватра Киев», ссылка: «http://www.kilev.com.ua»

Размещено на Allbest.ru


Подобные документы

  • Светодиод как полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Применение светодиодных ламп в качестве источников модулированного оптического излучения (оптоволокно, пульты дистанционного управления).

    презентация [377,2 K], добавлен 01.02.2011

  • Полупроводниковые приборы. Выпрямительные свойства диодов. Динамический режим работы диодов. Принцип действия диода. Шотки, стабилитроны, стабисторы, варикапы. Туннельные диоды. Обращённый диод. Статическая характеристика и применение обращённого диода.

    реферат [515,0 K], добавлен 14.11.2008

  • Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.

    лекция [1,8 M], добавлен 17.02.2011

  • Назначение, преимущества, расчет технических параметров светоизлучающих диодов (СИД). Внешний квантовый выход и потери излучения. СИД как элемент электрической цепи и как элемент оптрона. Излучательная, спектральная, оптическая характеристики СИД.

    курсовая работа [1,9 M], добавлен 04.03.2009

  • Классификация, структура, принцип работы, обозначение и применение полупроводниковых диодов, их параметры. Расчет вольтамперных характеристик при малых плотностях тока. Особенности переходных характеристик диодов с р-базой. Методы производства диодов.

    курсовая работа [923,5 K], добавлен 18.12.2009

  • Анализ конструктивных особенностей полупроводниковых диодов. Диодные матрицы и сборки. Структура диода Ганна с перевернутым монтажом. Основные ограничители напряжения. Расчет характеристик диода Ганна. Смесительные и переключательные СВЧ-диоды.

    курсовая работа [365,9 K], добавлен 18.12.2009

  • Принцип действия полупроводниковых диодов различного назначения. Прямое и обратное включение выпрямительного диода. Статическое и динамическое сопротивление. Исследования стабилитрона и светодиода. Стабилизация напряжений в цепях переменного тока.

    лабораторная работа [230,6 K], добавлен 12.05.2016

  • Характеристика полупроводниковых диодов, их назначение, режимы работы. Исследование вольтамперной характеристики выпрямительного полупроводникового диода, стабилитрона и работы однополупериодного полупроводникового выпрямителя. Определение сопротивления.

    лабораторная работа [133,6 K], добавлен 05.06.2013

  • Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.

    лекция [4,4 M], добавлен 24.01.2014

  • Теоретические основы работы светоизлучающих диодов, области их применения, устройство и требования к приборам. Полупроводниковые материалы, используемые в производстве светоизлучающих диодов: арсенид и фосфид галлия. Основные параметры светодиода.

    курсовая работа [1,1 M], добавлен 18.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.