Волоконно-оптические системы связи
Общая характеристика волоконно-оптической связи, ее свойства и области применения. Проектирование кабельной волоконно-оптической линии передач (ВОЛП) способом подвески на опорах высоковольтной линии передачи. Организация управления данной сетью связи.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.01.2011 |
Размер файла | 3,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Результаты расчетов распределения энергетического потенциала
Параметр |
Ед. изм. |
Камышин-Котово |
|
Ару |
дБм |
- 44,84 |
|
Рпр |
дБм |
- 48,84 |
|
lру |
км |
60,2 |
Уровни оптического сигнала в точках приема больше минимально возможного и меньше максимально возможного уровней, приводимых в технических данных ВОСП.
3 Организация управления сетью связи
3.1 Общие положения
Сетевое управление оказывает существенное влияние на качество передаваемых сигналов, развитие услуг сетей связи и на структуру элементов сети [3].
Системы управления транспортной сетью SDH должна обеспечивать оперативное администрирование и эксплуатационное управление сетью, а именно:
- конфигурирование сети;
- сбор и обработку информации о всех элементах сети;
- сбор статистики;
- диагностику оборудования и программного обеспечения сети;
- локализацию и исправление неисправностей;
- предоставление отчетов о работе сети.
В состав программно-аппаратного комплекса входят следующие системы управления:
- Alcatel OPTINEX 1354 RM: система управления региональной транспортной сетью SDH.
- Alcatel OPTINEX 1353 SH: система управления сетевыми элементами
- Alcatel OPTINEX 1320 CT/NX: терминал управления сетевыми элементами
Система управления региональной транспортной сетью SDH Alcatel OPTINEX 1354 RM (Regional Network Manager) позволяет операторам связи управлять соединениями по всему каналу (end - to - end) в региональных сетях SDH.
Вместе с системой управления сетевыми элементами 1353SH оборудование 1354 RM предназначено для управления подсетями, состоящими из разнообразных элементов сетей SDH, такими, как мультиплексоры ввода - вывода, линейные системы, регенераторы, радиорелейное оборудование и системы цифрового кроссового переключения 4/3/1 и 4/4.
Система управления сетевыми элементами Alcatel OPTINEX 1353 SH предназначена для управления сетевыми элементами (Element Manager), производимых компанией Alcatel мультиплексоров ввода - вывода, кросс - коннекторов, WDM, синхронных систем передачи, радиорелейных и проводных систем SDH/PDH.
Терминал управления сетевыми элементами Alcatel OPTINEX 1320 CT/NX предназначен для управления сетевыми элементами в местном или дистанционном режиме.
В качестве аппаратного средства предусматривается переносной компьютер PC - notebook под управлением ОС Microsoft NT. Подключается к сетевым элементам через последовательные порты.
3.2 Сеть управления электросвязью
В современном деловом окружении с высокой конкуренцией управление сетью становится критически важным средством операторов сетей. В рекомендации МСЭ-Т М.3010 изложены общие принципы планирования, функционирования и технического обслуживания сети управления электросвязью (Telecommunications Management Network - TMN). Целью TMN является управление сетями электросвязи, а основным принципом - обеспечение организационной структуры сети для взаимодействия различных типов операционных систем и аппаратуры электросвязи с использованием стандартных протоколов и интерфейсов [13].
В процессе взаимодействия TMN и сети электросвязи операционные системы OS осуществляют обработку всей информации, необходимой для выполнения функций управления.
Рисунок 3.1 - Уровни управления сетью связи
Рабочие станции обеспечивают пользовательский интерфейс, посредством которого обслуживающий персонал взаимодействует с сетью управления.
Сеть передачи данных предназначена для организации связи между сетевыми элементами, операционными системами и другими компонентами TMN.
Система управления сетью строится иерархически и имеет 5 уровней (рисунок 3.1):
сетевых элементов;
управления сетевыми элементами;
управления сетью;
управления обслуживанием;
административного управления.
Уровень управления элементами включает в себя:
- контроль и отображение параметров работы;
- техническое обслуживание;
- тестирование;
- конфигурирование применительно к отдельным элементам или некоторым их подмножествам.
Уровень сетевого управления охватывает всю сеть, контролируя подмножества сетевых элементов в их взаимосвязи между собой и управляя всеми сетевыми ресурсами. Уровень управления обслуживанием, в отличие от всех нижележащих уровней, которые непосредственно связаны с сетью, т.е. с техническими средствами, направлен к пользователю. Здесь принимаются решения по предоставлению и прекращению услуг, ведётся соответствующее планирование и учёт и т.п. Ключевым фактором на этом уровне является обеспечение качества обслуживания.
Уровень административного управления обеспечивает функционирование компании оператора сети связи. Здесь решаются организационные и финансовые вопросы, осуществляется взаимодействие с операторами других сетей связи.
3.3 Функции управления
3.3.1 Общие функции управления
В аппаратуре управления встроенные каналы управления ЕСС используются для связи с сетевыми элементами NE и имеют следующие функции [13]:
- запрос и приём сообщений о сетевых параметрах, таких, как размер пакета, временные промежутки, качество сервиса и.д.;
- формирование маршрутизации сообщения между узлами в каналах передачи данных DCC (байты D1 - D12 секционного заголовка SOH);
- менеджмент сетевых адресов (возможное преобразование форматов адресов);
- запрос и приём сообщений о сетевом статусе DCC для данного узла;
- возможность разрешать или запрещать доступ к DCC.
На все события, требующие фиксации во времени, ставится временная метка с разрешением в 1 секунду. Время фиксируется по показанию локального таймера сетевого элемента NE.
Другие общие функции, например, защита на различных уровнях или обеспечение безопасности, дистанционный вход в сеть, загрузка и модификация программного обеспечения, в настоящее время гарантируются производителем SDH оборудования.
3.3.2 Управление сообщениями об аварийных ситуациях
Наблюдение за сообщениями об аварийных ситуациях включает в себя обнаружение сообщений об авариях и сохранение сообщений о тех событиях и условиях, которые сопутствовали их появлению. Управление сообщениями об аварийных ситуациях поддерживает следующие функции:
- автономное сообщение о всех сигналах возникновения аварийной ситуации;
- разрешение или запрет на автономное сообщение о всех сигналах возникновения аварийной ситуации;
- запись моментов возникновения таких сигналов в регистровом файле. Регистры могут быть считаны по запросу или периодически.
3.3.3 Управление рабочими характеристиками
Осуществляется сбор данных о таких рабочих характеристиках системы, как:
- коэффициентов ошибок по секундам с ошибками ESR;
- коэффициентов ошибок по секундам с ошибками, пораженным ошибками SESR;
- коэффициентов ошибок по блокам с фоновыми ошибками BBER.
3.3.4 Управление конфигурацией
Основное назначение защитного (резервного) переключения - подключить резервное устройство вместо основного устройства. Функциями управления конфигурацией являются:
- включение/выключение ручного режима защитного переключения;
-включение/выключение принудительного режима защитного переключения;
- включение/выключение блокировки;
- запрос/установка параметров автоматического защитного переключения APS (Automatic Protection Switch).
3.4 Управление оборудованием и сетью связи фирмы Alcatel
3.4.1 Система управления Alcatel
В системе управления фирмы Alcatel выделяют:
- элемент сети,
- посредник,
- операционную систему,
- рабочую станцию.
При наличии трактов передачи SDH между различными элементами сети функцию посредника выполняет контролер узла связи с дистанционным интерфейсом управления.
Функциями системы управления с дистанционным интерфейсом являются:
- проверка состояния оборудования на аварийность;
- проверка соединений в конфигурациях;
- административная функция безопасности (имя и пароль оператора);
- сервисная память о всех событиях в оборудовании;
- контроль за характеристиками;
- установка программного обеспечения оборудования в энергозависимую память без прерывания передачи.
Кроме собственных адресов отдельные элементы сети передают данные об информационных сигналах, маршрутизацию которых они выполняют, о конфигурации сети, например, о подключении портов и состояниях коммутационной системы, а также о результатах текущего контроля. Таким образом, в централизованной базе данных содержится вся информация о маршрутизации трактов в сети.
В системах управления фирмы Alcatel используются стандартные программы MS-DOS/WINDOWS в качестве операционной системы, 1353 ЕМ в качестве рабочей станции, а оборудование SDH - в качестве элементов сети.
Элементы сети, то есть станции, оборудованные аппаратурой Alcatel Telecom, управляются локально посредством персонального компьютера, подключенного через интерфейс F рабочего терминала. Через интерфейс Q3 возможно подключение к системе TMN вышележащего уровня. Посредник (или контролер) оборудования SDH спроектирован как модуль диалога с персональным компьютером, чтобы обслуживать, активизировать и выявлять, устранять неполадки в работе оборудования.
3.4.2 Рабочая станция 1353 ЕМ
Система 1353 ЕМ является системой управления элементами сети и предназначена для использования с оборудованием связи фирмы Alcatel Telecom.
Благодаря специальному программному обеспечению каждого элемента сети, 1353 ЕМ обрабатывает информацию, поступающую из различных сетевых элементов NE через локальную вычислительную сеть (LAN) или через интерфейсы Х25 (рисунок 3.2). Кроме того, пользователю предоставляется возможность обмена информацией с сетевым элементом.
Рисунок 3.2 - Основная эксплуатационная рабочая станция 1353 ЕМ
На рисунке 3.3 показана взаимосвязь рабочей станции и сети связи.
Рисунок 3.3 - Основная эксплуатационная рабочая станция внутри используемой сети
Оператор может визуально отобразить все статусы оборудования в реальном масштабе времени, а также может использовать дистанционное управление, поддержку и конфигурирование оборудования.
Подобный обзор дополняет или заменяет такие устройства отображения, как индикаторные лампы и табло.
Основная рабочая станция может следить за оборудованием PDH и SDH посредством интерфейсов Q3 и QВ3 соответственно.
Рабочая станция 1353 ЕМ имеет следующие возможности:
- управление локальное и дистанционное авариями и статусом NE;
- конфигурация обслуживания;
- графическое отображение соединений;
- администрирование;
- наблюдение за сетью PDH и SDH;
- память технического обслуживания;
- поиск неисправности;
- обслуживание элементов сети.
Рисунок 3.4 - Организация программного обеспечения для рабочей станции
По программному обеспечению рабочая станция 1353 ЕМ включает в себя (рисунок 3.4):
- интерфейс Q3, подключенный к локальной сети передачи данных по протокам Х25;
- интерфейс QВ3, подключенный к локальной сети Ethernet;
- специальное программное обеспечение Super Mediation (рисунок 3.13);
- специальное программное обеспечение для конфигурации и хранения сообщений о событиях;
- программное обеспечение NOCTAS, сконфигурированное для мультиплексорного окружения SM.
Специальная программа Super Mediation состоит из семи следующих частей :
1) Инициализация, используемая при загрузке 1353 ЕМ, инициирует диалог между 1353 ЕМ и различным оборудованием.
2) Диспетчер. Эта часть направляет все сообщения, приходящие от интерфейсов, к части Super Mediation (управление конфигурацией, управление авариями).
3) Управление конфигурацией. Эта часть управляет текущими файлами конфигурации наблюдаемого оборудования и соответствующими справочными файлами конфигурации. С помощью справочного файла сетевой элемент NE, потерявший свою конфигурацию, может быть сконфигурирован автоматически.
4) Управление авариями. Эта функциональная часть принимает спонтанные аварийные и статусные сообщения от всего оборудования и сохраняет их в таблице аварий с целью их посылки по запросу.
5) Медленный опрос. Он регулярно контролирует статус и присутствие в сети оборудования с интерфейсами Q3 и QВ3.
6) Управление администрированием. Эта часть управления доступом к рабочей станции и терминалам посредством загрузки административных функций управления пользователями и их правами доступа и разрешением выдачи справки из файла, хранящего команды регистрации и выхода из системы.
7) Управление командами оператора. Эта часть хранит команды, выполняемые пользователями на местных и удаленных терминалах.
Структура программного обеспечения рабочего терминала 1353 ЕМ (местного или удаленных):
- F интерфейс (обмен сообщениями);
- интерфейс PC-NFS Ethernet (передача файлов между терминалом и рабочей станцией);
- интерфейс WINDOWS;
- программное обеспечение NOCTAS (программное обеспечение удаленного терминала RT)
Рисунок 3.5 - Организация программного обеспечения Super Mediation
На рисунках 3.6 и 3.7 показана организация программного обеспечения местного (LT) и удаленного (RT) терминалов.
Рисунок 3.6 - Организация программного обеспечения местного терминала
Рисунок 3.7 - Организация программного обеспечения удаленного терминала
3.4.3 Конфигурирование элементов и сети
Управление конфигурацией включает в себя выполнение следующих процессов:
- проверка и обработка модификаций конфигурации оборудования;
- загрузка и выгрузка информации о конфигурации (по требованию пользователя);
-автоматическая конфигурация выполняется в случае потери конфигурации или в случае конфигурации оборудования по умолчанию;
Для каждого оборудования система управления конфигурацией имеет дело:
- со справочными файлами. Они содержат версию, которая была загружена с удаленного терминала 1353 ЕМ. Эта версия используется для автоматической конфигурации в случаях потери конфигурации или в случае конфигурации по умолчанию;
- с текущими файлами. Они содержат информацию о конфигурации работающей системы. Данные файлы конфигурации модифицируются автоматически в случае возникновения изменений или в случае модификации оператором.
Все эти файлы хранятся на рабочей станции. В процессе работы интерфейс оператора SM позволяет производить конфигурацию сети в соответствии с выбором пользователя. Это достигается удалением или модификацией некоторого количества управляемого оборудования.
Администратор вводит адреса в приложение 1353 ЕМ “Network Configurations” (Сетевая конфигурация).
В случае потери конфигурации автоматическая конфигурация может быть выполнена только в том случае, если оборудование разблокировано.
Терминал взаимодействует с системой управления конфигурацией с целью получения текущей конфигурации оборудования.
Когда оборудование заблокировано, его конфигурация может быть модифицирована только оператором 1353 ЕМ.
Заблокированное оборудование может быть автоматически сконфигурировано с помощью справочной конфигурации, хранимой на рабочей станции 1353 ЕМ.
Во время процедуры блокировки файл текущей конфигурации сравнивается с файлом справочной конфигурации. Если для оборудования не существует файла справочной конфигурации, то пользователь может подтвердить текущую конфигурацию (и затем она становится справочной конфигурацией).
3.4.4 Маршрутизация
Маршрутизация каналов связи осуществляется администратором сети с его рабочего места программой сетевого управления 1353 ЕМ:
- вначале активизируется система;
- осуществляется вход в операционную систему набором пароля и идентификацией профиля оператора;
- осуществляется вход в WINDOWS;
- отыскивается файл в хронологии оборудования (сети) и осуществляется вход в него;
- осуществляется непосредственно маршрутизация.
Если производится работа с файлом хронологии оборудования, то на экране появляются две таблицы.
Первая таблица отображает реальное состояние данного типа оборудования (ADM, ТM), а другая содержит сообщения об авариях, происшедших между двумя командами оператора. В первой таблице содержатся все данные для маршрутизации. Если же производится работа с файлом хронологии сети, то по всему вышесказанному добавляется графическое распределение терминалов на сети. Тогда в первой таблице содержатся графы первичных потоков 2; 34; 140; 155 Мбит/с. Эти потоки (порты) можно открывать и закрывать, увеличивать или уменьшать их количество. Также можно изменить конфигурацию сети, выбрав один из режимов работы мультиплексоров ADM.
На схеме распределения терминалов возможно включение действующих терминалов сети, то есть соединение между двумя какими - либо терминалами поддерживается некоторое время, а потом разрывается. Это позволяет использовать ресурсы сети более эффективно. В таблице аварий отображены все аварии и их статус (срочная, малосрочная, несрочная). Здесь можно сразу запустить команду и устранить аварию. Список аварий может быть распечатан. Существует также широкий набор дополнительных видов услуг, которые вводятся на сети по требованию пользователя.
3.5 Организация служебных каналов
Материал по организации служебной связи в оптических системах передачи PDH имеется в литературе, приведенной в списке использованных источников, здесь приводиться информация только по транспортным системам SDH. Секционный заголовок SDH, и трактовые заголовки РОН виртуальных контейнеров цикла STM-N имеют достаточно большую резервную емкость, которая используется для формирования различных служебных каналов. Общий объем заголовка составляет 9 9 + 9 = 90 байт (рисунки 3.8 и 3.9). Использование каждого байта эквивалентно созданию канала со скоростью передачи 64 кбит/с.
Все служебные байты заголовка могут быть разделены на три типа:
- байты, которые не могут быть использованы пользователями SDH оборудования;
- байты, которые специально предназначены для использования в служебных целях или для создания служебных каналов; к ним относятся, например, каналы передачи данных для регенерационной секции DCCR (D1 D2 D3), имеющие совокупную скорость передачи 192 кбит/с и каналы передачи данных для мультиплексной секции DCCм (D4 - D12), имеющие совокупную скорость передачи 576 кбит/с; кроме этого, существуют еще четыре байта - Е1, Е2 и F1, зарезервированные для создания четырех каналов со скоростью передачи 64 кбит/с каждый, из них канал Е1 используется как канал служебной связи на регенерационных секциях, канал Е2 - как канал служебной связи на мультиплексной секции, а канал F1 - как служебный канал пользователя; байты национального использования, к которым пользователь имеет доступ, но функции которых не регламентированы.
Последние две группы байтов могут быть сгруппированы для создания служебных каналов и скоммутированы на внешние интерфейсы, к которым может подключаться пользователь SDH оборудования.
B1 |
E1 |
F1 |
|||||||
D1 |
D2 |
D3 |
|||||||
Указатель административного блока_ |
|||||||||
B1 |
B2 |
B2 |
K1 |
K2 |
|||||
D4 |
D5 |
D6 |
|||||||
D7 |
D8 |
D9 |
|||||||
D10 |
D11 |
D12 |
|||||||
E1 |
Рисунок 3.8 - Секционный заголовок
Рисунок 3.9 - Трактовый заголовок
4 Синхронизация цифровой сети
Коммутационное оборудование сети SDH должно иметь интерфейсы для подключения внешней синхронизации 2048 кГц.
В основу синхронизации проектируемой сети SDH в соответствии с рекомендациями ETSI G.803 положен принцип «ведущий - ведомый», при котором синхронизация аппаратуры, имеющей внутренний генератор, осуществляется синхросигналом, полученным от генератора с более высокой стабильностью и точностью установки частоты.
Генераторы элементов сети, т. е. генераторы, входящие в мультиплексное оборудование проектируемой ВОЛС, подвергаются последовательной принудительной синхронизации. Последним приоритетом синхронизации в мультиплексном оборудовании является собственный задающий генератор, работающий в системе удержания, при котором запоминается частота сети принудительной синхронизации.
Синхронизация проектируемой транспортной сети SDH Волгоградской области осуществляется от первичного эталонного генератора ПЭГ ОАО "Ростелеком", установленного в Котлубани.
Сигнал синхронизации от ПЭГ передается в линейном потоке STM - 4 на внешний вход Т3 мультиплексора 1651 SM сети SDH ОАО "Ростелеком", установленного в здании АМТС г. Волгограда и далее с внешнего выхода Т4 (2048 кГц) подается на внешний вход Т3 сетевого элемента 1651 SM проектируемой внутризоновой сети SDH через аппаратуру разветвления сигналов синхронизации.
5 Надежность оптической линии передачи
5.1 Термины и определения по надежности
Под надежностью элемента (системы) понимают его способность выполнять заданные функции с заданным качеством в течение некоторого промежутка времени в определённых условиях. Изменение состояния элемента (системы), которое влечёт за собой потерю указанного свойства, называется отказом.
Надёжность работы ВОЛП - это свойство волоконно-оптической линии обеспечивать возможность передачи требуемой информации с заданным качеством в течение определённого промежутка времени [1].
ВОЛП в общем случае может рассматриваться как система, состоящая из двух совместно работающих сооружений - линейного и станционного. Каждое из этих сооружений при определении надёжности может рассматриваться как самостоятельная система.
В теории надёжности используются следующие понятия:
- отказ - повреждение ВОЛП с перерывом связи по одному, множеству или всем каналам связи;
- неисправность - повреждение, не вызывающее закрытия связи, характеризуемое состоянием линии, при котором значения одного или нескольких параметров не удовлетворяют заданным нормам;
- среднее время между отказами (наработка на отказ) - среднее время между отказами, выраженное в часах;
- среднее время восстановления связи - среднее время перерыва связи, выраженное в часах;
- интенсивность отказов - среднее число отказов в единицу времени (час);
- вероятность безотказной работы - вероятность того, что в заданный интервал времени не возникнет отказ;
- коэффициент готовности - вероятность нахождения линии передачи в исправном состоянии в произвольно выбранный момент времени;
- коэффициент простоя - вероятность нахождения линии передачи в состоянии отказа в произвольно выбранный момент времени.
Многоканальные ТКС относятся к восстанавливаемым системам, в которых отказы можно устранять.
Одно из центральных положений теории надёжности состоит в том, что отказы рассматривают в ней как случайные события. Интервал времени от момента включения элемента (системы) до его первого отказа является случайной величиной, называемой временем безотказной работы. Интегральная функция распределения этой случайной величины, представляющая собой вероятность того, что время безотказной работы будет менее t, обозначается q(t) и имеет смысл вероятности отказа на интервале (0… t). Вероятность противоположного события - безотказной работы на этом интервале - равна
P(t) = 1 - q(t).
Удобной мерой надёжности элементов и систем является интенсивность отказов (t), представляющая собой условную плотность вероятности отказа в момент времени t, при условии, что до этого момента отказов не было. Между функциями (t) и P(t) существует взаимосвязь
P(t) = exp .
В период нормальной эксплуатации (после приработки, но ещё до того, как наступит физический износ) интенсивность отказов примерно постоянна (t) . В этом случае
P(t) = exp (-t).
Таким образом, постоянной интенсивности отказов, характерной для периода нормальной эксплуатации, соответствует экспоненциальное уменьшение вероятности безотказной работы с течением времени.
Среднее время безотказной работы находят как математическое ожидание случайной величины
tср = . (5.1)
Оценим надёжность некоторой сложной системы, состоящей из множества разнотипных элементов. Пусть
P1(t) ; P2(t) ; … Pn(t) -
вероятности безотказной работы каждого элемента на интервале времени (0…t), n - число элементов в системе. Если отказы отдельных элементов происходят независимо, а отказ хотя бы одного элемента ведёт к отказу всей системы (такой вид соединения элементов называется последовательным), то вероятность безотказной работы системы в целом равна произведению вероятностей безотказной работы отдельных её элементов
Рсист =. (5.2)
где сист =-- интенсивность отказов системы;
i -- интенсивность отказов i - го элемента.
Среднее время безотказной работы системы равно
tср. сист = . (5.3)
К числу основных характеристик надёжности восстанавливаемых элементов и систем относится коэффициент готовности
Кг = , (5.4)
где tв сист - среднее время восстановления элемента (системы).
Коэффициент готовности соответствует вероятности того, что элемент (система) будет работоспособен в любой момент времени.
5.2 Расчёт параметров надёжности
В соответствии с выражением (5.2) интенсивность отказов оптической линии передачи определяют как сумму интенсивностей отказов ОРП (ОП) и кабеля
сист = орп n орп + каб L,
где орп , каб - интенсивности отказов соответственно ОРП (ОП) и одного километра кабеля;
n орп , n нрп - количество соответственно ОРП (ОП);
каб - интенсивность отказов одного километра кабеля;
L - протяженность оптической линии передачи.
сист = 4 10-8 + 5 10-8 683,4 = 3,46 10-5
Среднее время безотказной работы оптической линии передачи определим по формуле (5.3)
tсист =7,93 года
Вероятность безотказной работы в течение заданного промежутка времени
Рсист =
рассчитаем по формуле (5.2) для t1 = 24 часа (сутки), t2 = 168 часов (неделя), t3 = 720 часов (месяц) и t4 = 8760 часов (год).
Р = exp ( - 3,46 10-5 24) = 0,999
Р = exp ( - 3,46 10-5 168) = 0,994
Р = exp ( - 3,46 10-5 720) = 0,975
Р = exp ( - 3,46 10-5 8760) = 0,73
По результатам расчётов построим график зависимости вероятности безотказной работы оптической линии передачи от времени Рсист (t).
Рисунок 5.1 - Зависимость вероятности безотказной работы оптической линии передачи от времени Рсист(t).
Коэффициент готовности оптической линии передачи рассчитывают по формуле (5.4), рассчитав предварительно среднее время восстановления связи
tв. сист = ( орп n орп tв. орп + каб L tв. каб ) /сист ,
где tв. орп, tв. каб - время восстановления соответственно ОРП (ОП) и кабеля;
tв сист = (4 10-8 10 + 5 10-8 683,4 5)/ (3,46 10-5) = 197,83 10-5.
Значения необходимых для расчётов параметров приведены в таблице 7.1.
Таблица 5.1 - Параметры надежности элементов ВОЛП
Наименование элемента |
ОРП (ОП)SDH |
ОптическийКабель |
|
, 1/час. |
4 10-8 |
5 10-8 на 1 км |
|
tв, ч. |
0,1 |
5,0 |
Далее для линий передачи кольцевой топологии определяем, во сколько раз уменьшается время восстановления (время простоя) при резервировании . Предположение, что кольцо состоит из одной линии и разбито на n единичных участков между двумя соседними станциями, обслуживающими ближайших по отношению друг к другу пользователей (рисунок 5.1).
Интенсивность отказов единичного участка определяется по формуле
ед. уч. = орп n орп + каб L,
где n орп = 2 - количество ОРП на одном единичном участке.
Среднее время безотказной работы единичного участка равно
tср. ед. уч. =,
tср. ед. уч. = = 0,29 10-5 ,
а коэффициент готовности единичного участка равен
Кг ед. уч = ,
где tв. ед. уч - время восстановления единичного участка без резервирования, которое рассчитывается по следующей формуле
tв. ед. уч. = ,
tв. ед. уч. = = 4,94 10-5 ,
Кг.ед.уч. = = 0,66 10-5
6 Технико - экономическое обоснование
6.1 Цель проекта
Усовершенствование систем связи внутри предприятия путем замены оборудования PDH типа ФК-34, ФК-35 на проектируемое оборудование SDH фирмы Alcatel. Получение коммерческой прибыли от предоставления аренды потоков E1 заинтересованным сторонним организациям.
6.2 Вид расчета
Расчет экономического эффекта на начальной стадии проектирования.
6.3 Расчет капитальных затрат
Затраты на приобретение оборудования сведены в таблице 6.1.
Таблица 6.1 - Локальная смета затрат на станционное оборудование
Наименование |
Стоимость, тыс. руб. |
Кол-во, шт. |
Сумма, тыс. руб. |
|
Мультиплекор Alcatel OPTINEX 1660 SM |
739,530 |
2 |
1479,060 |
|
Система управления сетью Alcatel OPTINEX 1354 RM |
2382,210 |
1 |
2382,210 |
|
Система управления сетевыми элементами Alcatel OPTINEX 1353 SH |
2382,210 |
1 |
2382,210 |
|
Терминал управления сетевыми элементами Alcatel OPTINEX 1320 CT/NX |
311,190 |
1 |
311,190 |
|
Неучтенное оборудование 10% от его стоимости |
655,467 |
|||
Итого |
7210,137 |
|||
Тара и упаковка 0,5% от итоговой стоимости |
36,05 |
|||
Транспортные расходы 4% от итоговой стоимости |
288,405 |
|||
Складские расходы 1,2% от итоговой стоимости |
86,522 |
|||
Всего по смете |
7621,114 |
Таблица 6.2 - Локальная смета затрат на линейное оборудование
Наименование материалов |
Единица измерения |
Количество |
Сумма затрат, тыс. руб. |
||
На единицу |
Всего |
||||
Кабель оптический ОМЗК 10-01-0,22-8 |
км |
683,4 |
42210 |
28846,314 |
|
Тара, 1% от стоимости линейного оборудования |
0,01 |
288,463 |
|||
Транспортные расходы 4% от стоимости линейного оборудования |
0,04 |
1153,852 |
|||
Итого по смете |
30288,629 |
Сводный сметный расчет строительства ВОЛС представлен в таблице 6.3.
Таблица 6.3 - Сводный сметный расчет
Наименование объектов и затрат |
Сметная стоимость строительства, тыс. руб. |
Общая сметная стоимость, тыс. руб. |
|||
СМР |
Оборудо- вание |
Прочие затраты |
|||
1 |
2 |
3 |
4 |
5 |
|
Станционное оборудование Линейное оборудование |
1905,278 7572,155 |
7621,114 30288,629 |
|||
Временные здания и сооружения (3,8 % от СМР) |
360,142 |
360,142 |
|||
Резерв средств на непредвиденные расходы (3% от СМР) |
294,323 |
294,323 |
|||
Проектно-изыскательские работы (10 % от СМР) |
947,743 |
947,743 |
|||
Отчисление в дорожный фонд (2,5% от стоимости объектов и затрат) |
39,805 |
39,805 |
|||
Отчисление в фонд НИОКР (1,5 % от стоимости объектов и затрат) |
39,805 |
39,805 |
|||
Итого |
39565,639 |
||||
Затраты, связанные с уплатой НДС 20% ??? |
7913,128 |
||||
Всего |
47478,767 |
6.4 Тарифы и цены
Тариф за использование одного потока E1, а также за разовое подключение сведены в таблицу 6.4.
Таблица 6.4 - Тариф на использование потоков E1
Наименование |
Единица измерения |
Значение Показателя |
|
Тариф за разовое подключение потока E1 |
руб. |
3000 |
|
Аренда потока E1 в месяц |
руб. |
77000 |
6.5 Расчет тарифных доходов
Расчет доходов производится на основании объема услуг связи (предоставляемых в аренду потоков Е1) и тарифов на услуги связи на 2008 год
,
где - объем платных услуг i вида;
- месячный тариф за пользование цифровым каналом 2,048 Мбит/с по зоновым связям (101-200 км.), q = 77000 руб.
Д = 40 х 77000 х 12 = 36960 тыс. руб.
Кроме того существует разовая плата за организацию цифровых каналов (за подключение). Эта плата составляет 3000 руб. за организацию одного потока Е1 соответственно за 40 потоков 120 тыс. руб. Тогда доход за первый год эксплуатации составит 37080 тыс. руб.
6.6 Расчет годовых эксплуатационных расходов
Расчет эксплуатационных расходов производится по следующим статьям затрат:
- заработная плата (основная и дополнительная) - З;
- отчисления на социальные нужды - Осн;
- амортизационные отчисления - А;
- затраты на электроэнергию - Рэн;
- материалы и запасные части - Рмзч;
-прочие производственные, транспортные, управленческие и хозяйственные расходы - Рпр.
1) Расчет годового фонда заработной платы и отчислений на социальные нужды
Для расчета годового фонда заработной платы необходимо определить численность эксплуатационного штата. Расчет численности штата на обслуживание линейных и станционных сооружений приведен на основании норматива численности производственного штата для предприятий связи ОАО “Ростелеком” по формуле
где - норматив на обслуживание оборудования чел/час;
-количество обслуживаемого оборудования;
-месячный фонд рабочего времени, час;
-коэффициент отпусков равен 1,08.
Общие затраты времени определим по таблице 6.5
Таблица 6.5 - Общие затраты времени
Наименованиевидов работ |
Единица измерения |
Норматив на единицу Нi (чел./час), |
КоличествоNi |
Всего (HiNi)(чел/час) |
|
Обслуживание мультиплексоров |
шт. |
0,15 |
10 |
1,5 |
|
Обслуживание 1 км кабеля |
км |
5,6 |
683,4 |
3827,04 |
|
Итого |
3828,54 |
Тогда численность штата равна
T = х 1,08 = 23,49 ? 24 человека
Годовой фонд заработной платы вычисляется по формуле
где Р - численность штата;
- среднемесячная заработная плата одного работника.
З = 24 х 6500 х 12 = 1872000 руб.
Отчисления на социальные нужды производятся в размере 38,5% от годового фонда заработной платы
Осн = 0,385 х 1872000 = 720720 руб.
Годовой фонд заработной платы с отчислением во внебюджетные фонды
Зпл = З + ?сн = 1872000 + 720720 = 2592720 руб.
2) Расчет суммы амортизационных отчислений
Расчет суммы годовых амортизационных отчислений производят на основании сборника “Нормы амортизационных отчислений по основным фондам народного хозяйства РФ” по формуле
где - норма амортизационных отчислений;
- среднегодовая стоимость основных фондов (приравнивается к капитальным затратам по этой статье).
аi =6,7% для оптоволоконной линии связи;
аi=12,5 для оптоволоконных систем связи.
А = = 2981,977
3) Затраты на электроэнергию
Р= N x W x T x t, руб.
где N - количество вводимых мультиплексоров ;
W - мощность потребляемая мультиплексором;
Т - тариф за электроэнергию (0,64руб. за 1кВт) ;
t- время работы станции в год (8760 часов при том, что станция работает круглосуточно)
Тогда затраты на электроэнергию в год составят:
Р= 10 х 120 х 0,64 х 8760 = 6727,680 тыс. руб.
4) Затраты на материалы и запчасти составляют 5% от капитальных затрат
М= 47478,767 х 0.05 = 2373,938 тыс. руб.
5) Прочие затраты составляют 1,5 % от капитальных затрат:
П = 47478,767 х 0.015 = 712,182 тыс. руб.
Годовые эксплуатационные расходы перечислены в таблице 6.5.
Таблица 6.6. Годовые эксплуатационные расходы
Виды затрат |
Сумма, тыс. руб. |
|
Фонд заработной платы и отчисления в социальный налог |
2592,72 |
|
Амортизационные отчисления |
2981,977 |
|
Затраты на электроэнергию |
6727,68 |
|
Затраты на материалы и запчасти |
2373,938 |
|
Прочие затраты |
712,182 |
|
Итого |
15388,497 |
6.7 Счет прибылей и убытков
Далее в таблице 6.7 представлен счет прибылей и убытков
Таблица 6.7 - Счет прибылей и убытков
Показатели |
Годы |
Всего |
||||||
2003 |
2004 |
2005 |
2006 |
2007 |
2008 |
|||
Тарифные до-ходы, млн. руб. |
37,080 |
36,960 |
36,960 |
36,960 |
36,960 |
184,92 |
||
Эксплуатационные расходы млн. руб. |
15,388 |
15,388 |
15,388 |
15,388 |
15,388 |
76,94 |
||
Прибыль от реализации млн. руб. |
21,69 |
21,57 |
21,57 |
21,57 |
21,57 |
107,98 |
||
Налог на прибыль(24%) |
5,21 |
5,18 |
5,18 |
5,18 |
5,18 |
25,93 |
||
Чистая прибыль |
16,48 |
16,39 |
16,39 |
16,39 |
16,39 |
82,04 |
Заключение
Проблема быстрой передачи обширных массивов информации на значительные расстояния приобретает особую актуальность в связи с возрастающей потребностью современного общества в обмене информацией. Волоконно-оптические системы передачи PDH значительно повышают качество и экономичность информационных услуг.
Развитие технологий скоростных телекоммуникаций на основе PDH привело к созданию новой цифровой технологии SDH, ориентированной на использование волоконно-оптических кабелей в качестве среды передачи информации со скоростями, достигающими 40 Гбит/с.
Принципы SDH предусматривают организацию универсальной транспортной системы, охватывающей все участки сети (от местных до магистральных) и выполняющей функции передачи, резервирования, оперативного переключения, ввода и выделения потоков информации в промежуточных пунктах, контроля и управления сетью.
Технология SDH рассчитана на транспортирование сигналов всех цифровых иерархий (Европейской, Американской и Японской) и всех действующих и перспективных служб связи как с синхронным (SТМ), так и с асинхронным способами (АТМ) переноса информации, то есть является всемирно прозрачной и перспективной.
Аппаратурная реализация SDH существенно отличается от традиционной, когда отдельно создавалась аппаратура линейного тракта, преобразовательная, контроля, резервирования и т.п. В SDH используются универсальные аппаратурные комплекты (синхронные мультиплексоры и аппаратура оперативного переключения), в которых совмещаются перечисленные функции. В сочетании с последними достижениями техники ЭВМ и микроэлектроники это резко сокращает объем и стоимость аппаратуры и требуемых помещений, работы по монтажу и настройке и т.д.
В аппаратуре SDH легко реализуются прогрессивные сетевые конфигурации - кольцевые, разветвленные и другие, которые обеспечивают высокую гибкость и надежность сети. Такие конфигурации создаются, контролируются и управляются программными средствами на единой аппаратной базе.
В результате обеспечивается полная автоматизация процессов эксплуатации сети SDH, радикально повышающая ее гибкость и надежность, а также качество связи.
В настоящее время использование SDH является единственным перспективным решением для первичной сети, альтернативы которому нет.
Список использованных источников
1 Волоконно-оптические системы передачи и кабели: Справочник / И.И. Гроднев, А.Г. Мурадян, Р.М. Шарафутдинов и др. - М.: Радио и связь, 1993. - 265 с.
2 Волоконно-оптические системы передачи: учебник для ВУЗов / М.М. Бутусов, С.М.Верник и др.; Под ред. В.Н. Гомзина. - М.: Радио и связь, 1992. - 416 с.
3 Волоконно-оптические системы связи на ГТС: Справочник. Берлин Б.З. и др. - М.: Радио и связь, 1994. - 172 с.
4 Гауэр, Дж. Оптические системы связи. - М: Радио и связь, 1989. - 502 с.
5 Корнилов И.И. Цифровая линия передачи: учебное пособие по курсовому и дипломному проектированию по курсу МСП. - Самара: ПГАТИ, 1998. - 125 с.
6 Многоканальные системы передачи: учебник для ВУЗов / Н.Н. Баева, В.Н. Гордиенко, С.А. Курицын и др.; Под ред. Н.Н. Баевой и В.Н. Гордиенко. - М.: Радио и связь, 1997. - 560 с.
7 Оптические системы передачи: учебник для ВУЗов / Б.В.Скворцов, В.И.Иванов, В.В. Крухмалев и др.; Под ред. В.И.Иванова. - М.: Радио и связь, 1994. - 224 с.
8 Проектирование волоконно-оптических линий связи: уч. пособие по дипломному и курсовому проектированию для специальностей 2305 и 2306 / В.А. Бурдин и др. - Самара: ПИИРС, 1992. - 148 с.
9 Руководящий технический материал по применению систем и аппаратуры синхронной цифровой иерархии на сети связи РФ. - М.: ЦНИИС, 1994. - 50 с.
10 Строительство кабельных сооружений связи: Справочник / Д.А. Барон, И.И. Гроднев и др. - М . Радио и связь, 1988. - 768 с.
11 Строительство и техническая эксплуатация волоконно-оптических линий связи: учебник для ВУЗов / В.А. Андреев и др.; Под ред. Б.В. Попова. - М.: Радио и связь, 1995. - 200 с.
12 Слепов Н.Н. Синхронные цифровые сети SDH. - М. Эко - Трендз, 1997. - 148 с.
13 Фриман Р. Волоконно-оптические системы связи. - М: Техносфера, 2006. - 495 с.
Подобные документы
Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.
курсовая работа [778,1 K], добавлен 29.12.2014Характеристика действующей волоконно-оптической линии связи в Павлодарской области, распложенной вдоль реки Иртыш. Анализ отрасли телекоммуникации в Республике Казахстан. Организация защищенного транспортного кольца волоконно-оптической линии связи.
отчет по практике [25,7 K], добавлен 15.04.2015Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.
курсовая работа [1,2 M], добавлен 01.06.2014Измерительные приборы в волоконно-оптической линии связи, выбор оборудования для их монтажа. Схема организации связи и характеристика промежуточных и конечных пунктов, трасса кабельной линии передачи. Характеристика волоконно-оптической системы передачи.
дипломная работа [6,6 M], добавлен 20.06.2016Выбор трассы прокладки кабеля. Расчет эквивалентных ресурсов волоконно-оптической линии передачи. Топология транспортной сети. Виды, количество и конфигурация мультиплексоров. Подбор аппаратуры и кабельной продукции. Разработка схемы организации связи.
курсовая работа [1,2 M], добавлен 17.08.2013Обоснование трассы волоконно-оптической линии передач. Расчет необходимого числа каналов, связывающих конечные пункты; параметров оптического кабеля (затухания, дисперсии), длины участка регенерации ВОЛП. Выбор системы передачи. Схема организации связи.
курсовая работа [4,3 M], добавлен 15.11.2013Волоконно-оптические линии связи как понятие, их физические и технические особенности и недостатки. Оптическое волокно и его виды. Волоконно-оптический кабель. Электронные компоненты систем оптической связи. Лазерные и фотоприемные модули для ВОЛС.
реферат [1,1 M], добавлен 19.03.2009Общая характеристика оптоволоконных систем связи. Измерение уровней оптической мощности и затухания. Системы автоматического мониторинга. Оборудование кабельного линейного тракта. Модернизация волоконно-оптической сети. Схема оборудования электросвязи.
дипломная работа [3,8 M], добавлен 23.12.2011Особенности работы оборудования SDH и принципы организации транспортной сети. Функции хронирования и синхронизации. Построение волоконно-оптической линии связи АНК "Башнефть" способом подвески оптического кабеля на опорах высоковольтной линии передачи.
дипломная работа [972,4 K], добавлен 22.02.2014Совершенствование телекоммуникационных и информационных технологий. Алгоритм проектирования ВОЛП (волоконно-оптической линии передачи). Требования к технической документации по организации связи на проектируемом направлении. Состав рабочего проекта.
контрольная работа [26,9 K], добавлен 12.08.2013