Основы построения беспроводных систем связи

Основы построения аналоговых радиорелейных линий. Радиорелейные линии синхронной цифровой иерархии. Принципы построения спутниковых систем связи. Многостанционный доступ с разделением по частоте и времени. Требования к видеодисплейным терминалам.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 17.05.2012
Размер файла 813,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В настоящее время по ЦРРЛ передаются цифровые потоки соответствующие STM-RR и STM-1. При прохождении этих модулей по ЦРРЛ производится обработка секционного заголовка SOH, состоящего из заголовков мультиплексной MSOH и регенерационной RSOH секций и AU указателя. В соответствии со структурой секционного заголовка на ЦРРЛ выделяются мультиплексные и регенерационные секции рисунок 2.3.1.

Рисунок 2.3.1 - Мультиплексные и регенерационные секции ЦРРЛ

На ОРС1 заканчивается мультиплексная секция MS1 кабельной соединительной линии между мультиплексным оборудованием MUX и оконечной радиорелейной станцией (ОРС) и начинаются мультиплексная MS2 и регенерационная RS1 секции РРЛ. Регенерационные секции радиорелейной линии начинаются и заканчиваются на всех пролетах. Мультиплексные секции радиорелейной линии начинаются и заканчиваются на ОРС и узловой радиорелейной станции (УРС), следовательно, на ОРС и УРС обрабатывается весь заголовок SOH STM, включая AU указатель. На промежуточной станции (ПРС) обрабатывается только заголовок регенерационной секции RSOH, а остальная часть заголовка проходит через эти станции транзитом.

При рассмотрении структурных схем станций РРЛ СЦИ в пособии используется терминология и обозначения принятые в аппаратуре фирмы NEC (Япония). Структурная схема оконечной радиорелейной станции ОРС1 на примере аппаратуры фирмы NEC приведена на рисунке 2.3.2.

Рисунок 2.3.2 - структурная схема оконечной радиорелейной станции

На вход рабочего ствола РРЛ СЦИ по кабельной соединительной линии от MUX поступает линейный цифровой сигнал в коде CMI со скоростью 155.52 Мбит/с (STM-1).

На ОРС1 заканчивается мультиплексная секция кабельной соединительной линии, на ней производится обработка заголовка этой секции (модуль SOH MS1) рисунок 2.3.2 и 2.3.3. В этом модуле (C/N-преобразователь) осуществляется преобразование линейного кода CMI в код NRZ, который и используется в аппаратуре радиорелейных станций как наиболее узкополосный из двоичных кодов.

Рисунок 2.3.3 - Структурная схема обработки секционного заголовка на приемной стороне

Здесь же осуществляется преобразование входного цифрового потока 155.52 Мбит/с в восемь параллельных потоков по 19.44 Мбит/с (S/P-преобразователь), для того чтобы в дальнейшем можно было использовать микросхемотехнику с невысоким быстродействием, но при этом количество комплектов оборудования увеличивается в восемь раз. Для обеспечения этих преобразований (C/N и S/P) необходимо тактовая частота, которая выделяется из входного сигнала.

Обработка секционного заголовка заключается в выделении и соответствующей обработке байт секционного заголовка. Для определения местоположения байт заголовка в структуре синхронного транспортного модуля определяется начало его цикла, то есть осуществляется синхронизация начала цикла генераторного оборудования (ГО) приема под начало цикла принимаемого сигнала. Для этого используется приемник циклового синхросигнала (Пр.ЦС).

Контроль ошибочно принятых бит производится по коду BIP-8 (BIP-8 детектор), для чего рассчитываются битовые суммы по всем байтам текущего цикла и сравниваются с битовыми суммами, записанными на передающем конце в байт B1 следующего цикла.

Далее сигнал обрабатывается в дескремблере, где из него удаляется псевдослучайная последовательность (ПСП), введенная на передающей стороне в скремблере для того, чтобы исключить появление в передаваемом цифровом сигнале длинных последовательностей «0» и «1». Наличие таких последовательностей приводит к отсутствию в такие моменты времени информации о тактовой частоте, что ухудшает работу выделителя тактовой частоты.

Затем производится контроль ошибок по коду BIP-24 (BIP-24 детектор), для чего рассчитываются 24 битовые суммы по всем тройкам байт (кроме байт заголовка регенерационной секции RSOH) текущего цикла и сравниваются с битовыми суммами записанными на передающем конце в байты В2 следующего цикла. Здесь же производится выделение байт заголовка (SOH выделение), используемых для организации служебных каналов: Е1, Е2, F1 - каналы служебной связи на мультиплексных и регенерационных секциях; D1,…D12 - каналы для системы телеуправления. С выхода модуля SOH выделенные сигналы поступают на интерфейс секционного заголовка (SOH INTF) (рисунок 2.3.2), от куда подаются на соответствующее оборудование или проходят транзитом.

С выхода дескремблера цифровой сигнал восьмью потоками поступает на модуль обработки AU-указателя (PTR), где устраняется расхождение фаз между значением AU-указателя и местоположением первого байта нагрузки, появившееся при прохождении сигнала через мультиплексную секцию и перезаписи цифровых потоков под тактовую частоту местного генератора (reference clock). При этом изменяется значение AU-указателя.

После обработке AU-указателя сигналы поступают на модуль SOH MS2, где начинается мультиплексная секция радиорелейной линии. В этом модуле осуществляются генерация кодов BIP-8 и BIP-24 и вставление (мультиплексирование) байт заголовка SOH.

После обработки в модуле SOH MS2 сигналы поступают на модуль резервирования стволов, работой которого управляет блок управления резервированием (БУР) [7].

В ЦРРЛ используется поучастковая система резервирования стволов, например 3+1,6+2 и так далее. Переключение рабочих стволов на резервный ствол осуществляется на оконечных и узловых станциях. На приемной стороне участка резервирования блок управления резервированием контролирует работоспособность рабочих и резервных стволов. При ухудшении качества работы одного из рабочих стволов (из-за замираний сигналов на пролетах, увеличения уровня внутренних или внешних шумов и помех) и работоспособном резервном стволе, приемная часть БУР принимает решения о переключении данного рабочего ствола на резервный ствол. По служебному каналу приемная часть БУР передает команду на передающую сторону участка резервирования.

На передающей стороне участка резервирования передающая часть БУР посылает команду на соответствующий переключатель ППд и информационный сигнал с этого момента передается параллельно по рабочему и резервному стволам. На приемной стороне вначале производится выравнивание времени распространения сигналов по рабочему и резервному стволам, чтобы исключить эффект проскальзывания сигналов. После этого производится безобрывное переключение выхода с помощью ключа ППр с рабочего ствола на резервный ствол. После восстановления работоспособности рабочего ствола восстанавливается исходная коммутация и освобождается резервный ствол.

После модуля резервирования стволов сигнал STM-1 восьмью потоками суммарной скоростью 155520 кбит/с поступает на многоуровневый кодер, в котором: к выходному цифровому потоку прибавляется дополнительный заголовок радио цикла (RFCOH - Radio Frame Complementary Overhead); производится скремблирования; осуществляется кодирование (FEC - Forward Error Correction) и размещение полученных цифровых потоков на фазоамплитудной плоскости сигнала модулятора (рисунок 2.3.4).

Рисунок 2.3.4 - Структурная схема многоуровневого кодера

В преобразователе скорости 1 осуществляется увеличение суммарной скорости восьми цифровых потоков на 4.24 Мбит/с за счет того, что тактовая частота считывания из буферной памяти превышает тактовую частоту записи информации в эту память. В результате такого преобразования в выходных потоках образуются тактовые интервалы свободные от информационных символов.

В мультиплексоре дополнительного заголовка радиоцикла (рисунок 2.3.5) в свободные тактовые интервалы вставляются информационные символы служебных сигналов, основные из которых: цифровой поток 2 Мбит/с (WS - Way Side), доступный на каждой станции; служебные каналы для связи передающей и приемной сторон блока управления резервированием и для сбора информации о состоянии оборудования станций системой теленаблюдений. В этом же модуле формируется цикл по дополнительному заголовку, причем структура восьмиразрядного циклового синхросигнала может изменяться с помощью переключателя, что обеспечивает идентификацию ствола необходимую при наличии эффекта прохождения сигналов через три интервала и на узловых радиорелейных станциях с большим числом ответвлений.

Рисунок 2.3.5 - Структура сигнала на выходе многоуровневого кодера

После мультиплексора сигналы поступают на скремблер, в котором к ним добавляется псевдослучайная последовательность, устраняющая в двоичном сигнале длинные последовательности нулей и единиц.

В преобразователе скорости 2 суммарная скорость цифрового потока увеличивается на 10 Мбит/с (рисунок 2.3.5) и полученные цифровых потоков суммарной скоростью около 170 Мбит/с поступают на модуль предкоррекции ошибок и размещения. Свободные тактовые интервалы, полученные на выходе преобразователя скорости 2, присутствуют только в первом в соотношении 3/4 (три информационных символа из четырех) и втором в соотношении 11/12 цифровых потоков из шести.

Операция размещения (mapping) полученных цифровых потоков на фазоамплитудной плоскости (constellation - созвездие) сигнала модулятора заключается в том, что соседние точки на созвездии определяются первыми из шести потоков, который имеет наибольшую защиту (3/4). Это определяется тем, что из-за действия шумов и помех наиболее вероятным будет переход данной точки созвездия на соседние точки. Размещение также предполагает, что второй поток с соотношением 11/12 определяет на созвездии точки через одну. Остальные четыре потока из шести не имеют избыточных бит и определяют все остальные точки на созвездии [7].

В результате проведенных преобразований сигнала на выходе многоуровневого кодера формируется шесть потоков (рисунок 2.3.4), из них три потока для синфазной (Phase) составляющей Р1, Р2, Р3 и три потока для квадратурной (Quadrate) составляющей Q1, Q2, Q3, которые и определяют расположение точек на созвездии. Необходимо отметить, что количество цифровых потоков на выходе многоуровневого кодера определяется позиционностью квадратурной амплитудной модуляции М-КАМ, в рассматриваемом случае используется 64 КАМ.

С выхода многоуровневого кодера сигнал поступает на КАМ модулятор (рисунок 2.3.6) .

В цифроаналоговом преобразователе каждый из трех двоичных потоков преобразуется в многоуровневый сигнал (в рассматриваемом случае в восьмиуровневый 23 = 8).

Рисунок 2.3.6 - Структурная схема КАМ модулятора

В фильтре нижних частот производится ограничение полосы модулирующего сигнала в пределах

ПС = ПN (1 + б),(2.3.2)

где ПN = FT /2 - полоса Найквиста; б = {0,1} - коэффициент (roll off), определяющий степень сужения полосы (зависит от фирмы производителя оборудования).

В смесителях осуществляется амплитудная и фазовая модуляция по каждой из составляющих, после сложения которых получается сигнал 64 КАМ, расположение точек которой на фазово-амплитудной плоскости (созвездии) представлено на рисунке 2.3.7.

Рисунок 2.3.7 - 64 КАМ сигнал на фазово-амплитудной плоскости

Далее в полосовом фильтре отфильтровываются побочные продукты, которые появляются в смесителях и, наконец, с помощью УПЧ устанавливается необходимый уровень на выходе модулятора.

С выхода модулятора сигнал промежуточной частоты промодулированный по амплитуде и фазе поступает на передающее устройство (Пд), где осуществляется преобразование сигнала промежуточной частоты в сигнал СВЧ и осуществляется усиление его по мощности. Существенным отличием передатчика М-КАМ сигнала от передатчиков ЧМ и М-ОФМ сигналов является то, что в нем необходимо иметь высокую линейность амплитудной характеристики, что достигается смещением рабочей точки усилителя мощности на линейный участок (смещение достигает 7дБ) и использованием линеаризатора амплитудной характеристики.

С выхода передатчика СВЧ сигнал поступает на фильтры объединения стволов (ФОС), где с помощью ферритовых вентилей и полосовых фильтров объединяются сигналы нескольких передатчиков. Объединенный сигнал поступает на устройство разделения приема и передачи (УР) и по волноводу поступает в антенну и излучается в сторону соседней станции.

На оконечной станции имеется две антенны: основная и разнесенная, что позволяет уменьшить влияние селективных замираний на качество работы РРЛ. С выходов антенн сигналы через УР поступают на фильтры разделения стволов (ФРС) и через них на основной и разнесенный приемники.

В приемниках осуществляется: усиление сигналов в малошумящих усилителях; преобразование СВЧ сигналов в сигналы промежуточной частоты, после чего сигналы поступают на устройства комбинирования сигналов (УКС). При приеме цифровых сигналов для устранения эффекта проскальзывания нельзя использовать автовыбор сильного сигнала, как это делается в аналоговых РРЛ, поэтому в РРЛ СЦИ используется сложение разнесенных сигналов.

Для осуществления сложения, осуществляется фазирование сигнала ПЧ разнесенного приемника под сигнал ПЧ основного приемника, для чего в цепи гетеродина разнесенного приемника устанавливается фазовращатель, управляемый с выхода фазового детектора УКС. После сложения сфазированных сигналов сигнал ПЧ с выхода УКС поступает на корректор ГВЗ, с помощью которого достигается высокая линейность фазочастотной характеристики. После корректора ГВЗ сигнал поступает в УПЧ, где осуществляется: основное усиление сигнала ослабленного на пролете; автоматическая регулировка усиления и фильтрация сигналов соседних стволов в полосовом фильтре.

С выхода УПЧ сигнал поступает на адаптивный частотный эквалайзер (АЧЭ), где производится компенсация селективных замираний сигнала в стволе. После АЧЭ сигнал поступает на когерентный демодулятор КАМ сигнал, на выходе фазовых детекторов синфазного и квадратурного каналов которого получается восьмиуровневые сигналы. Эти сигналы посредством аналого-цифрового преобразователя (АЦП) преобразуются в восемь цифровых потоков и подаются на адаптивный трансверсальный эквалайзер (АТЭ).

В АТЭ осуществляется компенсация межсимвольных помех, вызванных ограничением полосы сигнала в приемной и передающей частях оборудования и трактом распространения. Здесь же производится компенсация межсимвольных помех от кроссполяризационной составляющей при использовании в системе поляризационного уплотнения, то есть при передаче на одной частоте информации двух стволов на разных поляризациях (ХДем, КАМ и ХАТЭ). После компенсации всех известных видов межсимвольных помех осуществляется регенерация сигнала и преобразование его в шесть потоков (три по синфазной и три по квадратурной составляющим), которые подаются на многоуровневый декодер.

В многоуровневом декодере производится обнаружение и исправление ошибок, после чего тактовые интервалы, соответствующие избыточным битам удаляются преобразователем скорости.

Дескремблер удаляет псевдослучайную последовательность, введенную в сигнал на передающей стороне скремблером.

Далее осуществляется выделение служебных сигналов из дополнительного заголовка радио цикла (RFCOH), после чего тактовые интервалы, соответствующие битам занятым служебными сигналами удаляются преобразователем скорости.

После многоуровневого декодера сигналы восьмью потоками поступают через переключатели модуля резервирования стволов на модуль обработки секционного заголовка мультиплексной секции радиорелейной линии (SOH MS2), где обрабатывается AU-указатель, детектируются коды BIP-8, BIP-24 и выделяются 15 байт с помощью которых передаются служебные сигналы (рисунок 2.3.3) [7].

Потом сигнал поступает на модуль обработки секционного заголовка мультиплексной секции кабельной соединительной линии (SOH MS1), в котором осуществляется генерирование кодов BIP-8, BIP-24, скремблирование, преобразование восьми потоков в один и преобразование кода NRZ в код CMI.

3. Тропосферные радиорелейные линии связи

Принципы построения тропосферных радиорелейных линий (ТРЛ) характеризуются рядом особенностей, связанных со спецификацией передачи радиосигналов [10]. Создание ТРЛ стало возможным после того, как было открыто явление дальнего тропосферного распространения (ДТР) УКВ. ДТР происходит за счет отражения и рассеяния радиоволн турбулентными и слоистыми неоднородностями тропосферы. При этом поле в точке приема создается в результате переизлучения только тех неоднородностей, которые находятся в пределах объема Q, образованного пересечением диаграмм направленности передающей и приемной антенн (рисунок 3.1). Если использовать антенны с высокой направленностью (большим коэффициентом усиления), то объем переизлучения будет уменьшаться.

Рисунок 3.1 - Модель распространения УКВ на пролете ТРЛ

В результате этого рост уровня сигнала на выходе приемной антенныА2 может отставать от роста усиления антенны. Данное явление принято называть потерей усиления антенн. Переизлучающий объем Q тропосферы играет роль пассивного ретранслятора. Q характеризуется значительной пространственной и временной неоднородностью. Рассеяние радиосигнала в объеме Q происходит во все стороны и лишь незначительная часть его поступает в точку приема. Чем больше угол рассеяния Q (рисунок 3.1), тем меньше угол принимаемого сигнала. Все это в целом приводит к следующим особенностям в передаче сигналов по ТРЛ.

1. Поскольку для переизлучения можно использовать даже верхние слои тропосферы (в умеренных широтах высота тропосферы составляет 10-12 км), протяженность пролетов R на ТРЛ может превышать 1000 км (при этом антенны можно располагать непосредственно на Земле). Однако, с учетом других особенностей расстояние между станциями выбирают чаще в пределах 200…400 км.

2. В следствии значительного ослабления сигналов на пролетах приходится существенно увеличивать энергетический потенциал системы. На ТРЛ применяют передатчики мощностью до 10 кВт, антенны размерами до 30?30 м2 и соответственно коэффициентом усиления до 50…55 дБ, малошумящие приемники [8].

3. Из-за пространственно-временной неоднородности переизлучающих объемов тропосферы принимаемые сигналы на ТРЛ подвержены как быстрым, так и медленным замираниям. Первые обусловлены интерференцией множества радиоволн, переизлученных разными участками рассеяния в объеме Q. Длительность быстрых замираний изменяется от сотых долей секунды до нескольких секунд. В течении 5…10 мин случайный процесс изменения уровня принимаемого сигнала приближенно можно считать стационарным. Для этого интервала времени на основе статистических данных можно определить медианное значение множителя ослабления Vм, то есть такое значение V, которое превышается (или не превышается) в течении 50% указанного времени наблюдения. Распределение мгновенных значений множителя ослабления V при быстрых замираниях удовлетворительно аппроксимируется законом Релея. При этом выраженная в процентах времени интегральная функция распределения

.(3.1)

Медленные замирания связанны с изменением метеорологических условий на трассе. С учетом медленных замираний процесс изменения уровня сигнала в целом является нестационарным. Математической моделью медленных замираний принято считать распределение случайных величин Vм относительно медианного значения, определенного за длительный срок, например за месяц или год. Чаще используется медианное значение (Vм.м), которое рассчитывается на основе статистических данных об изменении Vм в течении одного месяца наблюдения. Колебания Vм.м в течении года связывают с сезонными замираниями (месячная медиана уровня сигнала в летние месяцы примерно на 10 дБ больше, чем зимой). Для борьбы с медленными и сезонными замираниями эффективны адаптивные системы с каналом обратной связи [27], по которому можно управлять мощностью и (или) частотой передатчика.

Для быстрых замираний на ТРЛ изменение сигналов в любой момент времени неоднородны в различных областях пространства и частот, поэтому для борьбы с быстрыми замираниями организовывают параллельные каналы передачи, отличающиеся несущими частотами (разнесение по частоте) и (или) траекториями распространения волн (разнесение в пространстве за счет использования различных областей переизлучения и (или) нескольких взаимно удаленных приемных антенн). При относительном частотном разносе Дf/f0 = 2·10-3…5·103 или разносе антенн в перпендикулярном трассе направлении на 70…100 длин волн замирания сигналов в отдельных каналах становятся некоррелированными. В этом случае, например, для системы m-кратного разнесенного приема с автовыбором большего из сигналов (сигнала большей мощности в точке приема), распределение результирующей величины множителя ослабления

, (3.2)

что указывает на повышение устойчивости связи по сравнению с одинарным приемом, Т(V) определяется (3.1).

4. Селективные замирания по частоте препятствуют передаче по ТРЛ широкополосных сигналов (как аналоговых, так и цифровых), так как при широком спектре передаваемых сигналов селективные замирания вызывают изменения фазовых и амплитудных соотношений спектральных компонентов, то есть искажается спектр, а, следовательно и форма сигналов. В групповом телефонном сигнале возникают переходные помехи как при использовании метода ЧРК-ЧМ, так и при импульсной (цифровой) модуляции. Селективные замирания являются следствием многолучевого распространения радиоволн. Если относительное запаздывание лучей Дt превосходит длительность одного цифрового сигнала ф, то возникает явление эхо, искажается форма сигналов.

Связанное с селективными замираниями ограничение полосы частот при передаче аналоговых и цифровых сигналов указывает на недостаточную пропускную способность ТРЛ. Действительно, число ТФ каналов в одном стволе ТРЛ пока не велико (120 ТФК). Для передачи телевидения применяют специальное оборудование, используют частоты в диапазоне 4…6 ГГц, антенны с шириной диаграммы направленности не более 0.3?.

Для борьбы с быстрыми замираниями наибольшее распространение получили различные варианты разнесенного приема и применение широкополосных составных сигналов. Так как замирания на ТРЛ весьма интенсивны, на этих линиях часто прибегают к комбинированным видам разнесения сигналов.

На рисунке 3.2 представлена упрощенная структурная схема АФТ и приемопередающей аппаратуры ОРС для одного дуплексного ствола ТРЛ, на которой предусмотрен счетверенный прием с разнесением сигналов по частоте и пространству (на ПРС и УРС объем оборудования соответственно увеличивается). В состав схемы входят антенны (А), поляризационные селекторы (ПС), разделительные фильтры (РФ), приемники (Пр), передатчики (П), устройства комбинирования сигналов (УК), частотные детекторы (ЧД), аппаратура разделения и объединения каналов (АР) и (АО), частотный модулятор (ЧМ) и разветвитель (Р). Соседняя станция линии передает одинаковые сообщения на разных несущих частотах f1 и f2. Эти сигналы принимаются разнесенными в пространстве антеннами А1 и А2, и через ПС и РФ поступают в приемники. В УК1 и УК2 комбинируются сигналы промежуточной частоты fпр с выходов приемников, настроенных на одинаковые несущие частоты, но соединенных с разными антеннами. Таким образом, УК1 и УК2 реализуют эффект пространственного разнесения. В УК3 осуществляется последетекторное комбинирование сигналов, разнесенных по частоте. В обратном направлении связи одинаковые сообщения, также передаются на разных частотах f3 и f4.

Рисунок 3.2 - Упрощенная структурная схема ОРС при счетверенном приеме

Используемые на ТРЛ антенны параболического типа не обеспечивают достаточную величину коэффициента защитного действия. При значительных мощностях передатчиков и высокой чувствительности приемников это создает реальную опасность помех, вызванных приемом сигналов с противоположного направления связи [9]. Поэтому на ТРЛ, как правило, применяют четырехчастотный план. Таким образом, с учетом разнесения по частоте для одного дуплексного ствола требуется восемь рабочих частот. Причем разность частот передачи и приема в одной антенне (с целью упрощения развязывающих фильтров) устанавливается довольно большой: для систем, работающих на частотах ниже 1000 МГц, эта разность равна примерно 40 МГц, а для систем работающих на частотах выше 1000 МГц, около 80 МГц.

В общем случае комбинирование сигналов в УК1, УК2 и УК3 может производиться по принципу линейного оптимального сложения или путем автовыбора. Любой из этих вариантов может быть реализован в УК3, когда комбинируются сигналы после ЧД. Условием нормального линейного или оптимального сложения в УК1 и УК2 является синфазность сигналов на частоте fпр.

ТРЛ находит весьма ограниченное применение и с развитием связи с использованием искусственных спутников Земли (ИСЗ) их значимость существенно снизилась.

В таблице 3.1 приведены параметры отечественных тропосферных радиорелейных систем передачи.

Таблица 3.1 - Параметры отечественных ТРЛ

Тип аппаратуры

Диапазон частот, ГГЦ

Среднее расстояние между станциями, км

Число каналов ТЧ, шт.

«Горизонт М»

0.8…1

300

60

ТР-120

0.8…1

300

120

ДТР-12

0.8…1

600

12

4. Спутниковые системы связи

4.1 Принципы построения спутниковых систем связи

23 апреля 1965 года был запущен на высокую эллиптическую орбиту первый отечественный спутник связи "Молния-1", который ознаменовал становление в нашей стране спутниковой радиосвязи. Почти одновременно в США был запущен на геостационарную орбиту первый спутник коммерческой связи Intelsat-1.

Таким образом, была реализована идея резкого увеличения дальности радиосвязи благодаря размещению ретранслятора высоко над поверхностью Земли, что позволило обеспечить одновременную радиовидимость расположенных в разных точках обширной территории радиостанций. Преимуществами систем спутниковой связи (СС) являются большая пропускная способность, глобальность действия и высокое качество связи.

Конфигурация систем СС зависит от типа искусственного спутника Земли (ИСЗ), вида связи и параметров земных станций [14]. Для построения систем СС используются в основном три разновидности ИСЗ (рисунок 4.1.1) - на высокой эллиптической орбите (ВЭО), геостационарной орбите (ГСО) и низковысотной орбите (НВО). Каждый тип ИСЗ имеет свои преимущества и недостатки.

Рисунок 4.1.1 - Виды орбит ИСЗ

Примером ИСЗ с ВЭО могут служить отечественные спутники типа "Молния" с периодом обращения 12 часов, наклонением 63° , высотой апогея над северным полушарием 40 тысяч км. Движение ИСЗ в области апогея замедляется, при этом длительность радиовидимости составляет 6..8 ч. Преимуществом данного типа ИСЗ является большой размер зоны обслуживания при охвате большей части северного полушария. Недостатком ВЭО является необходимость слежения антенн за медленно дрейфующим спутником и их переориентирования с заходящего спутника на восходящий.

Уникальной орбитой является ГСО - круговая орбита с периодом обращения ИСЗ 24 часа, лежащая в плоскости экватора, с высотой 35875 км от поверхности Земли. Орбита синхронна с вращением Земли, поэтому спутник оказывается неподвижным относительно земной поверхности. Достоинства ГСО: зона обслуживания составляет около трети земной поверхности, трех спутников достаточно для почти глобальной связи, антенны земных станций практически не требуют систем слежения. Однако в северных широтах спутник виден под малыми углами к горизонту и вовсе не виден в приполярных областях.

Плоскость низковысотных орбит наклонена к плоскости экватора (полярные и квазиполярные орбиты) с высотой порядка 200..2000 км над поверхностью Земли. Запуск легкого ИСЗ на низкую орбиту может быть осуществлен с помощью недорогих пусковых установок.

Принцип осуществления системы связи с использованием искусственных спутников Земли показан на рисунке 4.1.2. Здесь через а и б обозначены земные станции (ЗС), между которыми устанавливается связь, а прямые и , касательные к поверхности Земли в точках а и б, являются линиями горизонта этих пунктов. Поэтому спутник ИСЗ1, движущийся по орбите MN, может одновременно наблюдаться со станций а и б при движении его по участку орбиты и . Следовательно, электромагнитные колебания, излучаемые антенной системой ЗС в точке а в направлении ИСЗ1, могут быть приняты бортовой радиоаппаратурой спутника и после их усиления и преобразования по частоте направлены в сторону Земли, где будут приняты антенной ЗС в точке б. Антенны ЗС всегда должны быть ориентированы на ИСЗ. Следовательно, при движущихся ИСЗ антенны должны поворачиваться, осуществляя непрерывное «слежение» за перемещением спутника в пространстве [15].

Рисунок 4.1.2 - Принцип радиосвязи через ИСЗ

Система радиосвязи при наличии бортовой аппаратуры называется системой с активной ретрансляцией сигнала или системой с активным спутником.

Рассмотрим структурную схему дуплексной связи между ЗС, размещенными в точках а и б при активной ретрансляции сигнала (рисунок 4.1.3). Здесь сообщение С1 подводится к модулятору М станции ЗСа, в результате чего осуществляется модуляция колебаний с несущей частотой f1. Эти колебания от передатчика П подводятся к антенне Аа1 и излучаются в сторону ИСЗ, где принимаются бортовой антенной А ретранслятора. Затем колебания с частотой f1 поступают на разделительный фильтр (РФ), усиливаются приемником Пр1, преобразуются к частоте f2, и поступают к передатчику П1. С выхода передатчика колебания с частотой f2 через РФ подводятся к бортовой антенне А и излучаются в сторону Земли. Эти колебания принимаются антенной Аб2 станцией ЗСб, подводятся к приемнику (Пр) и детектору (Дет), на выходе которого выделяется сообщение С1. Передача от ЗСб к станции ЗСа сообщения С2 происходит по частоте f3 аналогичным образом, причем на бортовом ретрансляторе осуществляется преобразование колебаний с несущей частотой f3 в колебания с частотой f4.

Рисунок 4.1.3 - Структурная схема радиосвязи через ИСЗ

Для передачи сообщений можно предложить и другой метод, при котором на борту спутника радиоаппаратура отсутствует. В этом случае сигналы, посланные из пункта А, отражаются поверхностью ИСЗ1 в сторону Земли (в том числе и к пункту б) без предварительного усиления. Поэтому сигналы, принятые станцией б, будут значительно слабее, чем при наличии бортовой аппаратуры. В качестве пассивных спутников могут использоваться как специальные отражатели различной формы (в виде сферических баллонов, объемных многогранников и других), так и естественный спутник Земли - Луна. Пропускная способность подобных систем связи при современном уровне техники не превышает двух-трех телефонных сообщений.

В случае, когда спутник ИСЗ2 движется по орбите m-n (рисунок 4.1.2) с высотой настолько малой, что не может одновременно наблюдаться антеннами станций ЗСа и ЗСб (высота орбиты ниже точки пересечения линий горизонта и ), и потому сигнал, принимаемый бортовой аппаратурой на ИСЗ2 не может быть сразу передан на станцию б. Работа системы в этом случае может быть построена следующим образом: ИСЗ2, пролетая над ЗСа принимает сообщения которые после усиления подаются на ботовую аппаратуру памяти (например, записываются на магнитофонную ленту). Затем когда ИСЗ2 будет пролетать над ЗСб, включается в ботовой передатчик и происходит передача информации, принятой от ЗСа. Включение передатчика может осуществляться подачей специального командного сигнала, излучаемого ЗСб в момент появления ИСЗ в зоне видимости этой станции, или с помощью ботового программного устройства, учитывающего скорость движения спутника по орбите, ее высоту и расстояние между станциями. Такая система называется системой связи с памятью или системой с задержанной ретрансляцией. Система с активной ретрансляцией сигнала в зависимости от высоты орбиты и расстояния между станциями может быть выполнена как система с мгновенной (не задержанной) ретрансляцией сигнала (система в реальном масштабе времени) и как система с задержанной ретрансляцией [13].

Особый интерес представляет геостационарная орбита - круговая орбита, находящаяся в экваториальной плоскости (i=0) и удаленная от поверхности Земли на расстоянии около 36000 км. В том случае, когда направление движения спутника по такой орбите совпадает с направлением вращения Земли, спутник будет неподвижным относительно наземного наблюдателя (геостационарный спутник). Эта особенность, а также то, что ИСЗ находится от Земли на большом удалении, приводит к следующим важным преимуществам связи через геостационарный спутник: во-первых, становятся возможными передача и прием сигналов с помощью неподвижных антенных систем (то есть более простых и дешевых, чем подвижные) и, во-вторых, осуществление круглосуточной непрерывной связи на территории, равной примерно трети земной поверхности. Однако через геостационарный ИСЗ затруднительно осуществлять связь с приполярными районами, расположенными на широтах выше 75?…78?, так как при этом существенно возрастают шумы на входе земных приемников.

В нашей стране на геостационарную орбиту выведены спутники связи типа «Радуга» и «Горизонт».

При движении ИСЗ по другим орбитам (не геостационарной) спутники будут перемещаться относительно наземного наблюдателя. В этом случае необходимы подвижные антенные устройства и специальная аппаратура, обеспечивающая слежение и наведение антенны на движущийся спутник [12]. Системы связи с подвижными ИСЗ при соответствующем выборе орбит позволяют обеспечить связь с любыми районами земного шара, в том числе и с приполярными. При использовании подвижных ИСЗ связь между станциями, размещенными в точках а и б (рисунок 4.1.2), может осуществляться лишь в течение времени, пока ИСЗ движется по участку орбиты .

Обеспечение длительной непрерывной связи при сравнительно невысоких орбитах возможно лишь при увеличении числа ИСЗ (рисунок 6.3,а).В этом случае на каждой земной станции должны быть установлены две антенны (А1 и А2), которые могут осуществлять передачу и прием сигналов с помощью одного из спутников, например ИСЗ1, находящегося в зоне взаимной связи . Когда ИСЗ1 выедет из этой зоны, связь будет происходить через ИСЗ2 с помощью антенн А2. При выходе ИСЗ2 из зоны передача и прием сигналов должны осуществляться посредством ИСЗ3 и антенн А1, направленных на этот спутник и так далее. Для получения непрерывной связи между станциями а и б расстояние между соседними спутниками должно быть меньше зоны . Число ИСЗ при таком методе зависит от расстояния между пунктами связи и параметров орбиты [20].

При использовании ИСЗ можно применить ретрансляцию сигналов не только через один, но и через несколько спутников. При этом в случае низких орбит для непрерывной передачи сигналов на земных станциях необходимо иметь по две антенны.

На рисунке 4.1.4, б показаны ИСЗ, движущиеся по часовой стрелке по одной низкой орбите, часть которой показана в виде дуги mn. Сигнал от станции а через антенну А1 поступает на ИСЗ4 и ретранслируется через ИСЗ3, ИСЗ2, ИСЗ1 к приемной антенне А1 станции б. Таким образом, в этом случае для ретрансляции сигнала используются антенны А1 и сегмент орбиты, содержащий ИСЗ4 - ИСЗ1. При выходе ИСЗ4 из зоны, лежащей левее линии горизонта , передача и прием сигнала будет вестись через антенны А2 и сегмент, содержащий ИСЗ5 - ИСЗ2. Затем передача и прием сигналов будет осуществляться антеннами А1 и сегментом, состоящим из спутников ИСЗ6 - ИСЗ3 и так далее.

Рисунок 4.1.4 - Система связи с несколькими ИСЗ

Использование ИСЗ, движущихся по орбитам с малой высотой, упрощает аппаратуру земных станций, так как при этом возможно снижение усиления земных антенн, мощности передатчиков и работа с приемниками, имеющими несколько большую эквивалентную шумовую температуру, чем в случае геостационарных спутников. Однако в этом случае увеличивается число спутников, и требуется управление их движением по орбите.

Другой вариант использования для ретрансляции сигналов нескольких ИСЗ приведен на рисунке 4.1.4,в. В этом случае с одного из группы спутников, движущихся по одной орбите, например ИСЗ4, сигнал, излучаемый А1 станции «а», ретранслируется к геостационарному спутнику ИСЗг, а затем принимается антенной А станции «б». При выходе ИСЗ4 из области, лежащей левее линии горизонта , непрерывная связь станции «а» с ИСЗг будет осуществляться через антенну А2 и ИСЗ5, затем через А1 и ИСЗ6 и так далее. На станции «б» в этом случае достаточно будет иметь лишь одну антенну, направленную на ИСЗг.

Поскольку ИСЗ может наблюдаться с большой территории на поверхности Земли, можно осуществить связь между несколькими ЗС через один общий ИСЗ. В этом случае спутник оказывается «доступным» многим земным станциям, поэтому такая система называется системой с многократным доступом (МД). В системах МД могут быть организованны как циркулярная связь между станциями (передача сообщений от одной станции нескольким станциям), так и одновременная дуплексная связь между всеми ЗС, использующими один общий бортовой ретранслятор, размещенный на ИСЗ. Система связи через ИСЗ с МД состоит из нескольких земных станций, находящихся в зоне взаимной связи через ИСЗ и использующих для связи друг с другом или для связи одной станции с несколькими станциями в любых сочетаниях общий ретранслятор на ИСЗ (рисунок 4.1.5). Отметим, что в системе с МД может быть также организованна одновременная связь не со всеми станциями, а лишь с группой станций. В этом случае целесообразно использование бортовых антенн, имеющих узкие диаграммы направленности (большое усиление). Такие антенны управляются с Земли и могут направляться на нужную группу станций. Другим вариантом этой системы является коммутация бортовой аппаратуры на ту или иную бортовую антенну, имеющую фиксированное направление на определенные точки земной поверхности. Каналы связи, организованные через ИСЗ между земными станциями системы МД, могут быть разделены на две группы:

постоянные (закрепленные) каналы, предназначенные для связи только между определенными земными станциями;

непостоянные (незакрепленные) каналы, временно организуемые между различными станциями в зависимости от нужд потребителей.

Рисунок 4.1.5 - Пояснение принципа многостанционного доступа

Очевидно, что каналы первой группы позволяют организовать немедленную связь в любое время; каналы второй группы для организации связи требуют выполнения определенной процедуры, аналогичной той, которая характерна для обычной городской телефонной связи. Прежде чем осуществить передачу сообщений по каналам второй группы, необходимо: получить сведения о наличии свободного канала в системе (то есть получить подтверждение доступа в систему связи - в АТС это соответствует продолжительному тону); набрать адрес (номер) нужного корреспондента; убедиться, свободен ли канал к корреспонденту (то есть получить доступ к корреспонденту).

Очевидно, что в системах с закрепленными каналами из-за того, что часть каналов в некоторые интервалы времени будет использоваться, общее число каналов должно быть больше, чем в системах с незакрепленными каналами. Таким образом системы, с незакрепленными каналами являются более эффективными, однако они имеют и недостатки: во-первых, требуется дополнительно время для установления связи (надо найти свободный канал и с помощью вызывных и адресных сигналов осуществить необходимую коммутацию) и, во-вторых, возможен отказ в установлении немедленного соединения системы.

При любом виде каналов связи (закрепленных или незакрепленных) могут быть созданы многоадресные, одноадресные и смешанные сообщения и стволы [15].

При многоадресном построении групповых сообщений каждая земная станция излучает один ствол, в котором передается групповое сообщение, предназначенное для приема всеми земными станциями. Стволы, излученные всеми ЗС, пройдя через бортовой ретранслятор, принимаются на каждой ЗС. После демодуляции из каждого ствола выделяются те части групповых сообщений, которые предназначаются только для данной ЗС. Это выделение осуществляется либо на основании адреса данной станции, который передается перед сообщением, (при незакрепленных каналах), либо по предварительной договоренности о месте размещения каналов, предназначенных для данной ЗС в передаваемых групповых сообщениях (при закрепленных каналах).

Очевидно, что при многоадресном построении групповых сообщений в ВЧ стволах каждая ЗС должна принимать n-1 стволов, где n - число ЗС. Таким образом, в этом случае получается сравнительно простое передающее устройство, но существенно усложняется приемное оборудование ЗС.

При одноадресном построении для каждой ЗС формируется свое групповое сообщение и свой ВЧ ствол, в котором каждая передающая станция занимает соответствующее число каналов. Таким образом, каждая станция занимает определенное число каналов в n-1 стволах, проходящих через ретранслятор, каждый из которых предназначен только для одной определенной земной станции. В этом случае на каждой станции необходимо принять и демодулировать только один ствол, предназначенный для этой станции. Очевидно, что передающая аппаратура получается сложнее приемной.

При смешанном построении стволов на каждой земной станции осуществляется многоадресное формирование стволов, а на ретрансляторе производится переход от многоадресного к одноадресному построению стволов, то есть осуществляется перегруппировка каналов. Таким образом, при смешанном построении стволов получается упрощение как приемного, так и передающего оборудования земных станций, но усложняется аппаратура ретранслятора.

Существует три основных метода разделения общего канала связи: по частоте (ЧР), во времени (ВР), и посредством сигналов различающихся по форме.

Рисунок 4.1.6 - Многостанционный доступ с разделением по частоте (а) и по времени (б)

Многостанционный доступ с частотным разделением (МДЧР) [16]. В этом случае для каждого ствола (то есть для каждой станции) выделяется определенная несущая частота (f1, f2,…, fn). Разнос между парой соседних несущих выбирается таким, чтобы была исключена возможность взаимного перекрытия спектров при модуляции (рисунок 4.1.6,а). Отметим, что наиболее просто МДЧР реализуется в том случае, когда на земных станциях осуществляется частотная модуляция колебаний многоканальным сообщением с частотным разделением телефонных каналов (сокращенно - система ЧР ЧМ МДЧР). Таким образом, в этой системе на вход ретранслятора поступает сложный сигнал, представляющий собой систему n модулированных по частоте гармонических сигналов, являющихся несущими частотами всех ЗС. Прохождение такого сложного сигнала через общий бортовой ретранслятор, представляющий собой нелинейное устройство, приводит к следующим нежелательным явлениям:

1) возникновению переходных помех из-за АМ-ФМ преобразования;

2) подавлению сигналов тех земных станций (то есть тех стволов), уровень которых на входе ретранслятора по каким либо причинам (например, вследствие замираний), окажется меньше уровней сигналов других станций. Это подавление может доходить до 6 дБ. Для устранения этого явления необходимы соответствующий контроль и регулировка уровней сигналов, излучаемых с каждой земной станции. Такая регулировка может производится автоматически сопоставлением принятых с ретранслятора уровней сигналов с различных стволов (станций;

3) возникновению переходных помех между стволами и снижению выходной мощности ретранслятора из-за нелинейности амплитудной характеристики тех каскадов ретранслятора, которые являются общими для всех стволов, принятых с земных станций. Снижение выходной мощности обуславливается появлением продуктов нелинейности, на которые расходуется часть мощности ретранслятора.

Перечисленные явления приводят к тому, что при заданном значении переходных шумов в телефонных каналах с увеличением числа земных станций, то есть с увеличением числа стволов (несущих), одновременно усиливаемых ретранслятором, приходится снижать число телефонных сообщений, передаваемых на каждой несущей. Отсюда, чем большее число станций входит в систему МДЧР, тем меньшее число телефонных сообщений может быть передано. Расчеты и испытания реальных систем [22] показывают, что ретранслятор, способный пропустить на одной несущей при ЧР ЧМ 700 телефонных каналов, в случае работы 8 станций в системе ЧР ЧМ МДЧР может пропускать 30 каналов на каждой несущей, то есть не более 8·30 = 240 каналов (снижение пропускной способности почти в 3 раза). При работе 16 станций в системе ЧР ЧМ МДЧР на каждой несущей можно передавать не более десяти телефонных сообщений. Таким образом, по сравнению с первоначальной пропускная способность составляет 23%. Однако, при таком режиме работы при использовании статистических особенностей телефонных сообщений, передаваемых на различных несущих, появляются новые возможности увеличения пропускной способности ретранслятора. Если во время пауз между словами, фразами и при молчании абонентов в такой системе подавлять излучение земных передатчиков на несущей частоте, то это существенно снизит нагрузку ретранслятора и позволит в 3…4 раза увеличить пропускную способность. Напомним, что подобное подавление несущих используется при построении аппаратуры частотного разделения: на выходе индивидуальных преобразователей уровень колебаний с поднесущими частотами стремятся сделать возможно меньшим [1].

Метод МДЧР с подавлением несущих использован в системе «Спэйд», реализованной в международной системе «Интелсат». В этой системе каждое телефонное сообщение преобразуется в восьмиразрядный сигнал ИКМ (64 кбит/с) и передается на отдельной ВЧ несущей методом четырехфазной ФМ. Полоса частот, занимаемая одним телефонным каналом, составляет 38 кГц, защитный интервал Дfзащ = 7 кГц (рисунок 4.1.6,а). Описываемая система обеспечивает передачу в одном стволе шириной 36 МГц 800 незакрепленных каналов [6].

В отечественной аппаратуре «Градиент Н» также используется МДЧР, при котором каждое телефонное сообщение передается на отдельной несущей путем ЧМ с пиковой девиацией частоты, соответствующей измерительному уровню, равной 30 кГц. Число несущих частот в стволе составляет 200, разнос между соседними несущими равен 160 кГц. В отечественной аппаратуре «Группа» число несущих составляет 24; разнос между ними 1.35 МГц. Частотная модуляция в этом варианте аппаратуры осуществляется стандартной 12-канальной группой (спектр 12..60 кГц) с эффективной девиацией частоты 125 кГц [23]. Таким образом, число передаваемых телефонных сообщений составляет 24·12 = 288.

Многостанционный доступ с временным разделением (МДВР). В данном случае работа земных станций через ретранслятор осуществляется поочередно. Поэтому все станции могут работать на одной несущей частоте и должны иметь общую систему синхронизации, обеспечивающую строго поочередные включения и выключения передатчиков.

На рисунке 4.1.6,б приведен цикл работы системы МДВР, состоящей из трех станций - 1,2 и 3. В течение интервалов времени ф, которые называются кадрами станций, каждая станция излучает колебания несущей частоты, модулированные сообщением, поступающем от аппаратуры разделения; через ф3 обозначен защитный интервал времени, предотвращающий одновременное включение двух наземных станций, а через Тц - цикл передачи. Описанный вариант относится к случаю синхронной работы наземных станций. Система синхронизации, которая может осуществляться по пилот-тону, должна учитывать различие расстояний между ИСЗ и отдельными земными станциями. Обычно системы с МДВР работают с геостационарными ИСЗ, поскольку осуществить синхронизацию при использовании подвижных ИСЗ сложно, так как в этом случае расстояния между ИСЗ и земными станциями будут переменными. В случае МДВР наиболее целесообразным вариантом является использование ИКМ с фазовой модуляцией несущей (сокращенно - ИКМ ФМ МДЧР). На рисунке 4.1.7 в качестве примера приведен подробный цикл работы системы МДВР. Из рисунка следует, что в течение каждого кадра со станций передаются не только сообщения, идущие по телефонным и служебным каналам связи, но и несколько специальных сигналов. К ним относятся: сигналы синхронизации, вызова и коммутации (СВиК), сигналы адресов (СА) и пилот-сигнал (ПС). Отметим, что СВиК состоит из сигнала синхронизации опорных генераторов при когерентном приеме (СГКП), сигнала цикловой синхронизации (ЦС), сигнала, необходимого в системах с ИКМ для тактовой синхронизации (ТС), и сигналов, обеспечивающих вызов абонентов и коммутацию цепей (ВиК).

Рисунок 4.1.7 - Структура цикла при МДВР

Информационная часть кадра составляет около 85…90 % от полной длины кадра.

Системы с МДВР по сравнению с МДЧР обладают рядом преимуществ:

1) импульсная мощность передающего устройства данной станции не зависит от условий работы других станций и не требует регулировок, так как взаимное подавление сигналов отсутствует;

2) все земные передающие станции могут работать на одной несущей частоте, а приемные - на другой, что упрощает построение станций;

3) передатчик ретранслятора работает в режиме максимальной мощности; при этом отсутствуют взаимные помехи между ретранслируемыми сигналами.

К недостаткам систем с МДВР можно отнести сложность системы синхронизации станций и возникновение помех при нарушении синхронизации работы хотя бы одной станции.

Сравнение различных видов МД по пропускной способности при заданном значении шумов на выходе каналов и ограниченной мощности ретранслятора показывает, что МДВР имеет явные преимущества перед МДЧР.

Принцип МДВР реализован в отечественной аппаратуре МДВУ-40, позволяющей осуществить скорость передачи цифрового потока в стволе ИСЗ, равную 40 Мбит/с. В этой системе используется ОФМ-4.

4.2 Особенности передачи сигналов

Запаздывание сигнала. Большая протяженность линии связи между земными станциями и ретранслятором, находящимся на борту ИСЗ, приводит к запаздыванию сигналов. Это определяется тем, что для прохождения расстояния , м, сигналу требуется время

,(4.2.1)

где - протяженность линии связи от ЗС, находящейся в точке «а», через ИЗС до ЗС, находящейся в точке «б» (рисунок 4.1.2); с = 3·108 м/с - скорость света; Н - расстояние от спутника до поверхности Земли. Отсюда следует, что при Н = 36000 км (то есть в случае геостационарного спутника) величина запаздывания составит приблизительно 250 мс. Запаздывание сигнала при передаче дуплексных телефонных разговоров приводит к появлению вынужденных пауз в разговоре, потери «контакта» между абонентами, то есть ограничивает естественность беседы [1].

Эхосигналы. Запаздывание сигналов приводит к появлению заметных для абонентов эхосигналов, возникающих при переходе с четырехпроводных цепей связи на двухпроводные из-за неидеальности дифференциальных систем. Эхо сигналы проявляются в виде прослушивания абонентом своего разговора, задержанного на время, равное удвоенному времени распространения сигнала между абонентами. С учетом (4.2.1)

.(4.2.2)

Особенно заметны эхосигналы при больших значениях tэха. Для систем связи, использующих спутники, движущиеся по орбитам с км (то есть для геостационарных спутников) tэха ? 500 мс. В этих случаях следует обеспечить затухание эхосигналов до величины, равной примерно 60 дБ относительно уровня полезного сигнала. Необходимое затухание эхосигналов осуществляется с помощью эхозаградителей.


Подобные документы

  • Общие характеристики систем радиорелейной связи. Особенности построения радиорелейных линий связи прямой видимости. Классификация радиорелейных линий. Виды модуляции, применяемые в радиорелейных системах передачи. Тропосферные радиорелейные линии.

    дипломная работа [1,1 M], добавлен 23.05.2016

  • Принципы построения беспроводных телекоммуникационных систем связи. Схема построения системы сотовой связи. Преимущества кодового разделения. Исследование распространенных стандартов беспроводной связи. Корреляционные и спектральные свойства сигналов.

    курсовая работа [1,6 M], добавлен 22.05.2010

  • Передача цифровых данных по спутниковому каналу связи. Принципы построения спутниковых систем связи. Применение спутниковой ретрансляции для телевизионного вещания. Обзор системы множественного доступа. Схема цифрового тракта преобразования ТВ сигнала.

    реферат [2,7 M], добавлен 23.10.2013

  • Принципы построения и структура взаимоувязанной сети связи. Понятие информации, сообщения, сигналов электросвязи. Типовые каналы передачи и их характеристики, принципы многоканальной передачи. Цифровые сигналы: дискретизация, квантование, кодирование.

    дипломная работа [2,4 M], добавлен 17.05.2012

  • Принципы построения беспроводных телекоммуникационных систем связи. Общая характеристика корреляционных и спектральных свойств сигналов. Анализ вероятностей ошибок различения М известных и М флуктуирующих сигналов на фоне помех и с кодовым разделением.

    курсовая работа [1,6 M], добавлен 19.05.2010

  • Принципы построения радиорелейной связи. Сравнительный анализ методов выбора высот антенн на интервалах цифровых радиорелейных линий. Анализ влияния замираний на показатели качества передачи. Расчет субрефракционных составляющих показателей качества.

    дипломная работа [989,4 K], добавлен 06.12.2021

  • Основные особенности трассы волоконно-оптических систем. Разработка аппаратуры синхронной цифровой иерархии. Расчёт необходимого числа каналов и выбор системы передачи. Выбор типа оптического кабеля и методы его прокладки. Надёжность линий связи.

    дипломная работа [1,2 M], добавлен 06.01.2015

  • Анализ принципов построения сети цифровой связи и структуры комплекса "Обь-128Ц". Принципы построения групповых каналов, схемы их организации и программного обеспечения. Разработка алгоритмов программирования диспетчерских и промежуточных пунктов.

    дипломная работа [7,0 M], добавлен 05.03.2011

  • Краткий обзор радиорелейных систем передачи прямой видимости. Аппаратура цифровых систем передачи для транспортных и корпоративных сетей. Разработка цифровой радиорелейной линии связи на участке Володино - Вознесенка - Киреевска. Расчет параметров трассы.

    дипломная работа [1,2 M], добавлен 23.09.2013

  • Особенности построения синхронной цифровой иерархии SDH. Волоконно-оптические решения и их элементы. Инкапсуляция трафика Ethernet в контейнеры SDH и задачи реконструкции АТС: параметры межстанционной нагрузки, оборудование и элементы инфраструктуры.

    дипломная работа [6,8 M], добавлен 16.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.