Исследование принципов построения и путей совершенствования радионавигационных систем

Обоснование необходимости использования и развития радионавигационных систем. Анализ принципа построения и передачи сигналов радионавигационных систем. Описание движения спутников. Принцип дифференциального режима и методы дифференциальной коррекции.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 18.07.2014
Размер файла 654,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

"Кубанский государственный университет" (ФГБОУ ВПО "КубГУ")

Физико-технический факультет

Кафедра оптоэлектроники

Курсовая работа

Исследование принципов построения и путей совершенствования радионавигационных систем

Работу выполнил

Гноевой Александр Викторович

Курс 4 Специальность 210302 -

Радиотехника

Научный руководитель

Канд. техн. наук, доцент.

А.Н. Казаков

Нормоконтролер инженер

И.А. Прохорова

Краснодар 2013

Реферат

Курсовая работа: 36 с. 8 рис., 10 источников.

Радионавигационные системы, системы спутниковой навигации, радионавигационные системы на основе ИСЗ, описание движения спутников, дифференциальный режим работы, принцип дифференциального режима, методы дифференциальной коррекции.

Целью данной курсовой работы является совершенствование учебно-методического комплекса дисциплины радиотехнические системы, которое включает в себя: обосновать необходимость использования и совершенствования радионавигационных систем, провести анализ основных характеристик, разновидностей и параметров радионавигационных систем, обосновать основные пути развития радионавигационных систем.

Основные результаты курсовой работы заключаются в следующем: в ходе проделанной курсовой работы было проведено обоснование необходимости использования и совершенствования радионавигационных систем, сделан анализ основных характеристик и параметров совершенствования радионавигационных систем, проведен анализ принципа работы основных радионавигационных систем и проведен анализ основных перспективы развития СРН

Содержание

Введение

1. Обоснование необходимости использования и развития радионавигационных систем

1.1 Основные системы спутниковой навигации

1.2 Анализ принципа построения основных разновидностей радионавигационных систем

1.3 GPS

1.4 Сигналы GPS

1.5 Радионавигация. Угломерные (амплитудные) РНС

1.6 Радионавигационные системы на основе ИСЗ

2. Анализ характеристик и параметров основных разновидностей радионавигационных систем

2.1 Описание движения спутников

2.2 Навигационные определения

2.3 Дифференциальный режим работы спутниковой навигационной системы

2.4 Принцип дифференциального режима

2.5 Методы дифференциальной коррекции

3. Перспективы развития СРНС

Заключение

Список использованных источников

Введение

Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли, американские учёные во главе с Ричардом Кершнером, наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если Вы точно знаете свои координаты на Земле, то становится возможным измерить положение спутника, и наоборот, точно зная положение спутника, можно определить собственные координаты.

Реализована эта идея была через 20 лет. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом Глобальная система позиционирования или сокращённо GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле. Также с помощью системы вмонтированной в спутники стало реально определять мощные ядерные заряды, находящиеся на поверхности планеты.

Первоначально GPS - глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того как в 1983 г. был сбит вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту, было разрешено частичное использование системы навигации для гражданских целей. Но точность была уменьшена специальным алгоритмом. Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности и с успехом компенсируют эту составляющую ошибки, и в 2000 г. это загрубление точности было отменено.

1. Обоснование необходимости использования и развития радионавигационных систем

Несмотря на то, что изначально радионавигация была направлена на военные цели, сегодня она широко используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны, смартфоны и КПК. Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

· Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков

· Картография: GPS используется в гражданской и военной картографии

· Навигация: с применением GPS осуществляется как морская, так и дорожная навигация

· Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением

· Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911.

· Тектоника: с помощью GPS ведутся наблюдения движений и колебаний плит

· Активный: есть разные игры, где применяется GPS.

· Геотегинг: информация, например фотографии "привязываются" к координатам благодаря встроенным или внешним GPS-приёмника.

1.1 Основные системы спутниковой навигации

GPS - Глобальная Система Позиционирования (Global Positioning System - англ.)

GNSS - Глобальная Навигационная Спутниковая Система (Global Navigation Satellites System - англ.)

NAVSTAR - измерение времени и расстояния от навигационных спутников (NAVigation Satellites providing Time And Range - англ.)

ГЛОНАСС - Глобальная Навигационная Спутниковая Система

Система GPS состоит из трех частей: космической, наземной и пользовательского оборудования.

Основное назначение СНРС - глобальная оперативная навигация приземных подвижных объектов: наземных (сухопутных, морских, воздушных) и низкоорбитальных космических.

Термин "глобальная оперативная навигация" означает, что подвижной объект, оснащенный навигационным приемником (НАП), может в любом месте приземного пространства в любой момент времени определить (уточнить) параметры своего движения - три координаты и три составляющие вектора скорости. Принципы построения СРНС ГЛОНАСС, NAVSTAR и GALILEO в общих чертах идентичны, но отличаются техническим выполнением подсистем.

1.2 Анализ принципа построения основных разновидностей радионавигационных систем

Структура, способы функционирования и требуемые характеристики подсистем СРНС во многом зависят от заданного качества навигационного обеспечения и выбранной концепции навигационных измерений.

Для достижения таких важнейших качеств, как непрерывность и высокая точность навигационных определений, в глобальной рабочей зоне в составе современной СРНС типа ГЛОНАСС и GPS функционируют три основные подсистемы (рисунок 1):

Рисунок 1- Глобальная спутниковая радионавигационная система

космических аппаратов (ПКА), состоящая из навигационных ИСЗ (в дальнейшем ее называем сетью навигационных спутников (НС) или космическим сегментом);

- контроля и управления (ПКУ) (наземный командно-измерительный комплекс (КИК) или сегмент управления);

- аппаратура потребителей (АП) СРНС (приёмоиндикаторы (ПИ) или сегмент потребителей). Разнообразие видов приёмоиндикаторов СРНС обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

Основной операцией, выполняемой в СРНС с помощью этих сегментов, является определение пространственных координат местоположения потребителей и времени, т. е. пространственно-временных координат (ПВК). Эту операцию осуществляют в соответствии с концепцией независимой навигации, предусматривающей вычисление искомых навигационных параметров непосредственно в аппаратуре потребителя. В рамках этой концепции в СРНС выбран позиционный способ определения местоположения потребителей на основе беззапросных (пассивных) дальномерных измерений по сигналам нескольких навигационных искусственных спутников Земли с известными координатами.

Выбор концепции независимой навигации и использование беззапросных измерений обеспечили возможность достижения неограниченной пропускной способности СРНС. По сравнению с зависимой навигацией, не предусматривающей процедуры вычислений ПВК в ПИ СРНС, произошло усложнение аппаратуры потребителей. Однако современные достижения в области технологий сделали возможной реализацию таких подходов при решении проблемы навигационных определений в СРНС.

Высокая точность определения местоположения потребителей обусловлена многими факторами, включая взаимное расположение спутников и параметры их навигационных сигналов. Структура космического сегмента обеспечивает для потребителя постоянную видимость требуемого числа спутников.

В настоящее время считается целесообразным введение в состав СРНС региональных дополнительных систем, обеспечивающих реализацию наиболее строгих требований потребителей. Эти структуры позволяют существенно повысить точность обсерваций, обнаруживать и идентифицировать нарушения в режимах работы СРНС, недопустимое ухудшение качества ее функционирования и своевременно предупреждать об этом потребителей, т. е. они могут осуществлять контроль целостности системы и поддерживать режим дифференциальных измерений.

1.3 GPS

Космическая часть - это 24 спутника, вращающихся по 6 орбитам. Наклон орбит к земному экватору - 55 град., угол между плоскостями орбит - 60 град. Высота орбит 20180 км., период обращения - 12 ч. Мощность спутникового передатчика 50 Вт. С вводом в строй усовершенствованных спутников, частые потери сигналов остались в прошлом. Спутники GPS способны, передвигаясь заполнять бреши в системе (если один из них вышел из строя). Важным элементом спутника являются атомные часы, рубидиевые и цезиевые, по четыре на каждом. Спутники идентифицируются номером PRN (Pseudo Random Number), который отображается на приемнике GPS.

Наземная часть GPS состоит из 4 станций слежения, расположенных на тропических островах. Они отслеживают видимые спутники и передают данные на Главную станцию (MCS) управления и контроля на авиабазе в Колорадо-Спрингс для обработки на сложных компьютерных программных моделях. Эти наборы данных называются эфемеридами. Через наземные станции данные передаются обратно на спутники, а затем спутник передает их приемникам GPS.

1.4 Сигналы GPS

Все частоты в системе GPS кратны основной частоте часов спутника, 10.23 МГц. Спутник передает сигналы в диапазонах L1=1575.42 МГц и L2=1227.6 МГц. Сигналы содержат два вида информации: "навигационные сообщения" и "псевдослучайный код" (Рис. 2). Код представляет собой последовательность единиц и нулей, на первый взгляд случайную, но изменяющуюся по сложному закону. Псевдослучайный код содержит номер спутника (PRN).

Рисунок 2 - Псевдослучайный код (двоичный, цифровой, состоящий из нулей и единиц)

Существуют два вида кода. Гражданские GPS используют C/A (Coarse Acquisition) - код, передаваемый только на частоте L1. Один цикл передачи кода состоит из 1023 бит и повторяется 1000 раз (сек. Военные GPS высокой точности используют P-код (Precise), который передается на обеих частотах, L1 и L2.

Навигационные сообщения передаются со скоростью 50 бит/сек дополнительной модуляцией несущей частоты под псевдослучайным кодом. Каждое сообщение состоит из 25 "порций" (страниц) по 1500 бит. Полный цикл передачи всего сообщения занимает 12.5 мин. Навигационное сообщение включает в себя "эфемеридные данные" и "данные альманаха"; данные о времени в системе GPS и коэффициенты для его пересчета во всемирное время, ключевые слова к P-коду и специальные сообщения. Эфемериды - это данные об исправности спутника и параметры его орбиты - коэффициенты, с помощью которых приемник вычисляет текущее и будущее положение спутника, используя математическую Кеплеровскую модель. Кроме того, эти сообщения содержат коэффициенты поправки к спутниковым часам и к задержке распространения сигнала в ионосфере для пользователей C/A-кода. Альманах - это данные об эфемеридах и состоянии остальных спутников в системе (хранятся в памяти приемника). Благодаря этим данным приемник всегда "знает", где находятся все спутники системы, даже когда он их не видит, и какие спутники лучше использовать для определения координат.

Как приемник GPS определяет свое положение?

Система GPS использует способ определения по дальности до ориентиров-спутников, определяемой с помощью псевдослучайного кода. Для этого приемник генерирует свой внутренний код в то же самое время, чтобы он точно дублировал код спутника. Приемник сравнивает разницу во времени между приемом соответствующей части спутникового кода с такой же частью своего кода. Зная сдвиг по времени и скорость распространения радиоволн, приемник получает расстояние до спутника, называемое псевдодальностью, и по двум расстояниям может определить свое точное положение (Рис 3.).

Рисунок 3 - Истинная псевдодальность

Почему "псевдо"? Проблема в том, чтобы убедиться, что псевдослучайные коды приемника и спутника сгенерированы одновременно. Со стороны спутника тут сложности нет. Часы спутника очень точные и корректируются по сигналам с Земли. Часы приемника менее точны, кроме того, задержки распространения сигнала в ионосфере, тропосфере и т.д. создают суммарную ошибку (Рис.3). Для ее исправления GPS использует измерение дальности от третьего спутника.

При определении двухмерных координат по двум окружностям равных расстояний приемник "не знает", находится ли он на самом деле на них или нет. Например, если часы приемника отстают, истинная позиция будет ближе, но в каждом случае пропорционально ближе к каждому из спутников. Вводя линию положения от 3-го спутника, мы можем получить однозначный результат. Приемник GPS имеет программу, которая берет информацию для трех линий положения и решает её алгебраически. Эти вычисления дают решение трех уравнений для трех неизвестных: долготы, широты и ошибки часов. Вот почему для определения двухмерных координат необходимы как минимум 3 спутника, 4 - для трехмерных

1.5 Радионавигация. Угломерные (амплитудные) РНС

1) Радиопеленгаторы

Первыми из наиболее эффективных навигационных систем появились радиопеленгаторы, использующие принцип сравнения амплитуд сигнала приходящего под углом к двум, взаимно перпендикулярно направленным антеннам (рис. 4).

Рисунок 4 - Структурная схема радиопеленгатора

Схематическое изображение радиопеленгатора на рис. 4 содержит следующие устройства и обозначения:

УСУ - приемные устройства усиления и выделения сигнала, ЭЛТ - электронно-лучевая трубка (индикатор), УК - устройство калибровки каналов, Ш - угловая шкала в градусах, ПС - положение следа электронного луча, НПРС - направление прихода радиосигнала.

Радиопеленгатор работает следующим образом. Радиосигнал поступает от каждой из антенн в каналы УСУ, где происходит селекция и усиление. Усиленные сигналы подаются на перпендикулярные управляющие электроды ЭЛТ и разворачивают луч. Амплитуда сигнала каждого из электродов пропорциональна приходящему сигналу и, потому, направление луча соответствует направлению прихода сигнала.

2) Угломерные РНС

Угломерные РНС, основанные на автоматическом пеленговании с использованием модуляции амплитуды. Они основаны на принципе действия радиопеленгатора. Используются в радиокомпасах самолетов и кораблей. Пеленгуют направление на радиомаяки.

Существуют также следящие системы с двумя антеннами малой направленности, которые хорошо захватывают радиолуч и выводят антенны на направление луча (маяка), пока не будет выполнено равенству сигналов от двух антенн.

3) Системы ориентации в пространстве

Используются узконаправленные РЛС обзорного типа. Используются также определение направления на радиомаяки и спутниковые системы.

4) Временные (импульсные) дальномерные устройства.

Применение импульсных радиодальномеров позволяет определить дальность до объекта с большой точностью. Работа передатчика и приемника на одну антенну. Прием-передача запроса. Позволяет использовать "ответчик" "свой - чужой".

Пауза используется для сообщений.

Позволяет использовать импульсы ответчика для определения его угловых координат.

1.6 Радионавигационные системы на основе ИСЗ

Определение координат с помощью ИСЗ основано на измерении доплеровского смещения при пролете над местом наблюдения (рис.5). При пролете над местом наблюдения доплеровская частота меняет знак с положительной на отрицательную.

Траектории спутников известны на много месяцев вперёд и выпускаются в виде таблиц. Каждый из спутников имеет свою рабочую частоту и характерный тип сигнала. При пролёте ИСЗ доплеровское смещение будет:

(1)

Рисунок 5 - Схема измерения доплеровского смещения при полете спутника

Координаты на геоиде фиксируются по прохождению fD=0 или по смене знака доплеровского смещения.

Другим методом определения координат на геоиде (условной средней поверхности Земли, отличающейся от сферической), является метод, основанный на определения направлений на спутники, расположенные на геостационарных орбитах (рис. 6). Каждый из спутников ведет телевизионное вещание и положение спутников известно с большой точностью.

Рисунок 6 - Схема определения координат корабля и самолета

2. Анализ характеристик и параметров основных разновидностей радионавигационных систем

Суть идеи заключается в следующем: если источник радиоизлучения (т.е. радиомаяк) поместить на ИСЗ и знать координаты его в любой момент времени, то навигационную задачу можно решить так же, как и в случае маяков наземного базирования, если обеспечить измерение геометрических величин относительно маяков с привязкой к той же шкале времени [3].

Для реализации идеи необходимо было решить следующие проблемы:

обеспечить определение текущих координат и получение эфемерид ИСЗ, которые позволяют рассчитывать координаты в любой момент времени вперед;

обеспечить доведение координат ИСЗ (эфемерид) до каждого потенциального потребителя навигационной информации;

обеспечить доведение до всех потребителей шкалы единого времени и синхронизацию работы всех включенных в систему ИСЗ.

Прежде чем рассмотреть варианты решения перечисленных проблем, остановимся на некоторых положениях космической баллистики для оценки характеристик траекторий движения ИСЗ.

Для длительного существования ИСЗ как небесного тела ему необходимо придать скорость, превышающую так называемую первую космическую скорость. Эта скорость равна, примерно, 7.8 км/с (при малых высотах спутника) и обеспечивает движение по круговой орбите; при увеличении скорости орбита становится эллиптической, причем эксцентриситет эллипса растет с ростом скорости. Величина первой космической скорости уменьшается при возрастании высоты ИСЗ над земной поверхностью, что приводит к увеличению времени обращения спутника вокруг Земли. Для круговой орбиты высотой Н период обращения Т характеризуется следующими выборочными значениями:

Н = 250 км, Т = 89 мин; H = 1000 км, Т = 96 мин;

Н = 20240 км, Т = 12 час; Н = 35870 км, Т = 24 час.

2.1 Описание движения спутников

Координаты и составляющие вектора скорости спутников меняются очень быстро. Поэтому сообщения о параметрах движения спутников содержат сведения не об их координатах, а информацию о параметрах некоторой модели, аппроксимирующей траекторию движения ИСЗ на достаточно большом интервале времени (примерно 1 час). Параметры аппроксимирующей модели меняются достаточно медленно, и их можно считать постоянными на интервале аппроксимации. Состав параметров аппроксимирующей модели определяет и состав навигационных сообщений спутников. Поэтому модель движения, принимаемая в системе для расчета траекторий движения ИСЗ, является одним из основных понятий, необходимых для изложения принципов ее функционирования.

Самой простой моделью движения ИСЗ является кеплеровская модель. В этой модели учитывается единственная сила притяжения, образуемая центральным полем тяготения Земли. Движение ИСЗ, задаваемое кеплеровской моделью, происходит в фиксированной плоскости. Текущие полярные координаты ИСЗ в этой плоскости R(t) и связаны между собой и с параметрами кеплеровской траектории р и е следующим образом:

(1.1)

Где R(t) - расстояние;

- фокальный параметр;

е - эксцентриситет;

- угол, называемый истинная аномалия.

Текущие координаты R(t) и образуют вектор называемый радиус-вектор ИСЗ.

Для определения положения ИСЗ в каждый момент времени необходимо найти связь между истинной аномалией и временем t. В кеплеровской модели такая связь задается уравнением Кеплера, которое для эллиптической орбиты имеет вид:

где - момент времени прохождения ИСЗ через перигей орбиты;

- большая полуось эллипса;

- гравитационный параметр Земли;

- эксцентрическая аномалия (промежуточная величина, тоже угол).

Рисунок 7 - Орбита спутника Земли и ее элементы

Решив последнее уравнение относительно для заданного момента времени , значение находится по формуле:

Если элементы , , системы координат Oxyz, то такая совокупность величин будет полностью определять кеплеровское движение ИСЗ.

В качестве параметров кеплеровской орбиты (кеплеровских элементов орбиты) наиболее часто используется следующая совокупность величин:

- наклонение плоскости орбиты относительно плоскости экватора - i;

- прямое восхождение (или долгота) восходящего узла орбиты - Щ;

- угловое расстояние перигея орбиты от восходящего узла (аргумент перигея) х;

- эксцентриситет орбиты - с;

- большая полуось эллипса - а

- время прохождения спутника через перигей орбиты - tп

Еще раз отметим, что указанная шестимерная совокупность параметров орбиты позволяет рассчитать координаты ИСЗ в любой момент времени в геоцентрической экваториальной системе координат Oxyz или любой другой, связанной с ней аналитическими зависимостями. В свою очередь, элементы орбиты рассчитываются по измененной шестимерной характеристике движения ИСЗ по орбите в определенный момент времени. Такой характеристикой могут быть три координаты и три проекции вектора скорости. Измерение характеристик движения, расчет элементов орбиты и передачу последних на борт навигационных ИСЗ для ретрансляции потребителям осуществляет система орбитальных измерении, состоящая из сети измерительных пунктов и координационно-вычислительного центра.

2.2 Навигационные определения

В СРНС второго поколения применяется дальномерно-доплеровский метод. В среднеорбитальных дальномерно-доплеровских СРНС определяются местоположение, величина и направление вектора скорости потребителя в любой момент времени и в любой точке на поверхности Земли и околоземного пространства.

Для этого в системе обеспечивается одновременная связь потребителя не менее чем с четырьмя спутниками.

Все спутники ведут синхронное излучение дальномерных сигналов (ошибки синхронизации малы и не превышают 10-20 нс). В аппаратуре потребителя измеряется задержка спутникового сигнала относительно меток времени местной шкалы, вырабатываемых в аппаратуре потребителя. Эта задержка складывается из задержки сигналов при распространении в пространстве и разницы хода часов на спутниках и аппаратуре потребителя.

Произведение этой суммарной задержки на скорость распространения сигнала принятого называть псевдодальностью.

Обозначим координаты потребителя на момент приема через , а координаты j-го спутника на момент времени, предшествующий моменту приема на время распространения, - через . Тогда можно составить следующую систему нелинейных уравнений:

(1.4)

где - разница хода часов потребителя и спутникового времени;

- значение задержки спутникового сигнала относительно меток времени шкалы потребителя.

Если число спутников не менее четырех, то вышеуказанная система может быть разрешена относительно четырех неизвестных и .

Таким образом, помимо координат одновременно определяется . Необходимые для решения уравнения координаты спутников извлекаются из навигационных данных.

Предыдущее выражение можно переписать следующим образом:

(1.5)

Где

- измеренное значение дальности или псевдодальность;

Шкала времени спутника, и частота его несущего колебания задаются от одного и того же бортового генератора. Аналогично шкала времени приемника потребителя, и частота его гетеродина также задаются от эталона частоты приемника. Такое единство порождает связь расхождения шкал времени с расхождением частот:

(1.6)

где - частота гетеродина приемника потребителя, рассматриваемая как функция времени в связи с относительно не высокой стабильностью эталона частоты приемника потребителя;

- частота несущего колебания спутника - полагается постоянной, поскольку формируется от гораздо более стабильного бортового генератора. Относительная стабильность бортовых генераторов СРНС составляет величину порядка ;

- начальная расстройка шкал времени.

Если продифференцировать выражение для расстояний по времени, то получим:

(1.7)

умножив левую и правую части последнего равенства на где - длина волны несущей j-го спутника:

(1.8)

Для члена получаем:

(1.9)

В предположении, что номинальное значение частоты гетеродина приемника потребителя величина есть смещение частоты гетеродина относительно своего номинального значения.

С учетом (1.11) из (1.10) получаем:

(1.10)

где -измеренное значение доплеровского смещения частоты в аппаратуре потребителя.

Дифференцируя в (1.10) по времени, получаем систему уравнений относительно четырех неизвестных и :

необходимые решения этой системы значения находятся в результате обработки измерений псевдодальностей. Значения извлекаются из эфемеридных данных, сообщаемых спутниками. Таким образом, по мимо составляющих вектора скорости потребителя одновременно определяется [3].

2.3 Дифференциальный режим работы спутниковой навигационной системы

Глобальная Система Определения Координат Местоположения (GPS) является системой определения местоположения на базе спутниковой информации, которая непрерывно функционирует в течение 24 часов каждый день. GLONASS является такой же системой. В настоящее время планируется дополнить эти системы геостационарными спутниками с передатчиками, работающими в том же частотном диапазоне [7].

В интегральном составе эти системы называют Глобальными Навигационными Спутниковыми Системами (GNSS).

В основе метода дифференциальной навигации, лежит относительное постоянство значительной части погрешности измерения навигационной величины или погрешности расчета координат во времени и в пространстве. Необходимость использования дифференциального режима СРНС определяется стремлением удовлетворить наиболее жесткие требования навигационного обеспечения таких задач, как посадка воздушных судов, мореплавание в проливных зонах и узкостях, геодезическая привязка и т.п.

Дифференциальный режим GNSS достигается за счет размещения опорной станции с приемником GNSS в точке с известными координатами, определения поправок к сигналам дальности спутников и передачи этих поправок пользователям. Это исключает большую часть ошибок смещения, общих для всех приемников и значительно улучшает позиционную точность. Точность после этого ограничивается шумами приемника пользователя, межканальными смещениями и неопределенностями дифференциальной станции.

Специальный комитет 104 RTCM (SC-104) "Дифференциальное функционирование GNSS" имеет технические и официальные издания, а также сформулированные рекомендации в следующих областях:

Сообщение с данными и формат - Сообщение, элементы которого определяют поправки, сообщения о состоянии, параметрах станции и служебных данных определены в деталях. Они структурированы в формат данных, подобных тому, в котором выдаются сигналы GPS спутников, но при этом используются форматы переменной длины.

Интерфейс пользователя - Определен стандартный интерфейс, который позволяет использовать приемник во взаимодействии с множеством различных линий передачи данных. Например, при использовании стандарта, приемник может применяться со спутниковой или радиомаячной линией передачи данных.

Ранее комитет решил, что поправки должны относиться к измерениям псевдодальности, а не к измеренному положению, несмотря на то, что результирующее сообщение значительно длиннее. Причина заключается в том, что пользователь и опорная станция могут использовать различные спутники, в зависимости от большого числа условий. Если это происходит, даже в том случае, когда три из четырех спутников одинаковы, позиционная ошибка от одного не общего спутника может быть слишком велика.

Причины, по которым пользователь и опорная станция отрабатывают данные от разных спутников, следующие:

Критерий выбора спутников приемниками может быть разным.

Рельеф или кривизна земли могут затенять низко расположенные спутники от пользователя или опорной станции.

Приемник пользователя может применять стратегию использования всех спутников, находящихся в поле зрения, по которой все видимые спутники используются для определения местоположения.

Набор спутников доступных в месте нахождения пользователя может отличаться от того, который доступен в месте размещения опорной станции. Передаваемые поправки к псевдодальностям всех спутников, которые находятся в поле зрения опорной станции, могут использоваться приемником пользователя в дифференциальном режиме[10] (т.е. выбираются только те поправки, которые относятся к спутникам, находящимся в поле зрения пользователя) для определения местоположения. Геометрия дифференциальной GNSS показана на рисунке 8.

Рисунок 8 - Геометрия дифференциальной GNSS.

Дифференциальный режим GPS и/или GLONASS предполагает получение точностей 1-10 метров для динамических навигационных приложений. При использовании кинематической технологии обработки фазы несущей GNSS в дифференциальном режиме можно достичь точностей лучше, чем 10 см для небольших дальностей, менее 20 км. Базовая концепция дифференциального режима GNSS подобна той, какая используется в дифференциальном режиме LORAN-C, в дифференциальном режиме OMEGA и в режиме транслокации, применяемом в TRANSIT.

Дифференциальная технология работает, если преобладающие ошибки являются систематическими ошибками, вызванными причинами, находящимися вне приемника. Это относится к случаю GPS и GLONASS [7]

2.4 Принцип дифференциального режима

Дифференциальный режим работы системы состоит в следующем. Сигналы с навигационных спутников принимаются не только конечным потребителем, но и базовой (базовыми) станциями с известными координатами. Базовая станция вычисляет величину поправки измеренных координат относительно истинных заранее известных. Далее, основываясь на гипотезе что постоянная составляющая погрешности потребителя и базовой станции приблизительно равны, эта поправка отправляется потребителю и учитывается при расчетах координат потребителя.

Источники [1, 8] позволяют провести следующую классификацию современных дифференциальных систем спутниковой навигации.

1. Системы дифференциальной навигации по кодовым и псевдофазовым измерениям. Системы дифференциальной навигации по кодовым измерениям строятся на основе измерения и обработки псевдодальностей, в общем случае, имеют неограниченную область действия и характеризуются ошибками местоопределения от долей метра до нескольких метров. Системы дифференциальной навигации по псевдофазовым измерениям характеризуются очень высокой точностью местоопределения (до долей сантиметра). Однако область их действия ограничена дальностью ~10-12 км в одночастотном режиме и ~100 км в двухчастотном режиме. Специфической особенностью дифференциальных систем по псевдофазовым измерениям является неоднозначность этих измерений, затрудняющая их использование. Системы дифференциальной навигации по псевдофазовым измерениям иногда называют системами относительных определений [8].

2. Системы дифференциальной навигации по кодовым измерениям, в свою очередь, разделяют на локальные (Local Area Differential GPS), широкодиапазонные (Wide Area Differential GPS, WADGPS) и глобальные (Global Differential GPS, GDGPS). Дальнейшая уточняющая классификация систем дифференциальной навигации будет проводиться только для систем на основе кодовых измерений.

3. Большинство современных систем дифференциальной навигации являются локальными. Они используют только одну наземную станцию измерений и формирования дифференциальных поправок (далее будем называть её дифстанцией). Дифстанция располагается в центре локальной зоны, размер которой может доходить до 200 км. В центре зоны обеспечивается точность местоопределения порядка 0,5-1 м. На периферии зоны точность ухудшается и постепенно приближается к точности абсолютных местоопределений. Дифференциальные поправки в локальных системах дифференциальной навигации могут формироваться на основе метода коррекции координат (the position-domain approach) и метода коррекции навигационных параметров (the measurement-domain approach). На практике большее распространение получил второй метод, в котором дифстанция формирует поправки к измерениям псевдодальностей для каждого из видимых ею спутников. Потребитель поправляет свои измерения псевдодальностей по тем же спутникам на значения, полученные от дифстанции. Для передачи поправок, сформированных в соответствии с методом коррекции навигационного параметра, был разработан специальный стандарт RTCM SC-104, учитывающий в настоящее время особенности навигационных систем GPS.

4. В широкодиапазонных системах дифференциальной навигации (WADGPS) используется сеть станций сбора информации (ССИ) и принципиально иной метод формирования дифференциальных поправок. Этот метод получил название the state-space approach (дословно - метод коррекции параметров пространства состояния или, более содержательно, метод коррекции параметров моделей движения КА, параметров модели ионосферных задержек и смещений шкал времени навигационных спутников). В широкодиапазонных системах измерения двухчастотных навигационных приёмников, расположенных на станциях сбора информации (ССИ), собираются в единый центр, где осуществляется их совместная обработка с целью оперативного уточнения параметров моделей движения КА, смещения шкал времени спутников и составления карт вертикальных ионосферных задержек. Все перечисленные данные затем оперативно передаются тем или иным способом потребителю, который использует их для уточнения данных, извлекаемых им из сигналов навигационных спутников. Широкодиапазонные системы дифференциальной навигации обеспечивают точность местоопределения со среднеквадратической ошибкой ~0,5 м в области, охватываемой сетью ССИ, и смежных с ней областях. В указывается на сильную корреляцию между ошибками оценки смещений шкал времени и ошибками оценки вертикальных координат приёмника. Такая корреляция возникает вследствие идентичности соответствующих частных производных, особенно для спутников с большими углами места. Стабилизация опорных частот приёмников станций сбора информации и приёмника потребителя с помощью рубидиевых генераторов позволяет лучше разделять ошибки оценки смещения шкал времени и вертикальных координат приёмника. Результаты соответствующих экспериментов демонстрируют среднеквадратические ошибки вертикальных координат меньше 0,4 м.

Дополнительным, очень важным свойством широкодиапазонных систем является возможность резкого повышения целостности, по сравнению с целостностью, свойственной базовыми спутниковыми системами.

В настоящее время в мире известны только две широкодиапазонных системы дифференциальной навигации. Первая система WADGPS принадлежит фирме Satloc. Вторая система WAAS (Wide Area Augmentation System) принадлежит правительству США. Обе системы развёрнуты и эксплуатируются на территории США. В системе WADGPS фирмы Satloc потребителю сообщается карта вертикальных ионосферных задержек с шагом 2°. В системе WAAS, в зависимости от класса точности, потребитель может использовать карты вертикальных ионосферных задержек разной точности. Наиболее подробные карты содержат до 929 точек прокола ионосферы .

Функционирование широкодиапазонных систем дифференциальной навигации основано на использовании трёх основных видов программного обеспечения. Первый вид -- программное обеспечение уточнения параметров орбит и смещения шкал времени спутников. Второй вид -- вычисление подробных карт вертикальных ионосферных задержек. Третий вид -- программное обеспечение, организующее непрерывное функционирование наземной сети дифференциальной системы в реальном масштабе времени.

5. По своей структуре глобальные системы дифференциальной навигации (GDGPS) очень схожи с широкодиапазонными системами (WADGPS). Они так же используют наземную сеть станций сбора информации и тот же метод формирования дифференциальных поправок (the state-space approach). Основное отличие заключается в том, что исключение ионосферных ошибок в глобальных системах дифференциальной навигации осуществляется путём использования двухчастотных измерений .

В настоящее время можно указать на существование пока что единственной в мире глобальной системы дифференциальной навигации, использующей в качестве основы станции глобальной GPS сети (GGN) NASA. Для передачи измерений в центр обработки используется глобальная сеть Internet.

радионавигационный спутник дифференциальный сигнал

2.5 Методы дифференциальной коррекции

Предполагается, что за счет соответствующего исключения влияния движения спутника и обработки измеренных данных, информация может быть, в принципе, оптимально отфильтрована с тем, чтобы обеспечить прогнозирование ошибок по дальности и по скорости изменения дальности для следующей передачи сообщений. Ошибка по дальности и по скорости изменения дальности для каждого спутника может быть величиной, которая обеспечивает наилучшие среднеквадратические ошибки для периода следующего сообщения. Причиной такого предположения является тот факт, что наземная станция, будучи стационарной и выполняющей обработку информации о фазе несущей, может выполнять прогнозирующую фильтрацию сигналов спутников и может обеспечивать лучшие оценки поправок, чем может генерировать приемник пользователя.

Однако это является выгодным только для тех приложений, где пользователи применяют коррекцию в заранее определенных и равных интервалах по отношению к метке времени поправок. Для общего целевого использования рекомендуется, чтобы каждая поправка псевдодальности или изменения скорости псевдодальности была наилучшей оценкой для момента идентифицированного меткой времени.

Метка времени, отнесенная к DGNSS поправкам, представляется счетчиком времени, размещенным в заголовке сообщения. Взаимосвязь этой метки времени () с реальным временем () имеет значительное влияние на способ, которым пользователь может использовать поправки. Здесь представлены три метода работы опорной станции, чтобы дать некоторое понимание о работе DGNSS в дифференциальном режиме.

По прошедшему: Счетчик времени может представлять некоторую величину в прошлом, которая имеет достаточно измеренной информации до и после счета времени (), чтобы сделать очень точную оценку PRC и RRC в момент счета времени (). Передаваемые поправки, полученные на основе такой техники, подразумевают пост-обработку определенного типа со стороны пользователя. Пользователь может выполнять обработку близко к реальному времени, выполняя свое решение в интервале . Измерения псевдодальности сохраняются пока не получена поправка для этого момента. После этого пользователь будет применять поправки без какой-либо задержки корректирующих данных. Чтобы получить навигационную информацию в реальном времени, приемник пользователя должен прогнозировать данные местоположения на текущее время , используя данные о скорости, или инерциальные, или другие датчики. Эта техника также хорошо применима к методу "Текущий".

Текущий: Счет времени () для PRC и RRC должен быть в пределах 0.6 секунды от последней последовательности измерений, используемых в формировании данной поправки. В этом случае время ожидания в поправках может быть вызвано только задержками в передаче сообщений от опорной станции через некоторый промежуточный передатчик и приемник пользователя. Этот метод будет выдавать точные результаты в реальном времени. Пользователь может компенсировать задержку в линии передачи данных также, как в случае техники "По прошедшему", представленной выше.

Будущий: Счет времени () может быть сдвинут в будущее, чтобы компенсировать задержку в линии передачи данных. Этот метод требует точного знания ускорения псевдодальности. Этот метод будет вносить ошибку в поправки, если ускорение псевдодальности значительно изменяется в интервале между временем измерения и прогнозируемым временем. В этом случае пользователь не способен "убрать" эту ошибку, используя поправки в момент счета времени (). В сценарии, где ускорения являются значительными и хорошо известными, данная техника может повысить точность пользователя в реальном времени.

Метод, выбранный производителем обслуживания, должен удовлетворять требованиям специального обслуживания. Многие приложения, требующие высокой точности, не требуют реального фактического времени для обновления дифференциальных данных GNSS. Способность, близкая к реальному времени (< 30 секунд), может быть удовлетворительной. Метод "Текущий" обеспечивает наилучшие характеристики реального времени без искажения поправок ошибками прогнозирования. Для пользователей реального времени поправки легко пролонгируются вперед на текущее время (t) и пользователи могут получать наилучшую точность в момент счета времени (), близкого к реальному времени.

3. Перспективы развития СРНС

Изучение СРНС (типа NAVSTAR и ГЛОНАСС) приводит к выводу, что ее использование в целях навигации особенно эффективно. Основной причиной этого является применение в этой системе концепций, которые находятся на переднем крае развития науки и техники. Вопросам разработки приемоиндикаторов для СРНС в последнее десятилетие было уделено большое внимание, как в практическом, так и в теоретическом плане. Среди основных проблем, стоящих перед разработчиками приемоиндикаторов СРНС, в настоящее время выделяются следующие

Широкое использование в приемоиндикаторах GPS алгоритмов оптимальной фильтрации, а также новых технологий, что позволит существенно повысить их эффективность и улучшить тактико-технические характеристики, а также позволит решать принципиально новые задачи (например, такие, как определение пространственной ориентации летательного аппарата, автоматический заход на посадку до касания, автоматизированную дозаправку топливом в полете, полеты в плотных боевых порядках и др.).

Повышение достоверности навигационных определений по СРНС. Эта проблема решается двумя главными путями:

- обеспечение целостности СРНС, т.е. исключение использования неисправных НИСЗ. Для решения данной задачи предполагается запуск 3 4 геостационарных спутников, расположенных в плоскости экватора (это обеспечивает охват большей части Земли), с одновременной организацией специального канала для передачи информации о целостности (так называемый GIC Greatest Integrated Channel). В приемоиндикаторе она может решаться автономно (технология RAIM - Receiver Autonomic Integrated Monitoring) и с использованием дифференциальных методов;

- повышение помехоустойчивости приемоиндикаторов, в том числе в условиях воздействия преднамеренных помех. Этот путь включает: улучшение алгоритмов обработки сигналов, обеспечивающих снижение порогового отношения сигнал/шум, пространственно-временную обработку сигналов и комплексирование СРНС с другими системами (объединение ИНС и приемоиндикаторов СРНС NAVSTAR в единые бортовые системы для обеспечения максимальной точности, надежности и непрерывности выдачи пилотажно-навигационных параметров, а также для высокочастотного (100 - 600 Гц) ввода данных в автопилоты при относительно низких частотах выходов GPS (1 - 10 Гц)).

Повышение точности навигационных определений до предельно малых значений. Эта проблема решается прежде всего использованием дифференциальных и относительных методов навигации (технология DGPS - Differential GPS), в значительной степени обеспечивающих компенсацию общих для всех потребителей систематических ошибок. Основное направление повышения точности связано с использованием, наряду с информацией, заключенной в огибающей принимаемого сигнала, фазовой информации, содержащейся в его высокочастотном (ВЧ) заполнении. При этом главная возникающая трудность состоит в разрешении неоднозначности измерений.

Обеспечение таких потребительских свойств приемоиндикаторов, как компактность, дешевизна аппаратуры и т.д. Среди множества путей решения этих важных проблем одноэтапный алгоритм, использование группирования отсчетов, позволяющие сократить требования к процессору и др.

Заключение

Основные результаты курсовой работы заключаются в следующем:

1. В ходе проделанной курсовой работы было проведено обоснование необходимости использования и совершенствования радионавигационных систем.

2. Сделан анализ основных характеристик и параметров совершенствования радионавигационных систем.

3. Проведен анализ принципа работы основных радионавигационных систем и проведен анализ основных перспективы развития СРНС.

Список использованных источников

1 Берикашвили В.Ш. Основы теории радиотехнических систем / В.Ш. Берикашвили, В.И. Шанин.- М.: Московский государственный институт радиотехники, электроники и автоматики (технический университет). 2007.- 102 c.

2. Казаринов Ю.М. Радиотехнические системы / М.Ю. Казаринов, Ю.А. Коломенский, В.М. Кутузов - М.: Радиотехника, 2008. - 592 с.

3 Информационные технологии радиотехнических системах / В.А. Васин, И.Б. Власов, Ю.М. Егоров и др. - М.: МГТУ им. Н.Э. Баумана. 2003. -627 с.

4 Соловьев Ю.А. Системы спутниковой навигации / Ю.А.Соловьев. - М.: Эко-Трендз, 2000. - 270 с

5 Липкин И.А. Спутниковые навигационные системы / И.А. Липкин - М.: Вузовская книга, 2001. - 196 с.

6 Герд Бёдекер. Точное определение ориентации с помощью приемников GPS / Герд Бёдекер // Гироскопия и навигация. - 2008. - №1. - С. 21-28.

7 Дворкин В.В. Принцип дифференциальной коррекции / В.В. Дворкин // Гироскопия и навигация. - 2011 - №5. - С. 62-78.

8 Бакулев П.А., Радионавигационные системы / П.А. Бакулев, А.А. Сосновский, - М.: Радиотехника, 2005- 425 с.

9 Харисов В.Н. Глобальная спутниковая радионавигационная система ГЛОНАСС / В.Н. Харисов, А.И. Перов, В.А. Болдин. М.: ИПРЖР, 2008. -300с.

10 Гряник В.Н., Теория и техника радиолокации и радионавигации / В.Н. Гряник, С.Н. Павликов, Е.И. Убанкин, - Владивосток: ВГУЭС, 2009. -155 с.

Размещено на Allbest.ru


Подобные документы

  • Анализ основных видов сложных сигналов, анализ широкополосных систем связи. Классификация радиолокационных систем, их тактических и технических характеристик. Разработка и обоснование основных путей развития радиолокационных систем со сложными сигналами.

    курсовая работа [470,3 K], добавлен 18.07.2014

  • Теоретический обзор и систематизация методов построения многопозиционных радиолокационных систем. Обоснование практической необходимости использования РЛС. Определение общих технических преимуществ и недостатков многопозиционных радиолокационных систем.

    курсовая работа [702,1 K], добавлен 18.07.2014

  • Характеристика основных функций и возможностей спутниковых радионавигационных систем - всепогодных систем космического базирования, которые позволяют определять текущие местоположения подвижных объектов. Система спутникового мониторинга автотранспорта.

    реферат [2,9 M], добавлен 15.11.2010

  • Развитие спутниковой навигации. Структура навигационных радиосигналов системы GPS. Состав навигационных сообщений спутников системы GPS. Алгоритмы приема и измерения параметров спутниковых радионавигационных сигналов. Определение координат потребителя.

    реферат [254,9 K], добавлен 21.06.2011

  • Принцип построения спутниковой радионавигационной системы, описание движения спутников. Глобальная система "НАВСТАР". Структура: космический сегмент, управление и потребители. Принцип дифференциального режима. Погрешности местоопределения и их анализ.

    дипломная работа [1,3 M], добавлен 21.11.2010

  • Исследование технологии построения систем передачи со спектральным уплотнением оптических каналов WDM/DWDM. Характеристика основных принципов работы анализаторов оптического спектра. Организация тестирования параметров линейных сигналов систем WDM/DWDM.

    презентация [1,6 M], добавлен 05.02.2011

  • Способность радиотехнической системы функционировать с заданным качеством в условиях радиоэлектронного противодействия. Обоснование необходимости использования и совершенствования помехозащищенных радиотехнических систем, сущность их скрытности.

    курсовая работа [302,3 K], добавлен 09.10.2013

  • Обоснование выбора принципов построения. Структурная схема и ее описание. Расчет основных показателей и их характеристика. Описание функциональной и принципиальной схем. Сущность программного обеспечения и его характеристика. Анализ исходных данных.

    курсовая работа [164,9 K], добавлен 05.03.2009

  • Принципы построения систем передачи информации. Характеристики сигналов и каналов связи. Методы и способы реализации амплитудной модуляции. Структура телефонных и телекоммуникационных сетей. Особенности телеграфных, мобильных и цифровых систем связи.

    курсовая работа [6,4 M], добавлен 29.06.2010

  • Основы построения оптических систем передачи. Источники оптического излучения. Модуляция излучения источников электромагнитных волн оптического диапазона. Фотоприемные устройства оптических систем передачи. Линейные тракты оптических систем передачи.

    контрольная работа [3,7 M], добавлен 13.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.