Видеомониторы и видеоадаптеры
Видеоадаптеры (дисплейные процессоры) - специализированные процессоры с собственным набором команд, специфическими форматами данных и собственным счетчиком команд. Графические видеоадаптеры - с произвольным сканированием и адаптеры растрового типа.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | лекция |
Язык | русский |
Дата добавления | 15.08.2008 |
Размер файла | 63,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Лекция
Видеомониторы и видеоадаптеры
План
1. Типы видеосистем.
2. Видеоадаптеры.
2.1. Графические видеоадаптеры точечные.
2.2. Графические видеоадаптеры векторные.
2.3. Графические видеоадаптеры растровые.
3. Способы формирования цветного изображения.
1. Типы видеосистем
В общем случае видеосистема (дисплей) ПЭВМ включает монитор, преобразующий сигналы от ПЭВМ в изображение на экране в темпе их поступления без запоминания и обработки; и видеоконтроллер для обработки, передачи данных и согласования интерфейсов. В ПЭВМ применяются три основных типа построения видеосистемы:
1) ее электронные схемы без монитора входят в состав системного блока ПЭВМ и в качестве экранного ОЗУ используют основную память ПЭВМ;
2) ее электронные схемы без монитора входят в состав системного блока ПЭВМ и имеют отдельное экранное ОЗУ;
3) все ее электронные схемы и монитор выполняются в виде отдельного устройства, связанного с ПЭВМ стандартным интерфейсом.
Возможны также различные комбинации типов.
Дисплеи ПЭВМ классифицируются по ряду признаков:
по виду отображаемой информации: алфавитно-цифровые, графические и комбинированные;
по способу формирования изображения графические дисплеи ПЭВМ делятся на векторные и растровые;
по способу поддержания изображения: с регенерацией и запоминанием изображения в специальных электронных трубках;
по способу сопряжения монитора с адаптером: композитные и RGB-дисплеи. В RGB-дисплеях сигналы яркости основных цветов передаются от адаптера к монитору по трем отдельным проводам, а в композитных все три сигнала яркости подаются в монитор по одному проводу, где затем разделяются;
по виду управления: цифровые и аналоговые. В цифровых дисплеях по одному сигналу включается только один уровень яркости. В аналоговых дисплеях яркость и цвет любой точки пропорциональны уровню напряжения управляющего аналогового сигнала. Аналоговые дисплеи поддерживают больше цветов, чем цифровые.
В ПЭВМ обычно применяются растровые монохромные или цветные видеомониторы на электронно-лучевых трубках (ЭЛТ). По виду сигнала управления такие видеомониторы, как CGA и EGA, являются цифровыми, а видеомониторы PGA, VGA, SVGA - аналоговыми. Цветной универсальный монитор Multisync может настраиваться на цифровой или аналоговый сигнал управления.
2. Видеоадаптеры
Видеоадаптеры (дисплейные процессоры) представляют собой специализированные процессоры с собственным набором команд, специфическими форматами данных и собственным счетчиком команд.
Алфавитно-цифровые видеоадаптеры, так же как и принтеры, имеют ПЗУ для хранения постоянного знакогенератора и ОЗУ - для переменного знакогенератора. Страница текста, отображаемая на экране, записывается в видеопамять и координаты каждого символа однозначно определяются его местонахождением в видеопамяти.
Графические видеоадаптеры разделяются на адаптеры с произвольным сканированием и адаптеры растрового типа.
2.1. Графические видеоадаптеры точечные
Графические видеоадаптеры с произвольным сканированием разделяются на точечные и векторные. В точечных дисплеях любая картинка рисуется из отдельных точек, координаты которых в произвольном порядке задаются в графическом файле. В векторных дисплеях изображение составляется из отдельных векторов, которые задаются в файле координатами начальных и конечных точек.
Для управления точечными дисплеями используются два типа команд: команда рисования точки и команда безусловного перехода. При выполнении каждой команды рисования луч перемещается от точки к точке по указанным в команде координатам, активизируя их. Последней командой графического файла является команда безусловного перехода на начало файла, что обеспечивает регенерацию изображения. При такой организации вычислений адаптер содержит два ЦАП, которые преобразует цифровые координаты точки в напряжения отклонения луча ЭЛТ по координатам X и Y (рис. 16.1).
Основным недостатком точечных графических адаптеров является то, что координаты каждой точки вычисляются ЦП. От этого недостатка свободны векторные адаптеры.
2.2. Графические видеоадаптеры векторные
В векторных графических адаптерах команды начальной и конечной точки вектора вычисляются ЦП, а рисование векторов осуществляется автоматически специальным блоком - генератором векторов или генератором напряжения развертки (рис. 16.2).
Для задания координат начала и конца вектора используются абсолютные или относительные координаты. Если используются относительные координаты, то в структуре адаптера добавляется сумматор для сложения базовых координат с относительными. В таких адаптерах используются команды следующего типа: загрузить Х; загрузить Y и переместить луч в позицию Х, Y; загрузить Y, переместить луч в позицию X,Y и нарисовать точку; загрузить Y и нарисовать вектор от начальной до конечной точки; безусловный переход.
Если адаптер работает в абсолютных координатах, то ЦП сильно загружен в режиме редактирования или перемещения изображения.
2.3. Графические видеоадаптеры растровые
Графические адаптеры растрового типа позволяют создавать изображение с непрерывным уровнем яркости, т.к. вывод содержимого видео-ЗУ на экран всегда производится с постоянной частотой и обеспечивается одинаковая яркость для векторов разной длины. Адаптеры такого типа обладают отсутствием мерцания, возможностью наложения изображения из видео-ЗУ на стандартное телевизионное изображение от телекамеры или видеомагнитофона.
В растровых адаптерах каждая точка изображения вычисляется и записывается в видео-ЗУ. Такое ЗУ должно быть большой емкости и его быстродействие должно быть соизмеримо с работой монитора. Графический файл преобразуется сначала в векторный, где осуществляется масштабирование и перемещение изображения, а затем векторный файл преобразуется в растровую форму, где каждый вектор заменяется последовательностью пиксель, записываемых в видео-ЗУ. С учетом этого в структуре растровых адаптеров выделяют два процессора - векторный и растровый (рис. 16.3).
Растровый графический процессор работает под управлением своей программы. Входными данными для него являются команды, записанные в ОЗУ ДФ и описывающие вектора, которые программным или аппаратным способом должны быть преобразованы в пикселы. Вычисленные точки вектора между его начальными и конечными точками записываются в видео-ЗУ. Видеоконтроллер формирует видеосигналы на видеомонитор, для чего производится периодический опрос ячеек видео-ЗУ. РГП выполняет также кодирование изображения - вычисление пиксель по полученному списку векторов, определяющему небольшую часть изображения (окно), которое можно перемещать по экрану. В связи с этим РГП должны обладать большим быстродействием.
Для черно-белых адаптеров для задания атрибутов пиксела отводится один бит, если он установлен, то это означает черный цвет.
Для создания тонового черно-белого изображения видео-ЗУ имеет несколько плоскостей, число которых определяется количеством градаций черно-белого тона. Разрядность задания атрибутов пикселя n и число градаций тона L связаны между собой соотношением n=log2L. Считанный из видео-ЗУ двоичный код пикселя преобразуется на ЦАП в напряжение, соответствующее требуемому уровню тона.
3. Способы формирования цветного изображения
Цветные изображения могут быть получены двумя способами. Первый способ основывается на первичной форме изображения в графическом файле с постоянно заданным цветом. В ячейки видео-ЗУ записываются все атрибуты цвета, например, красный (R), синий (B) и зеленый (G) цвет. Затем двоичные коды интенсивности каждого цвета преобразуются ЦАП в уровни напряжения (рис. 16.4, а). Для простого изображения достаточно иметь три слоя атрибутов пиксела. Цвет изображения можно поменять, только изменив графический файл.
Второй способ позволяет выводить цветные изображения с изменяемым цветом. В состав видеоконтроллера вводится специальное ЗУ, в котором записывается таблица цветов (рис. 16.4, б). Каждый пиксель содержит адрес этой таблицы. Меняя адреса таблицы цветов можно изменить цвет изображения.
Вопросы к лекции
1. От каких характеристик зависит формат дисплейной команды: для черно-белых тоновых графических адаптеров; для графических адаптеров с возможностью формирования цветных изображений по первому и второму способу?
2. Нарисуйте подробную схему взаимодействия программных и аппаратных компонент и блоков ПЭВМ при отображении информации: а) на алфавитно-цифровом мониторе с постоянным знакогенератором, б) на графическом мониторе с произвольным сканированием точечного; в) векторного типа и г) растрового типа.
Подобные документы
Исполнение программного кода (команд) как задача микропроцессора. Структура микрокомпьютера с шинной организацией. Использование гипотетического микропроцессора с набором команд и массив из элементов. Перечень операций подлежащих программированию.
курсовая работа [2,2 M], добавлен 22.01.2015Общая характеристика операций, выполняемых по командам базовой системы. Описание и мнемокоды команд, используемых при разработке программы на языке AVR Ассемблера. Основные принципы работы команд с обращением по адресу SRAM и к регистрам ввода–вывода.
реферат [148,4 K], добавлен 21.08.2010Принципы построения и функционирование проявочных процессоров. Описание работы транспортировочной системы и ее секций. Процессоры Platemaster Hano Korr фирмы Techno-Grafica для проявки офсетных пластин. Поточные линии для изготовления офсетных форм.
реферат [624,7 K], добавлен 13.03.2011Изучение функциональных возможностей программы ISIS Proteus, системы команд и способов адресации данных в микро ЭВМ семейства МК51. Определение состояния регистров и внутренней памяти данных после выполнения программы. Сохранение содержимого в стеке.
лабораторная работа [89,7 K], добавлен 16.04.2014Предназначение и состав счетчика команд компьютера. Регистр указателя данных (DPTR). Память данных и память программ: понятие и значение. Работа с внешней памятью программ. Функции и электрические параметры портов. Команды и категории чтения портов.
контрольная работа [208,3 K], добавлен 23.08.2010Функциональные узлы упрощенной структуры МП8085: арифметико-логическое устройство; аккумулятор; регистр признаков и команд; дешифратор команд и шифратор машинных циклов; блок регистров общего назначения; буфер адреса. Интерфейсные интегральные схемы.
курсовая работа [214,2 K], добавлен 11.03.2015Структурная схема устройства передачи данных и команд. Принцип действия датчика температуры. Преобразование сигналов, поступающих с четырех каналов. Модель устройства передачи данных. Построение кода с удвоением. Формирование кодовых комбинаций.
курсовая работа [322,1 K], добавлен 28.01.2015Проектирование и принципы функционирования цифровых устройств комбинационного и последовательностного типа. Изучение структурной организации, приемов программирования на языке ассемблера и системы команд однокристального микроконтроллера К1816ВЕ48.
методичка [272,2 K], добавлен 20.01.2011Практические примеры и их программная реализация на языке ассемблера для микроконтроллера семейства MCS-51 (МК51). Использование команд передачи данных. Арифметические и логические, битовые операции в MCS-51. Взаимодействие МК с объектом управления.
курсовая работа [75,0 K], добавлен 19.02.2011Обзор характеристик контроллера по сбору аналоговой информации и преобразовании ее в цифровую, типы корпусов и исполнений, функциональное назначение выводов. Описание регистров PIC, тактовых генераторов. Система команд, блок ввода аналоговых данных.
курсовая работа [338,0 K], добавлен 05.09.2011