Разработка электрической схемы стенда для анализа работы тактируемого декодера на 4 входа и 16 выходов

Основные сведения о декодере. Принцип работы дешифратора. Двоичные логические операции с цифровыми сигналами. Способ увеличения количества выходов дешифратора. Проектирование электрической схемы для реализации дешифратора. Изготовление печатной платы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 29.12.2014
Размер файла 1015,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из вышеперечисленного следует, что производственная среда, создающая здоровые и работоспособные условия труда, главным образом обеспечивается выбором технологического процесса, материалов и оборудования; распределением нагрузки между человеком и оборудованием; режимом труда и отдыха, эстетической организацией среды и профессиональным отбором работающих.

Опасные и вредные производственные факторы.

При организации условий труда необходимо также учитывать воздействие на работающих опасных и вредных производственных факторов, которые могут привести к травме или другому внезапному резкому ухудшению здоровья и заболеванию или снижению работоспособности.

Опасным называется производственный фактор, воздействие которого на работающего в определённых условиях приводит к травме или другому внезапному резкому ухудшению здоровья. Если же производственный фактор приводит к заболеванию или снижению работоспособности, то его считают вредным.

Вредные и опасные производственные факторы подразделяются по природе действия на четыре группы: физические, химические, биологические и психофизиологические.

Техника безопасности при ремонте и обслуживании компьютера:

Первое, что нужно помнить при ремонте компьютера то, что компьютер - это электроприбор. Это значит, что есть вероятность поражения электрическим током. Самое высокое напряжение в 220 Вольт на входе блока питания, который преобразует переменное напряжение электрической сети (220 Вольт, 50 Герц) в постоянные (импульсные) напряжения не превыщающие 12 Вольт.

Правило первое: «Выключайте компьютер из сети при проведении ремонтных и профилактических работ!»

Второе, немало важное правило вытекает из особенностей строения компьютера. Компьютерные комплектующие в большинстве своем построены на основе ИМС (интегральных микросхем), которые очень «боятся» статического электричества.

Сформулируем правило два: «Прежде чем касаться микросхем, прикоснитесь к корпусу компьютера!»

Третье, касающееся работы с любой аппаратурой - это аккуратность и неспешность. Простой пример: «При установке или снятии процессора с сокета 775 можно легко погнуть контакты сокета (они пружинные), чтобы избежать этого - не касайтесь контактов и при транспортировке одевайте специальную заглушку сокета!» Третье правило: «Будьте аккуратны!»

3.6 Статическое электричество и электромагнитные излучения

Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках. Так звучит определение по ГОСТ 12.1.018-93 «Пожаровзрывобезопасность статического электричества».

Как возникает заряд В основном статическое электричество генерируется при трении объектов - эффект трибоэлектризации.

Трибоэлектричество (от греч. tribos - трение) - явление возникновения электрических зарядов при трении и последующем разделении материалов.

Примерами образования могут послужить самые элементарные вещи: ходьба является одним из самых больших источников трибоэлектрического заряда. При ходьбе происходит контакт подошвы обуви с напольным покрытием, а затем их последующее разделение. При этом данное действие происходит многократно. Человеческое тело является хорошим проводником, что позволяет ему проводить и накапливать заряды, образующиеся в ходе разделения двух материалов. При хождении по ковровому покрытию на человеке может образоваться потенциал до 15 000 В.

Как бороться с электростатикой Средства защиты от статического электричества по принципу действия делятся на следующие виды:

· заземляющие устройства;

· нейтрализаторы;

· увлажняющие устройства;

· антиэлектростатические вещества;

· экранирующие устройства.

Прежде всего, электронное оборудование должно быть качественно заземлено. Цепь утечек на землю работает удовлетворительно, если ее сопротивление не превышает 106 Ом. Заземление эффективно только для материалов, имеющих удельное сопротивление не более 10 Ом*м. Таким образом, если поверхность приборов пластиковая, заземление может быть не всегда эффективно. В этом случае нужно использовать другие методы борьба со статикой. Для разрядки диэлектрических поверхностей применяют ионизаторы воздуха, способные генерировать ионы обеих полярностей.

Такие ионизаторы используются для локальной нейтрализации зарядов непосредственно на рабочих местах или же ими дополняют вентиляционные системы, чтобы поток отфильтрованного воздуха ионизировался и происходила нейтрализация зарядов на стенах, потолках, поверхностях оборудования и др. Электризация диэлектрических материалов резко снижается при увеличении влажности воздуха, однако при этом ухудшаются условия работы оборудования. Поэтому, как правило, влажность не должна превышать 40%. Кроме того, для исключения электризации при ходьбе, а также для организации дополнительного пути «стекания» электростатических зарядов помещение, где находится приемно-контрольное оборудование, следует оснастить напольным антистатическим покрытием.

Самое простое - настелить специальный электропроводящий линолеум, имеющий по отношению к земле электросопротивление порядка 107 Ом, при котором заряды на них уменьшаются до безопасных значений в течение 0,02 с. Крайне желательно защитить и само рабочее место оператора, если таковое имеется. Столы должны иметь проводящее покрытие из пропитанного углем пластика, проводящего дивинила или антистатического материала. Эти покрытия обычно заземляются с помощью шин, прокладываемых на столах под покрытием. Аналогичные покрытия могут иметь и стулья. При соблюдении всех вышеперечисленных условий мы получаем гарантированную защиту электронного оборудования от поражения электростатическим разрядом. А потери от одного такого удара могут многократно превысить все затраты на профилактические меры.

Электромагнитные излучения

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источниками электромагнитных излучений служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот, в том числе и компьютеры.

Компьютеры создают электромагнитные излучения широкого спектра:

рентгеновское, ультрафиолетовое, высокочастотное (10 - 300 МГц), низкочастотное (5 Гц - 300 кГц) и электростатическое поле.

При этом следует отметить следующее: рентгеновское излучение экрана монитора ничтожно, ультрафиолетовое излучение монитора, измеренное для ряда образцов, при длине волны 0,32 мкм не превышало 200 мкВт/см2 при гигиеническом нормативе 1000 мкВт/см2, что в несколько раз ниже, чем интенсивность солнечного ультрафиолета в облачный день.

Главную опасность для пользователей представляют электромагнитное излучение монитора в диапазоне частот 20 Гц - 300 МГц и статический электрический заряд на экране.

Однако некоторые работы и исследования в этой области определяют возможные факторы риска, так например считается что электромагнитное излучение может вызвать расстройства нервной системы, снижение иммунитета, расстройства сердечно-сосудистой системы и аномалии в процессе беременности и соответственно пагубное воздействие на плод.

Защита от электромагнитных полей радиочастот

Для обеспечения безопасности работ с источниками электромагнитных волн проводится систематический контроль фактических значений нормируемых параметров на рабочих местах и в местах возможного нахождения персонала. Если условия работы не удовлетворяют требованиям норм, то применяются следующие способы защиты:

· Экранирование рабочего места или источника излучения.

· Увеличение расстояния от рабочего места до источника излучения.

· Рациональное размещение оборудования в рабочем помещении.

· Использование средств предупредительной защиты.

· Применение специальных поглотителей мощности энергии для уменьшения излучения в источнике.

· Использование возможностей дистанционного управления и автоматического контроля и др.

Рабочие места обычно располагают в зоне минимальной интенсивности электромагнитного поля. Конечным звеном в цепи инженерных средств защиты являются средства индивидуальной защиты. В качестве индивидуальных средств защиты глаз от действия СВЧ-излучений рекомендуются специальные защитные очки, стёкла которых покрыты тонким слоем металла (золота, диоксида олова).

Защитная одежда изготовляется из металлизированной ткани и применяется в виде комбинезонов, халатов, курток с капюшонами, с вмонтированными в них защитными очками. Применение специальных тканей в защитной одежде позволяет снизить облучение в 100-1000 раз, защитные очки снижают интенсивность излучения на 20-25 %.

В целях предупреждения профессиональных заболеваний необходимо проводить предварительные и периодические медицинские осмотры. Женщин в период беременности и кормления грудью следует переводить на другие работы. Лица, не достигшие 18-летнего возраста, к работе с генераторами радиочастот не допускаются. Лицам, имеющим контакт с источниками СВЧ- и УВЧ-излучений, предоставляются льготы (сокращённый рабочий день, дополнительный отпуск) не реже одного раза в год.

3.7 Причины возникновения коротких замыканий, их профилактика

Короткие замыкания возникают в результате нарушения изоляции токоведущих частей электроустановок.

Опасные повреждения кабелей и проводок могут возникать вследствие чрезмерного растяжения, перегибов, в местах подсоединения их к электродвигателям или аппаратам управления, при земляных работах и т. п.

При нарушении изоляции на жилах кабеля возникают утечки тока, которые затем перерастают в токи короткого замыкания. В зависимости от характера повреждения внутри кабеля может нарастать аварийный процесс короткого замыкания с сопутствующим мощным выбросом в окружающую среду искр и пламени. Так как многие виды электрооборудования не являются влаго- и пыленепроницаемыми, то производственная пыль (особенно токопроводящая), химически активные вещества и влага проникают внутрь их оболочки и оседают на поверхности электроизоляционных частей и материалов. Некоторые нагревающиеся части электрооборудования при остановке охлаждаются, поэтому на них часто выпадает конденсат воды. Все это может привести к повреждению и переувлажнению изоляции и вызвать чрезмерные токи утечки, дуговые короткие замыкания, перекрытия или замыкания как изолированных обмоток, так и других токоведущих частей.

Изоляция электроустановок может повреждаться при воздействии на нее высокой температуры или пламени во время пожара, из-за перенапряжения в результате первичного или вторичного воздействия молнии, перехода напряжения с установок выше 1000 В на установки до 1000 В и т. д.

Причиной короткого замыкания может быть схлестывание проводов воздушных линий электропередач под действием ветра и от наброса на них металлических предметов. К возникновению короткого замыкания могут привести ошибочные действия обслуживающего персонала при различных оперативных переключениях, ревизиях и ремонтах электрооборудования.

Профилактика короткого замыкания

Наиболее действенным предупреждением короткого замыкания являются правильный выбор, монтаж и эксплуатация электрических сетей, машин и аппаратов. Конструкция, вид исполнения, способ установки и класс изоляции применяемых машин, аппаратов, приборов, кабелей, проводов и прочего электрооборудования должны соответствовать номинальным параметрам сети или электроустановки (току, нагрузке, напряжению), условиям окружающей среды и требованиям ПУЭ (Правила устройства электроустановок). Особенно строго следует соблюдать регулярное проведение осмотров, ремонтов, планово-предупредительных и профилактических испытаний электрооборудования во взрывоопасных установках как при приемке его, так и при эксплуатации. Кроме того, должна быть предусмотрена электрическая защита сетей и электрооборудования.

Основное назначение электрической защиты заключается в том, что питание поврежденной в любом месте проводки должно быть прекращено раньше, чем произойдет опасное развитие аварии. Наиболее эффективными аппаратами защиты являются быстродействующие реле и выключатели, установочные автоматы и плавкие предохранители.

3.8 Требования безопасности при пайке

Электрифицированный инструмент (далее - паяльник) для пайки деталей должен соответствовать III классу защиты от поражения электрическим током. Перед началом работ паяльник необходимо проверить:

· внешним осмотром - исправное состояние кабеля и штепсельной вилки, целостность защитного кожуха и изоляции рукоятки;

· работоспособность встроенных в его конструкцию отсосов;

· работоспособность механизированной подачи припоя в случаях ее установки в паяльнике.

Работники, выполняющие пайку деталей паяльником, должны иметь II группу электробезопасности. Проверка исправного состояния паяльника и его испытание осуществляются работником из числа электротехнического персонала, имеющего группу электробезопасности не ниже III.

При пайке крупногабаритных деталей рекомендуется применять паяльник со встроенным отсосом.

Паяльник должен проходить проверку и испытания в сроки и объемах в соответствии с ТНПА, устанавливающими требования в данной области.

К эксплуатации допускается паяльник напряжением не выше 42 В, который по своему типу и исполнению соответствует классу зоны в соответствии с Правилами устройства электроустановок, а также характеристике окружающей среды.

Паяльник на рабочих местах должен устанавливаться на огнезащитные подставки, исключающие его падение.

В промежутках времени между паяльными операциями нагрев жала паяльников должен быть снижен до 150-180 °С, а при временном прекращении работ - отключен, для чего постоянные рабочие места следует оборудовать ограничителями (регуляторами) нагрева паяльников.

Кабель паяльника должен быть защищен от случайного механического повреждения и соприкосновения с горячими деталями.

Паяльник, находящийся в рабочем состоянии, постоянно должен находиться в зоне действия местной вытяжной вентиляции.

Излишки припоя и флюса с жала паяльника следует снимать с применением материалов, указанных в технологической документации (хлопчатобумажные салфетки и другие).

При пайке интегральных микросхем должны использоваться оптические приборы, преимущественно бинокулярные стереоскопические микроскопы с телевизионными экранами.

К эксплуатации должны допускаться микроскопы с исправными механическими узлами и юстированными оптическими системами. Микроскопы следует проверять и корректировать не реже одного раза в год.

3.9 Требования пожарной безопасности. Причины возникновения пожаров в электронной аппаратуре

1. Пожарная безопасность объекта должна обеспечиваться системами предотвращения пожара и противопожарной защиты, в том числе организационно-техническими мероприятиями.

Системы пожарной безопасности должны характеризоваться уровнем обеспечения пожарной безопасности людей и материальных ценностей, а также экономическими критериями эффективности этих систем для материальных ценностей, с учетом всех стадий (научная разработка, проектирование, строительство, эксплуатация) жизненного цикла объектов и выполнять одну из следующих задач:

- исключать возникновение пожара;

- обеспечивать пожарную безопасность людей;

- обеспечивать пожарную безопасность материальных ценностей;

- обеспечивать пожарную безопасность людей и материальных ценностей одновременно.

2. Объекты должны иметь системы пожарной безопасности, направленные на предотвращение воздействия на людей опасных факторов пожара, в том числе их вторичных проявлений на требуемом уровне.

Требуемый уровень обеспечения пожарной безопасности людей с помощью указанных систем должен быть не менее 0,999999 предотвращения воздействия опасных факторов в год в расчете на каждого человека, а допустимый уровень пожарной опасности для людей должен быть не более 10-6 воздействия опасных факторов пожара, превышающих предельно допустимые значения, в год в расчете на каждого человека.

3. Объекты, пожары на которых могут привести к массовому поражению людей, находящихся на этих объектах и окружающей территории, опасными и вредными производственными факторами (по ГОСТ 12.0.004-91), а также опасными факторами пожара и их вторичными проявлениями, должны иметь системы пожарной безопасности, обеспечивающие минимально возможную вероятность возникновения пожара. Конкретные значения минимально возможной вероятности возникновения пожара определяются проектировщиками и технологами при паспортизации этих объектов в установленном порядке.

4. Объекты, отнесенные к соответствующим категориям по пожарной опасности согласно нормам технологического проектирования для определения категорий помещений и зданий по пожарной и взрывопожарной опасности, должны иметь экономически эффективные системы пожарной безопасности.

5. Опасными факторами, воздействующими на людей и материальные ценности, являются:

- пламя и искры;

- повышенная температура окружающей среды;

- токсичные продукты горения и термического разложения;

- дым;

- пониженная концентрация кислорода.

К вторичным проявлениям опасных факторов пожара, воздействующим на людей и материальные ценности, относятся:

- осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций;

- радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок;

- электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов;

- опасные факторы взрыва по ГОСТ 12.1.010.90, происшедшего вследствие пожара;

- огнетушащие вещества.

6. Классификация объектов по пожарной и взрывопожарной опасности должна производиться с учетом допустимого уровня их пожарной опасности (требуемого уровня обеспечения пожарной безопасности), а расчеты критериев и показателей ее оценки, в т. ч. вероятности пожара (взрыва), -- с учетом массы горючих и трудно-горючих веществ и материалов, находящихся на объекте, взрывопожароопасных зон, образующихся в аварийных ситуациях, и возможного ущерба для людей и материальных ценностей.

7. Вероятность возникновения пожара от (в) электрического или другого единичного технологического изделия или оборудования при их разработке и изготовлении не должна превышать значения 10-6 год. Значение величины допустимой вероятности пожара при применении изделий на объектах должно устанавливаться расчетом, исходя из требований п. 1.2 настоящего стандарта.

8. Методики, содержащиеся в стандартах и других нормативно-технических документах и предназначенные для определения показателей пожарной опасности строительных конструкций, их облицовок и отделок, веществ, материалов и изделий (в т. ч. незавершенного производства) должны адекватно отражать реальные условия пожара.

9. Перечень и требования к эффективности элементов конкретных систем пожарной безопасности должны устанавливаться нормативными и нормативно-техническими документами на соответствующие виды объектов.

Сущность и характеристика типичных причин пожаров от электроустановок.

Электроустановки можно объединить в группы по наиболее существенным признакам:

- конструктивному исполнению;

- электрическим характеристикам;

- функциональному назначению и т.д..

Приведенные ниже шесть основных групп электроустановок достаточно полно охватывают практически все многообразие применяемых в практике электроустановок:

- провода и кабели;

- электродвигатели, генераторы и трансформаторы;

- осветительная аппаратура;

- распределительные устройства; электрические аппараты пуска, переключения,

- управления, защиты;

- электронагревательные приборы, аппараты, установки;

- электронная аппаратура и ЭВМ.

Наиболее частыми причинами пожаров, возникающих при эксплуатации электроустановок являются: короткие замыкания в электропроводниках и электрическом оборудовании; воспламенение горючих материалов, находящихся в непосредственной близости от электроприемников, включенных на продолжительное время и оставленных без присмотра; токовые перегрузки электропроводок и электрооборудования; большие переходные сопротивления в местах контактных соединений; появление напряжения на строительных конструкциях и технологическом оборудовании, попадание раскаленных частиц нити накаливания на легкогорючие материалы и др.

Исходя из вышесказанного можно сделать следующий вывод: что вопрос охраны труда является одним из важнейших на современном этапе жизни нашего общества, в период когда работодатели ставят для себя основной задачей как можно быстрее и с минимальным вложением средств извлечь наибольшее количество прибыли, и пользуясь возникшим в последнее время у нас в стране дефицитом рабочих мест, когда наши граждане готовы за мизерную оплату выполнять самую грязную работу мало внимания уделяют, а порой и вообще игнорируют требования безопасности труда.

Увеличение количества профессиональных заболеваний, несчастных случаев на производстве, приводящих к травмам а иногда и к гибели людей, всё это заставляет задуматься о совершенстве нашего законодательства в области охраны труда, и думается, что нашим законодательным, исполнительным и судебным органам государственной власти предстоит ещё много работы в этом направлении.

Заключение

В данной дипломной работе была проделана работа по изучению и исследованию логического элемента «декодер». При исследование схемы декодера были изучены такие логические элементы как 3И, 3И-НЕ и НЕ.

Логические элементы - основной “строительный материал” цифровых систем обработки информации и управления. На логических элементах 3И, 3И-НЕ и НЕ в программе Protel смоделирована схема декодера на 4 входа и 16 выходов, а в программе PSpice AD проанализированы ее выходные характеристики.

Работа с логическими элементами требует не только знакомства с их принципиальными схемами и техническими характеристиками, но и знания основных положений алгебры логики, теории переключательных схем, а также умения по определенным правилам синтезировать логические схемы с заданными характеристиками.

Сокращения простоя оборудования в ремонтах - важная организационно-экономическая задача. Её решение приводит к уменьшению парка оборудования (или к увеличению выпуска продукции), повышению коэффициента его использования. Прогрессивным направлением организации ремонтного хозяйства является создание ремонтных баз на предприятиях - изготовителях оборудования. При такой организации предприятия-изготовители становятся более заинтересованными в совершенствовании конструкций изделий, повышении их ремонтопригодности и равно износостойкости отдельных их частей. Особо важное значение имеет развитие фирменного ремонта такого оборудования, как станки с ЧПУ, автоматизированные и роботизированные комплексы.

Вопрос охраны труда является одним из важнейших на современном этапе жизни нашего общества, увеличение количества профессиональных заболеваний, несчастных случаев на производстве, приводящих к травмам а иногда и к гибели людей, всё это заставляет задуматься о совершенстве нашего законодательства в области охраны труда, и думается, что нашим законодательным, исполнительным и судебным органам государственной власти предстоит ещё много работы в этом направлении.

В разделе охраны труда были рассмотрены такие вопросы как:

· Характеристика санитарно - гигиенических условий труда

· Защита от шума и вибраций

· Электробезопасность, требования безопасности при работе с электрооборудованием

· Статическое электричество и электромагнитные излучения

· Требования к организации рабочего места техника

· Причины возникновения коротких замыканий

· Требования безопасности при пайке

· Требования пожарной безопасности

Список используемой литературы

Глава 1

1. Шило В.Л.. Популярные цифровые микросхемы. - М.: Радио и связь, 1989 г.- 352c.

2. Табарин Б.В., Лунин Л.Ф. Интегральные микросхемы, диоды, транзисторы. Справочник.-M.:Машиностроение, 2000г.-319с.

3. Тули М. Справочное пособие по цифровой электронике. Пер. с англ. -М.: Энергоатомиздат, 2000г.-176с.

4. Зотов А.А., Муромцев Ю.Л. основы схемотехники радиоэлектронных средств. Учебное пособие -Тамбов. Тамб.гос.техн.ун-т.2005г.-273с.

5. Степанов Ю. И. Справочник по ЕСКД К. 1975 г.-214c.

6. Уильямс А. Применение интегральных схем.- М.: Мир 1987 г-432c..

7. ОСТ 11073.915-80. Микросхемы интегральные. Классификация и система условных обозначений.

8. ГОСТ 17467-88 (СТ СЭВ 5761-86). Микросхемы интегральные. Основные размеры.

9. Триполитов, А.В. Ермаков. Микросхемы, диоды, транзисторы. Справочник. - М. Машиностроение, 1994. - 319 с., ил.

Глава 2

1. Фатхутдинов Р.А. Организация производства. М.: Инфра-М 2000

2. Организация и планирование машиностроительного производства под ред. М.И. Ипатова. М.: Высшая школа 1998

3. www.retail.ru - электронный еженедельник "RETAIL"

4. Экономика предприятия. Учебник для ВУЗов. / Под ред. Н.А. Сафронова. - М.: «Юристъ», 1998. - 584 с.

5. Грузинов В.П., Грибов В.Д. Экономика предприятия. Учебное пособие. - М.: «Финансы и статистика», 2001. - 294 с.

6. Дубровский В.Ж., Чайкин Б.И. Экономика и управление предприятием. - М.: Инфра_М, 2004. - 368 с.

7. Зайцев Н.Л. Экономика, организация и управление предприятием. - М.: Инфра_М, 2004. - 502 с.

8. Козырев В.Л. Основы современной экономики. - М.: Финансы и статистика, 1999. - 368 с.

Глава 3

1. ГОСТ Р.50923 - 96. Рабочее место .техника, Общие эргономические требования, и требования к произвольной Среде. Методы измерения. Гигиенические критерии' оценки условий труда.

2. Гост 12.1.030-81 «Электробезопасность»

3. Охрана труда. Учебник. - К: Высшая школа, 240с, 2000г.

4. Н.А. Белова. Безопасность жизнедеятельности. - М: Знание, 2000г.

5. Самгин Э.Б. Освещение рабочих мест. - М.: НИРЭА, 1989г.

6. Е.Я. Юдин и др. Борьба с шумом на производстве: Справочник. М.: Машиностроение, 1988г.

7. Гост 12.1.004-91 «Пожарная безопасность»

8. Гост 12.1.003-83 «Шум. Общие требования безопасности»

Размещено на Allbest.ru


Подобные документы

  • Приближенный расчёт электрических параметров двухвходовой КМОП-схемы дешифратора. Определение значений компонентов топологического чертежа схемы. Проведение схемотехнического анализа с помощью программы T-Spice, с соблюдением заданных технических условий.

    курсовая работа [352,7 K], добавлен 01.07.2013

  • Двоичные логические операции с цифровыми сигналами. Преобразование десятичных чисел в двоичную систему счисления. Применение шифратора. Изучение результатов исследований работы логических устройств с помощью программы схемотехнического моделирования.

    дипломная работа [868,1 K], добавлен 11.01.2015

  • Общее понятие о триггерах и их разновидность. Основные параметры триггеров и логические элементы. Исследование логических элементов НЕ, Ключ, 2ИЛИ-НЕ. Анализ работы схемы D-триггера. Разработка конструкции стенда, изготовление печатной платы и макета.

    дипломная работа [1,6 M], добавлен 29.12.2014

  • Технология изготовления полупроводниковой микросхемы, ее виды. Электронное устройство для расшифровки сообщений, передаваемых условными сигналами и перевода информации на язык воспринимающей системы. Пример дешифратора для пятиразрядного двоичного кода.

    курсовая работа [801,5 K], добавлен 28.04.2015

  • Сборка схемы дешифратора на логических элементах в EWB512. Проектирование монтажной схемы устройства и методического комплекса. Изготовление действующего макета устройства. Расчет стоимости лабораторного стенда и экономического эффекта ее внедрения.

    дипломная работа [14,4 M], добавлен 24.06.2015

  • Знакомство с особенностями выбора элементарной базы проектируемого цифрового устройства. Общая характеристика схемы дешифратора старшего разряда индикатора. Рассмотрение основных способов определения функций возбуждения триггера каждого разряда.

    контрольная работа [509,8 K], добавлен 27.04.2014

  • Проектирование лабораторного стенда и методического комплекса для проведения лабораторных и практических работ. Выбор элементной базы. Сборка принципиальной схемы дешифратора на логических элементах в EWB512. Изготовление действующего макета устройства.

    курсовая работа [2,1 M], добавлен 11.07.2015

  • Дешифратор - комбинационные схемы с несколькими входами и выходами, преобразующие код, подаваемый на входы в сигнал на одном из выходов. Описание функционирования дешифратора с помощью системы конъюнкций. Характеристика микросхем преобразователей кодов.

    реферат [3,2 M], добавлен 09.12.2010

  • Анализ работы двоичного интегрального счетчика и двоично-десятичного дешифратора. Подключение неиспользуемых входов к шине питания, "общему" проводу или другому используемому входу. Анализ временной диаграммы дешифратора. Устройство счетчика Джонсона.

    лабораторная работа [211,1 K], добавлен 18.06.2015

  • Устройства, предназначенные для обработки информации в цифровой форме. Двоичные логические операции с цифровыми сигналами (битовые операции). Закон де-Моргана. Инвертор как один из основных логических элементов. Мнемоническое правило эквивалентности.

    презентация [675,4 K], добавлен 15.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.