Сетевое оборудование и системное программное обеспечение компьютерных сетей

Изучение основ соединения компьютеров с использованием средств коммутации. Характеристика кабелей и программного обеспечения. Обзор международных организаций по стандартизации. Применение беспроводных сетей. Сетевые адаптеры, модемы, их функции и типы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 17.12.2014
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сетевое оборудование и системное программное обеспечение компьютерных сетей

Раздел 1. Основные сетевые стандарты

компьютер сеть адаптер кабель

1.1 Коммуникация и технические средства телекоммуникаций

Для соединения компьютеров между собой используют средства коммутации.

В качестве таких средств наиболее часто используются витая пара, коаксиальный кабель, Ethernet - кабель, Cheapernet - кабель, оптоволоконные линии.

Витамя памра (англ. twisted pair) -- вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых пластиковой оболочкой.

В зависимости от наличия защиты -- электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности данной технологии:

§ незащищенная витая пара (UTP -- Unshielded twisted pair) -- отсутствует защитный экран вокруг отдельной пары;

§ фольгированная витая пара (FTP -- Foiled twisted pair) -- также известна как F/UTP, присутствует один общий внешний экран в виде фольги;

§ защищенная витая пара (STP -- Shielded twisted pair) -- присутствует защита в виде экрана для каждой пары и общий внешний экран в виде сетки;

§ фольгированная экранированная витая пара (S/FTP -- Screened Foiled twisted pair) -- внешний экран из медной оплетки и каждая пара в фольгированной оплетке;

§ незащищенная экранированная витая пара (SF/UTP -- Screened Foiled Unshielded twisted pair) -- двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних, и т.д.

Витопарный кабель состоит из нескольких витых пар. Проводники в парах изготовлены из монолитной медной проволоки толщиной 0,4--0,6 мм. Толщина изоляции проводника -- около 0,2 мм, материал обычно поливинилхлорид , полипропилен, полиэтилен .

Также внутри кабеля встречается так называемая "разрывная нить" (обычно капрон), которая выполняет защитную функцию.

Существует несколько категорий кабеля витая пара, которые нумеруются от CAT1 до CAT7 и определяют эффективный пропускаемый частотный диапазон.

§ CAT1 (полоса частот 0,1 МГц) -- телефонный кабель, всего одна пара. Используется только для передачи голоса или данных при помощи модема.

§ CAT2 (полоса частот 1 МГц) -- 2 пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях Token ring и Arcnet.

§ CAT3 (полоса частот 16 МГц) -- 4-парный кабель, используется при построении телефонных и локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных до 10 Мбит/с или 100 МБит/с на расстоянии не дальше 100 метров.

§ CAT4 (полоса частот 20 МГц) -- кабель состоит из 4 скрученных пар, использовался в сетях token ring, 10BASE-T, 100BASE-T4, скорость передачи данных не превышает 16 Мбит/с по одной паре, сейчас не используется.

§ CAT5 (полоса частот 100 МГц) -- 4-парный кабель, использовался при построении локальных сетей 100BASE-TX и для прокладки телефонных линий, поддерживает скорость передачи данных до 100 Мбит/с при использовании 2 пар.

§ CAT5e (полоса частот 125 МГц) -- 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей.

§ CAT6 (полоса частот 250 МГц) -- применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 1000 Мбит/с.

§ CAT6a (полоса частот 500 МГц) -- применяется в сетях Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 10 гигабит/с.

Особое место занимают кабели категории 7 (не UTP!):

§ CAT7 --скорость передачи данных до 10 Гбит/с, частота пропускаемого сигнала до 600--700 МГц. Кабель этой категории имеет общий экран и экраны вокруг каждой пары.

Каждая отдельно взятая витая пара, входящая в состав кабеля, предназначенного для передачи данных, должна иметь волновое сопротивление 100±25 Ом.

Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку (рис. 1).

Коаксиальный кабель обладает высокой помехозащищенностью, более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до километра и выше). К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше, Поэтому его сейчас применяют реже, чем витую пару.

Рис. 1. Коаксиальный кабель

Существует два основных типа коаксиального кабеля:

· тонкий (thin) кабель, имеющий диаметр около 0,5 см, более гибкий;

· толстый (thick) кабель, имеющий диаметр около 1 см, значительно более жесткий.

Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, так как в нем сигнал затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю проще и не требует дополнительного оборудования, а для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий. Поэтому тонкий кабель применяется гораздо чаще.

В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая пара или оптоволоконный кабель. Новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.

Широкополосный коаксиальный кабель.

Широкополосные системы обычно разделяются на отдельные каналы (часто - на 6-МГц). Каждый канал независимо от других может применяться для аналогового телевидения, аудио с качеством компакт-диска (1,4 Мбит/с) или цифрового потока данных со скоростью около 3 Мбит/с.

Основное различие между узкополосной и широкополосной системой заключается в том, что широкополосные системы обычно покрывают большие территории и поэтому нуждаются в периодически устанавливаемых усилителях для борьбы с ослаблением сигнала. Такие усилители могут передавать сигналы лишь в одном направлении. Для решения этой проблемы были разработаны два типа широковещательных систем: двухкабельные и однокабельные. Двухкабельные системы состоят из двух протянутых параллельно одинаковых кабелей. Для передачи данных компьютер использует первый кабель, при этом данные двигаются к головному устройству, расположенному на вершине дерева кабелей. Затем головное устройство передает сигнал на второй кабель, по которому он распространяется вниз по дереву. Все компьютеры передают по кабелю 1 и принимают по кабелю 2. Двухкабельная система показана на рис. 2.3, а.

Другая схема использует для приема и передачи различные частотные диапазоны на одном и том же кабеле (см. рис. 2.3, а). Низкочастотный диапазон обычно используется для передачи от компьютера к головной станции, которая сдвигает сигнал в область высоких частот и передает его обратно. В системе двухсторонней передачи с разбиением полосы на две неравные части частоты от 5 до 30 МГц используются для входящих сообщений, а частоты от 40 до 300 МГц - для исходящих.

В системе двухсторонней передачи с разбиением полосы на две равные части входной диапазон располагается в пределах от 5 до 116 МГц, а выходной диапазон - от 168 до 300 МГц.

Рис. 2. Широкополосные сети: двухкабельная (а); однокабельная (б)

Широкополосные сети могут использоваться различным образом. Некоторым парам компьютеров может предоставляться постоянный выделенный канал. Другие компьютеры могут запрашивать по каналу управления предоставления им канала для временной связи, после чего переключиться на частоты предоставленного им канала на время соединения.

Ethernet-кабель.

Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (англ. thick) или желтый кабель (англ. yellow cable). Он использует 15-контактное стандартное включение. Вследствие помехозащищенности является дорогой альтернативой обычным коаксиальным кабелям. Средняя скорость передачи данных 10 Мбит/с.

Максимально доступное расстояние сети Ethernet - около 3000 м.

Cheapernet-кабель.

Более дешевым, чем Ethernet-кабель является соединение Cheapernet-кабель (RG-58) или, как его часто называют, тонкий (англ. thin) Ethernet.

Это 50-омный коаксиальный кабель со скоростью передачи информации в 10 Мбит/с. При соединении сегментов Cheapernet-кабеля также требуются повторители. Вычислительные сети с Cheapernet-кабелем имеют небольшую стоимость и минимальные затраты при наращивании. Дополнительное экранирование не требуется. Расстояние между двумя рабочими станциями без повторителей может составлять максимум 300 м, а минимум 0.5 м, общее расстояние для сети на Cheapernet-кабеля около 1000 м.

Оптоволокнные линии.

Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях.

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов.

Оптическое волокно -- чрезвычайно тонкий стеклянный цилиндр, называемый жилой (core), покрытый слоем стекла (Рис. 3), называемого оболочкой, с иным, чем у жилы, коэффициентом преломления. Каждое стеклянное оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон. Одно из них служит для передачи, а другое -- для приема. Жесткость волокон увеличена покрытием из пластика, а прочность -- волокнами из кевлара.

Рис 3. Схема простейшего оптоволоконного кабеля

Оптоволоконный кабель обеспечивает высокую защищенность передаваемых данных, поскольку не испускает электромагнитного излучения

Недостатки оптоволокна - высокая стоимостью его прокладки и эксплуатации.

Существуют два различных типа оптоволоконного кабеля:

· многомодовый

· одномодовый кабель

· Суть различия между этими двумя типами сводится к разным режимам прохождения световых лучей в кабеле.

Рис. 4. Распространение света в одномодовом кабеле

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (Рис. 4). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны.

Рис. 5. Распространение света в многомодовом кабеле

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (Рис. 5). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм, при этом наблюдается разброс длин волн около 30-50 нм. Допустимая длина кабеля составляет 2-5 км. Затухание в многомодовом кабеле больше, чем в одномодовом и составляет 5-20 дБ/км.

1.2 Обзор международных организаций по стандартизации

Локальная сеть представляет собой систему распределенной обработки информации, составляющую как минимум из двух компьютеров, взаимодействующих между собой с помощью специальных средств связи.

Локальная Ethernet.

В настоящее время из относительно небольших компьютерных сетей со скоростью передачи до 10 Мбит/с. наиболее широкое распространение получила сеть Ethernet. Эта сеть предназначена для объединения различных учрежденческих рабочих станций в локальную сеть. Сеть характеризуется низкой стоимостью, простотой наладки и эксплуатации.

Различают четыре типа спецификации передающей среды: 10BASE5-толстый коаксиальный кабель; 10BASE2-тонкий коаксиальный кабель; 10BASE-T-кабель витая пара и 10BASE-F-оптоволокно.

Сети систем 10BASE5 и 10BASE2 различаются также по дальности передачи по кабелю без повторителей, максимальному числу станций, подключаемых к сегменту, и способу подключения их к коаксиальному кабелю. Так, максимальная длина сегмента, то есть участка сети без дополнительных усилителей (повторителей), для системы 10BASE5 составляет 500 метров. К сегменту допускается подключение до 100 станций. На концах сегмента размещаются терминаторы, предотвращающие возникновение эффекта отраженной волны на конце коаксиального кабеля. Для подключения станций к передающей среде используется специальный приемопередатчик (трансивер) и адаптер. Трансивер выполняет функции модуля связи со средой, обеспечивая прием и усиление электрических сигналов, поступающих из кабеля, и передачу их обратно в коаксиальный кабель и сетевой адаптер.

Для сетей системы 10BASE2 максимальная длина сегмента составляет 185 метров, хотя для некоторых типов сетевых адаптеров допускается увеличение этого параметра до 200, а некоторые - даже до 300 метров.

Терминатор используется для поглощения сигналов на концах коаксиального кабеля и предотвращения эффекта отраженной волны. Один из терминаторов (но не оба) должен быть заземлен. Иначе сеть будет работать неустойчиво.

Более того, повторители позволяют объединять сети с толстым и тонким кабелем. В настоящее время появились многопортовые повторители, позволяющие объединять несколько сегментов в виде звездообразной структуры. Таким образом, с помощью повторителей может быть реализована топология локальной компьютерной сети, близкая к оптимальной.

Cпецификация 10BASE-T определяет использование в качестве передающей среды витой пары проводников категории 3 и длиной кабеля до 100 метров. Основным структурным элементом сети является концентратор (Hub), к которому радикальным образом (рис.2) подключаются рабочие станции.

Также новым технологическим направлением развития сетей Ethernet является оптоволоконная сеть Ethernet 10BASE-F со скоростью передачи 10 Мбит/с. В качестве передающей среды используется 50- или 100-микронный оптоволоконный кабель.

Сеть Ethernet использует для управления передачей данных по сети конкурентную схему. Элементы сети Ethernet могут быть соединены по шинной или звездной топологии с использованием витых пар, коаксиального или волоконно-оптических кабелей.

Основным преимуществом сетей Ethernet является их быстродействие. Обладая скоростью передачи от 10 до 100 Мбит/с, Ethernet является одной из самых быстрых среди существующих локальных сетей. Однако такое быстродействие, в свою очередь, вызывает определенные проблемы: из-за того, что предельные возможности тонкого медного кабеля лишь незначительно превышают указанную скорость передачи в 10 Мбит/с, даже небольшие электромагнитные помехи могут значительно ухудшить производительность сети.

Локальная сеть ArcNet.

Одной из первых локальных сетей с маркерным методом доступа является сеть ArcNet. Скорость передачи информации 2,5 Мбит/с, 20 Мбит/с. ArcNet, использует маркерный метод доступа по шинной топологии. Доступ осуществляется с помощью непрерывно передаваемого кадра маркера определенного формата. Передача маркера происходит от одной станции к другой в порядке убывания их логических адресов. Станция с наибольшим адресом циклически передает кадр маркера станции с наибольшим адресом, тем самым, замыкая логическое кольцо передачи маркера. Станция, которая получает маркер от другой станции, относительно нее называется преемником. Соответственно, станция, от которой поступает маркер, называется предшественников. Так для станции Ст2 предшественником является станция Ст3, а преемников - станция Ст1.

Следует заметить, что последовательности расположения станций в логическом кольце не обязательно должна соответствовать последовательность их физического размещения на шине. Более того, некоторые станции могут быть вообще не включены в логическое кольцо. Так, представленные на рис.4 станции с номерами с первого по пятый принадлежат логическому кольцу, а шестая - нет. Основное различие между ними заключается в том, что станция, не входящая в логическое кольцо, не получает кадр маркера и, соответственно, она не может передавать кадры данных. Такая станция считается пассивной и может только принимать адресованные ей кадры данных. Протоколом функционирования сети предусмотрена возможность включения пассивных станций в логическое кольцо, после чего они получат право передавать кадры данных.

Для передачи данных и управления сетью определены кадры: данных, управления и прерывания. Кадры данных управления имеют одинаковую структуру и различают между собой только содержимым поля управления кадром, а также полем данных.

Каждому кадру предшествует преамбула, включающая от одного до нескольких символов заполнителей - в зависимости от скорости передачи и применяемого метода модуляции сигналов. За преамбулой следует начальный ограничитель кадра длиной в один байт. Следующий за ним байт содержит управляющую информацию, с помощью которой определяется тип кадра. За полем управления кадром следует двух - или шестибайтовые поля адресов получателя и отправителя информации. Последующее за ним поле данных содержит информацию, поступающую с подуровня управления логическим каналом либо формируемую диспетчером. Под значение контрольной последовательности кадра отведены следующие шесть байтов. Кадр завершается однобайтовым полем конечного ограничителя. Два младших разряда поля управления кадром указывают на тип кадра. Кроме того, существуют семь типов управляющих кадров, которые кодируются с помощью четырех старших разрядов поля управления кадром.

В процессе работы компьютерной сети может динамически меняться ее логическое кольцо, то есть станции могут, как отключаться, так и подключаться к ней.

Token Ring

Из кольцевых сетей с маркерным методом доступа наиболее распространенной является сеть Token Ring. Эта сеть разработана фирмой IBM. Сети Token Ring существуют в двух версиях, со скоростью передачи в 4 или 16 Мбит/с. Сеть Token Ring физически выполнена по схеме "звезда", но ведет себя как кольцевая. Другими словами, пакеты данных передаются с одной рабочей станции на другую последовательно (как в кольцевой сети), но постоянно проходят через центральный компьютер (как в сетях типа "звезда"). Сети Token Ring могут осуществлять передачу как по незащищенным и защищенным витым проводным парам, так и по волоконно-оптическим кабелям.

Функционирование сети обеспечивается с помощью управляющих кадров. Управление работой сети осуществляется с помощью так называемого активного монитора. Активным монитором может быть любая, но в каждый конкретный момент только одна станция. Активный монитор отвечает за передачу управляющей информации и данных всеми станциями кольца. В том числе он отвечает за поддержку главного тактового генератора, осуществляет требуемую задержку передачи, следит за потерянными кадрами и маркером. Однако активный монитор не берет на себя абсолютно все функции управления кольцом, часть их выполняется другими станциями сети, которые в этом случае называются пассивными мониторами.

Подключение станции к передающей среде осуществляется с помощью кабеля сопряжения со средой и специального блока подключения к среде. Кабель сопряжения со средой представляет собой две витых пары проводников, одна из которых служит для передачи, а вторая - для приема данных. При рассоединении этого разъема контакты его ответной части замыкают соответствующие линии магистрального канала, а в случае подключения кабеля сопряжения магистральный канал коммутируется на принимающую и передающую пары проводников.

1.3 Базовая модель OSI

Международная организация по стандартизации [ISO -- International Standards Organization ] -- основана в 1946 г. для разработки международных стандартов в различных областях техники, производственной и других видах деятельности. Объединяет более 70 национальных организаций по стандартизации. Наиболее известный стандарт ISO в области телекоммуникаций -- семиуровневая модель взаимодействия открытых систем.

Модель OSI (Open Systems Interconnection) -- взаимодействие открытых систем -- семиуровневая модель протоколов передачи данных, разработанная Международной организацией по стандартизации и CCITT (Consultative Committee for International Telephony and Telegraphy) для сопряжения различных видов вычислительного и коммуникационного оборудования различных производителей.

Уровни OSI [OSI layers] -- группы протоколов передачи данных, связанные между собой иерархическими отношениями. Каждый уровень обслуживает вышестоящий уровень и, в свою очередь, пользуется услугами нижестоящего.

С точки зрения пользователя основным является прикладной уровень, то есть уровень, обеспечивающий выполнение прикладных процессов пользователей. Наряду с прикладными протоколами, он определяет протоколы передачи файлов, виртуального терминала, электронной почты.

Следующим по значимости является представительный (шестой) уровень (уровень представления данных). Он определяет единый для всех систем синтаксис передаваемой информации. Необходимость данного уровня обусловлена различной формой представления информации в сети передачи данных и компьютерах. Этот уровень играет важную роль в обеспечении "открытости" систем, позволяя им общаться между собой независимо от их внутреннего языка.

Следующий уровень (пятый) называется сеансовым, так как основное его назначение - это организация сеансов связи между прикладными процессами различных рабочих станций. На этом уровне создаются порты для приема и передачи сообщений и организуются соединения -- логические каналы между процессами. Необходимость протоколов этого уровня определяется относительной сложностью сети передачи данных и стремлением обеспечить достаточно высокую надежность передачи информации.

Четвертый, транспортный уровень (уровень сквозной передачи) служит для передачи данных между двумя взаимодействующими открытыми системами и организации процедуры сопряжения абонентов сети с системой передачи данных. На этом уровне определяется взаимодействие рабочих станций -- источника и адресата данных, организуется и поддерживается логический канал (транспортное соединение) между абонентами.

Третий, сетевой уровень, предназначен для маршрутизации информации и управления сетью передачи данных. В отличие от предыдущих, этот уровень в большей степени ориентирован на сеть передачи данных. Здесь решаются вопросы управления сетью передачи данных, в том числе маршрутизация и управление информационными потоками. Этот уровень выполняет в основном технические функции передачи и управления информацией.

Канальный уровень обеспечивает функциональные и процедурные средства для установления, поддержания и расторжения соединений на уровне каналов передачи данных. Процедуры канального уровня обеспечивают обнаружение и, возможно, исправление ошибок, возникающих на физическом уровне.

Физический уровень обеспечивает механические, электрические, функциональные и процедурные средства организации физических соединений при передаче бит данных между физическими объектами.

Последние четыре уровня образуют транспортную службу компьютерной сети, которая обеспечивает передачу ("транспортировку") информации между рабочими станциями, освобождая более высокие уровни от решения этих задач. В свою очередь, три верхних уровня, обеспечивающие логическое взаимодействие прикладных процессов, функционально объединяются в абонентскую службу.

В рамках эталонной модели также определяются услуги, которые должны обеспечивать ее уровни. Услуги, по сути дела, представляют собой функции, выполняемые на соответствующем уровне эталонной модели.

В частности, физический уровень должен обеспечивать такие виды услуг, как установление и идентификация физических соединений, организация последовательностей передачи бит информации, оповещение об окончании связи.

Канальный уровень обеспечивает организацию нужной последовательности блоков данных и их передачу, управление потоками между смежными узлами, идентификацию конечных пунктов канальных соединений, обнаружение и исправления ошибок, оповещение об ошибках, которые не исправлены на канальном уровне.

Сетевой уровень в числе основных услуг осуществляет идентификацию конечных точек сетевых соединений, организацию сетевых соединений, управление потоками блоков данных, обеспечение последовательностей доставки блоков данных, обнаружение ошибок и формирование сообщений о них, разъединение сетевых соединений.

Транспортный уровень обеспечивает установление и разъединение транспортных соединений, формирование блоков данных, обеспечение взаимодействия сеансовых соединении с транспортными соединениями, управление последовательностью передачи блоков данных, обеспечение целостности блоков данных во время передачи, обнаружение и устранение ошибок, сообщение о неисправленных ошибках, предоставление приоритетов в передаче блоков, передачу подтверждений о принятых блоках, ликвидацию тупиковых ситуаций.

На сеансовом уровне предоставляются услуги, связанные с обслуживанием сеансов и обеспечением передачи данных в диалоговом режиме, установлением сеансового соединения, обменом данными; управлением обменом; синхронизацией сеансового соединения, сообщениями об исключительных ситуациях, отображением сеансового соединения на транспортный уровень, завершением сеансового соединения.

Представительный уровень обеспечивает выбор вида представления данных, интерпретацию и преобразование передаваемой информации к виду, удобному для прикладных процессов, преобразование синтаксиса данных, формирование блоков данных.

Прикладной уровень обеспечивает широкий набор услуг, в том числе: управление терминалами, управление файлами, управление диалогом, управление задачами, управление сетью в целом. К дополнительным услугам уровня относятся услуги по организации электронной почты, передачи массивов сообщений и т.п.

Услуги различных уровней определяются с помощью протоколов эталонной модели взаимодействия открытых систем. В соответствии с семиуровневой моделью взаимодействия открытых систем вводятся семь типов протоколов, которые именуются так же, как уровни.

1.4 Сетевые протоколы

Для передачи информации по коммуникационным линиям данные преобразуются в цепочку следующих друг за другом битов (двоичное кодирование с помощью двух состояний:"0" и "1"). При передаче данных их разделяют на отдельные пакеты, передающиеся последовательно друг за другом. Пакет включает в себя: адрес отправителя, адрес получателя, данные, контрольный бит.

Для правильной и, следовательно, полной и безошибочной передачи данных необходимо придерживаться согласованных и установленных правил. Все они оговорены в протоколе передачи данных.

Протокол передачи данных требует следующей информации:

· Синхронизация - Под синхронизацией понимают механизм распознавания начала блока данных и его конца.

· Инициализация - Под инициализацией понимают установление соединения между взаимодействующими партнерами.

· Блокирование - Под блокированием понимают разбиение передаваемой информации на блоки данных строго определенной максимальной длины (включая опознавательные знаки начала блока и его конца).

· Адресация - Адресация обеспечивает идентификацию различного используемого оборудования данных, которое обменивается друг с другом информацией во время взаимодействия.

· Обнаружение ошибок - Под обнаружением ошибок понимают установку битов четности и, следовательно, вычисление контрольных битов.

· Нумерация блоков - Текущая нумерация блоков позволяет установить ошибочно передаваемую или потерявшуюся информацию.

· Управление потоком данных - Управление потоком данных служит для распределения и синхронизации информационных потоков. Так, например, если не хватает места в буфере устройства данных или данные не достаточно быстро обрабатываются в периферийных устройствах (например, принтерах), сообщения и / или запросы накапливаются.

· Методы восстановления - После прерывания процесса передачи данных используют методы восстановления, чтобы вернуться к определенному положению для повторной передачи информации.

· Разрешение доступа - Распределение, контроль и управление ограничениями доступа к данным вменяются в обязанность пункта разрешения доступа (например, "только передача" или "только прием".

Классификация протоколов передачи данных.

Протокол TCP/IP -- это два протокола нижнего уровня, являющиеся основой связи в сети Интернет. Протокол TCP (Transmission Control Protocol) разбивает передаваемую информацию на порции и нумерует все порции. С помощью протокола IP (Internet Protocol) все части передаются получателю. Далее с помощью протокола TCP проверяется, все ли части получены. При получении всех порций TCP располагает их в нужном порядке и собирает в единое целое.

Наиболее известные протоколы, используемые в сети Интернет:

· HTTP (Hyper Text Transfer Protocol) -- это протокол передачи гипертекста. Протокол HTTP используется при пересылке Web-страниц с одного компьютера на другой.

· FTP (File Transfer Protocol)- это протокол передачи файлов со специального файлового сервера на компьютер пользователя. FTP дает возможность абоненту обмениваться двоичными и текстовыми файлами с любым компьютером сети. Установив связь с удаленным компьютером, пользователь может скопировать файл с удаленного компьютера на свой или скопировать файл со своего компьютера на удаленный.

· POP (Post Office Protocol) -- это стандартный протокол почтового соединения. Серверы POP обрабатывают входящую почту, а протокол POP предназначен для обработки запросов на получение почты от клиентских почтовых программ.

· SMTP (Simple Mail Transfer Protocol) -- протокол, который задает набор правил для передачи почты. Сервер SMTP возвращает либо подтверждение о приеме, либо сообщение об ошибке, либо запрашивает дополнительную информацию.

· UUCP (Unix to Unix Copy Protocol) -- это ныне устаревший, но все еще применяемый протокол передачи данных, в том числе для электронной почты. Этот протокол предполагает использование пакетного способа передачи информации, при котором сначала устанавливается соединение клиент- сервер и передается пакет данных, а затем автономно происходит его обработка, просмотр или подготовка писем.

· TELNET -- это протокол удаленного доступа. TELNET дает возможность абоненту работать на любой ЭВМ сети Интернет, как на своей собственной, то есть запускать программы, менять режим работы и т. д. На практике возможности лимитируются тем уровнем доступа, который задан администратором удаленной машины.

· DTN -- протокол дальней космической связи, предназначенный для обеспечения сверхдальней космической связи.

Раздел 2. Основы построения компьютерных сетей

2.1 Принципы построения вычислительных сетей

Локальные сети составляют один из быстроразвивающихся секторов промышленности средств связи, ЛС часто называют сетью для автоматизированного учреждения. ЛС описывается обычно следующими характеристиками:

- каналы обычно принадлежат организации пользователя;

- каналы являются высокоскоростными (1-400 Мбит\с).

Устройства ООД подключаются в сеть с использованием каналов с меньшей скоростью передачи данных (от 600 бит\с до 56 кбит\с);

- устройства ООД обычно располагаются неподалеку друг от друга, в пределах здания или территории предприятия;

- каналы имеют более высокое качество по сравнению с каналами ГС;

- расстояние между рабочими станциями, подключаемыми к локальной сети, обычно составляет от нескольких сотен до нескольких тысяч футов;

- ЛС передает данные между станциями пользователей ЭВМ (некотрые ЛС передают речевую и видеоинформацию);

- пропускная способность ЛС, как правило, больше, чем у глобальной сети;

- канал локальной сети обычно находится в монопольной собственности организации, использующей сеть. Телефонные компании обычно непричастны к владению или управлению каналами. Однако телефонные каналы предлагают пользователю ЛС широкий диапазон услуг;

- интенсивность ошибок в ЛС значительно ниже по сравнению с ГС на базе телефонных каналов.

Информационно-вычислительная сеть создается с целью повышения оперативности обслуживания абонентов. ИВС должна обеспечивать надежную передачу цифровой информации.

В качестве оконечных терминалов могут выступать как отдельные ПК, так и группы ПК, объединенные в локальные вычислительные сети.

Передача информационных потоков на значительные расстояния осуществляется с помощью проводных, кабельных, радиорелейных и спутниковых линий связи. В ближайшее время можно ожидать широкого применения оптической связи по оптоволоконным кабелям.

По географическим масштабам вычислительные сети подразделяются на два вида: локальные и глобальные. Локальная сеть может иметь протяженность до 10 километров. Глобальная сеть может охватывать значительные расстояния - до сотен и десятков тысяч километров. Нам необходимо выбрать и обосновать тип Глобальной информационно-вычислительной сети.

Будем действовать методом исключения.

Спутниковая связь. Первый спутник связи был запущен в 1958 году в США. Линия связи через спутниковый транслятор обладает большой пропускной способностью, перекрывает огромные расстояния, передает информацию вследствие низкого уровня помех с высокой надежностью. Эти достоинства делают спутниковую связь уникальным и эффективным средством передачи информации. Почти весь трафик спутниковой связи приходится на геостационарные спутники. Но спутниковая связь весьма дорога, так как необходимо иметь наземные станции, антенны, собственно спутник, кроме того требуется удерживать спутник точно на орбите, для чего на спутнике необходимо иметь корректирующие двигатели и соответствующие системы управления, работающие по командам с Земли и т.д. В общем балансе связи на спутниковые системы пока приходится примерно 3% мирового трафика. Но потребности в спутниковых линиях продолжают расти, поскольку при дальности свыше 800 км спутниковые каналы становятся экономически более выгодными по сравнению с другими видами дальней связи.

Оптоволоконная связь. Благодаря огромной пропускной способности оптический кабель становится незаменимым в информационно-вычислительных сетях, где требуется передавать большие объемы информации с исключительно высокой надежностью, в местных телевизионных сетях и локальных вычислительных сетях. Ожидается, что в скором времени оптический кабель будет дешев в изготовлении и свяжет между собой крупные города, тем более, что техническое производство световодов и соответствующей аппаратуры развивается быстрыми темпами.

Радиосвязь. К сожалению, радио как беспроволочный вид связи не свободно от недостатков. Атмосферные и промышленные помехи, взаимное влияние радиостанций, замирание на коротких волнах, высокая стоимость специальной аппаратуры - все это не позволило использовать радиосвязь в ИВС.

Радиорелейная связь. Освоение диапазона ультракоротких волн позволило создать радиорелейные линии. Недостатком радирелейных линий связи является необходимость установки через определенные промежутки ретрансляционных станций, их обслуживание и т.д.

Модемная телефонная сеть на основе стандартной телефонной линии и персонального компьютера.

Модемная телефонная сеть позволяет создавать информационно-вычислительные сети практически на неограниченной географической территории, при этом по указанной сети могут передаваться как данные, так и речевая информация автоматическим либо диалоговым способом.

Для соединения компьютера с телефонной сетью используются специальная плата (устройство), называемая телефонным адаптером или модемом, а так же соответствующее программное обеспечение.

К несомненным достоинствам организации информационно-вычислительной сети на основе стандартной телефонной линии связи является то, что все компоненты сети стандартны и доступны, не требуются дефицитные расходные материалы, простота установки и эксплуатации.

2.2 Топологии вычислительной сети

Топология типа звезда.

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Топология в виде звезды

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления - файловый сервер мотает реализовать оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3.

Кольцевая топология с рабочей станцией 4 и т.д.

Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять "в дорогу" по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Структура логической кольцевой цепи

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub -концентратор), которые по-русски также иногда называют "хаб". В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Шинная топология

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

Новые технологии предлагают пассивные штепсельные коробки, через которые можно отключать и / или включать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно включать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке снижаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point - точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Характеристики топологий вычислительных сетей приведены в таблице.

Характеристики

Топология

Звезда

Кольцо

Шина

Стоимость расширения

Незначительная

Средняя

Средняя

Присоединение абонентов

Пассивное

Активное

Пассивное

Защита от отказов

Незначительная

Незначительная

Высокая

Характеристики

Топология

Звезда

Кольцо

Шина

Размеры системы

Любые

Любые

Ограниченны

Защищенность от прослушивания

Хорошая

Хорошая

Незначительная

Стоимость подключения

Незначительная

Незначительная

Высокая

Поведение системы при высоких нагрузках

Хорошее

Удовлетворительное

Плохое

Возможность работы в реальном режиме времени

Очень хорошая

Хорошая

Плохая

Разводка кабеля

Хорошая

Удовлетворительная

Хорошая

Обслуживание

Очень хорошее

Среднее

Среднее

Древовидная структура ЛВС.

На ряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и / или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

На практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

Устройство к которому можно присоединить максимум три станции, называют пассивным концентратором.

Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе.

Предпосылкой для подключения пассивного концентратора является то, что максимальное возможное расстояние до рабочей станции не должно превышать нескольких десятков метров.

2.3 Типовые ЛВС

Архитектура ethernet

В 1975 году появился первый продукт Ethernet.

На сегодняшний день Ethernet остаётся одной из самых распространённых архитектур.

Основные характеристики:

1) традиционная топология - шина;

2) тип передачи - узкополосная;

3) метод доступа - CSMA/CD;

4) скорость передачи - 10,100,1000 Мбит/с;

5) кабельная система - UTP, STP, тонкий, толстый коаксиал, оптоволокно;

6) структура кадра.

Преамбула отмечает начало кадра - 56 бит;

признак начала кадра - 8 бит;

приёмник и источник - физические адреса компьютера получателя и отправителя по 48 бит;

длина (тип) - соответственно: или длина пакета, или информация для идентификации протокола сетевого уровня (IP или IPX) - 16 бит;

данные - от 46 до 1500 байт;

CRC - 32 бита.

Стандарты на 10 Мбит/с

1 10Base T .

10- скорость передачи.

Base - узкополосная.

Т - витая пара (Twisted Pair).

Большинство сетей строятся в виде звезды, но по системе передачи представляют собой шину. Концентратор выступает в роли многопортового репитера.

Здесь используется правило 5-4-3:

- 5 сегментов;

- 4 репитера;

- 3 загруженных сегмента.

То есть, сеть может состоять из пяти сегментов, соединённых четырьмя репитерами и только к трём сегментам могут быть подключены компьютеры.

Причем между нагруженными сегментами должны быть ненагруженные.

2 10Base 2 ("Тонкий Ethernet").

10 - скорость передачи.

Base - узкополосная.

2 - тонкий коаксиал (2 - эффективная длина, приблизительно в два раза больше, чем у 10Base T, реально - 185 м).

Топология - шина, используется правило 5-4-3.

3 10Base 5 ("Толстый Ethernet").

10 - скорость.

Base - узкополосная.

2 - толстый коаксиал.

Топология - шина, используется правило 5-4-3.

4 10Base FL.

F - кабельная система: оптоволокно.

Характеристики

10 Base T

10 Base 2

10 Base FL

10 Base 5

1 Максимальное число станций в сети.

1024

1024 реально 87

1024

1024 реально 297

2 Максимальное число магистральных сегментов в сети.

5

5

5

5

3 Кабель.

UTP

Тонкий коаксиал

Оптоволокно

Толстый коаксиал

4 Максимальная длина сегмента.

100

185

2000

500

5 Максимальное расстояние между узлами сети.

500

925

2500

2500

6 Максимальное число станций в сегменте.

1024

30

1024

99

7 Максимальное число репитеров.

4

4

4

4

Стандарты на 100 Мбит/с

1 100 VG-AnyLan, AnyLan, VG - Voice Grade - передача голоса.

Это новая технология, сочетающая в себе элементы Ethernet и Token Ring.

Характеристики:

1) скорость передачи - 100 Мбит/с;

2) топология - каскадируемая звезда (все компьютеры соединены с концентратором, причём сеть может быть расширена за счет добавления дочерних концентраторов, которыми управляет родительский);

3) кабельная система - STP или оптоволокно;

4) метод доступа - по приоритету запроса (различают два уровня: низкий и высокий);

5) кадры передаются не всем станциям сети, а только станции назначения, это обеспечивает безопасность информации;

6) поддерживает передачу кадров Ethernet и Token Ring.

2 "Fast Ethernet".

а) 100Base TX Ethernet;

б) 100 Base T4 Ethernet;

в) 100 Base FX Ethernet.

ТХ - витая пара с использованием двух пар.

Т4 - с использованием четырёх пар.

FX - многомодовое оптоволокно.

Стандарты на 1000 Мбит/с

"Gigabit Ethernet"

1 1000 Base SX - многомодовое оптоволокно с эффективной длиной 260 или 500 метров.

2 1000 Base LX - многомодовое оптоволокно с эффективной длиной 400, 500 метров.

3 1000 Base LX - одномодовое оптоволокно, эффективная длина 5000 метров.

4 1000 Base CX - сбалансированный экранированный медный кабель, эффективная длина 25 метров.

Архитектура token ring

Версия сети Token Ring была представлена в 1984 году фирмой IBM. В 1985 стала стандартом IEEE.

Характеристики:

1) топология - звезда-кольцо (топология звезда-кольцо характеризуется тем, что все компьютеры подключены к концентратору, а маркер передаётся по логическому кольцу. Физически кольцо реализуется в концентраторе);

2) метод доступа - с передачей маркера;

3) кабельная система - UTP, STP, оптоволокно;

4) скорость передачи 4 - 16 Мбит/с, недавно IBM предложила новый вариант архитектуры на 100 и 150 Мбит/с;

5) тип передачи - узкополосная;

6) максимальное количество станций для STP - 260, для UTP - 72.

7) максимальная длина сети - 4000 метров.

Концентратор имеет несколько названий:

1) MAU - Multistation Access Unit - модуль множественного доступа;

2) MSAU - Multistation Access Unit - модуль множественного доступа;

3) SMAU - Smart Multistation Access Unit - интеллектуальный модуль множественного доступа.

Концентратор может быть активным или пассивным.

Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключённые к этим портам, образовали кольцо.

Усиление сигнала концентратор не обеспечивает, эта функция выполняется сетевыми адаптерами компьютеров. Однако пассивный концентратор может обеспечить обход какого-либо порта, когда подсоединённый к этому компьютер выключен.

Активный концентратор может регенерировать сигнал, поэтому его иногда называют репитером.

Сети Token Ring в основном работают на скорости 4, 16 Мбит/с, причём в одном кольце должна быть только одна скорость.


Подобные документы

  • Определение, назначение, классификация компьютерных сетей. Техническое и программное обеспечение компьютерных сетей. Широкополосный коаксиальный кабель. Оборудование беспроводной связи. Анализ компьютерной сети ОАО "Лузская снабженческо-сбытовая база".

    курсовая работа [40,8 K], добавлен 23.01.2012

  • Основные направления применения беспроводных компьютерных сетей. Типы коаксиальных кабелей. Размещение сетевых устройств и оборудования. Современные маршрутизаторы, их свойства. Подключение к глобальным сетям. Выбор сетевого программного обеспечения.

    курсовая работа [2,0 M], добавлен 29.08.2013

  • Сфера применения локальных вычислительных сетей как способа соединения компьютеров. Основные топологии, применяемые при построении компьютерных сетей. Одноранговые и иерархические локальные сети. Сущность кабельных и оптоволоконных способов связи.

    реферат [559,4 K], добавлен 12.05.2014

  • Теоретические основы организации локальных компьютерных сетей: определение ЛС, топология, используемые протоколы обмена данными для связи рабочих станций и ЭВМ; программные средства. Сетевое окружение; идентификация компьютера с помощью IP-адреса.

    курсовая работа [335,9 K], добавлен 15.05.2014

  • Топологии компьютерных сетей. Организация взаимодействия компьютеров. Классификация компьютерных сетей по территориальной распространенности. Услуги службы голосовая "почта". Характеристика системы Видеотекс. Недостатки и достоинства одноранговых сетей.

    презентация [96,8 K], добавлен 12.09.2014

  • Принцип действия беспроводных сетей и устройств, их уязвимость и основные угрозы. Средства защиты информации беспроводных сетей; режимы WEP, WPA и WPA-PSK. Настройка безопасности в сети при использовании систем обнаружения вторжения на примере Kismet.

    курсовая работа [175,3 K], добавлен 28.12.2017

  • Роль компьютерных сетей, принципы построения. Протоколы передачи информации в сети ArcNet, используемые топологии и средства связи. Программное обеспечение, технология развёртки. Операционные системы компьютерных сетей. Инструкция по технике безопасности.

    курсовая работа [504,6 K], добавлен 11.10.2013

  • Телекоммуникация и сетевые технологии. Обоснование и выбор технического и программного обеспечения. Схема размещения и соединения сетевого оборудования. Топология локальных вычислительных сетей (ЛВС). Совместимость, расширяемость и масштабируемость ЛВС.

    курсовая работа [462,1 K], добавлен 30.11.2013

  • Понятие, сущность, особенности создания и классификация компьютерных сетей, способы их защиты. Характеристика основных методов доступа и протоколов передачи данных. Рекомендации по выбору технических средств и программного обеспечения для реализации ЛВС.

    курсовая работа [676,6 K], добавлен 06.09.2010

  • Знакомство с современными цифровыми телекоммуникационными системами. Принципы работы беспроводных сетей абонентского радиодоступа. Особенности управления доступом IEEE 802.11. Анализ электромагнитной совместимости группировки беспроводных локальных сетей.

    дипломная работа [2,8 M], добавлен 15.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.