Анализ современных технологий изготовления гибридных микросборок

Совмещение преимущества гибридных технологий с дешевизной традиционного поверхностного монтажа. Применение в современном приборостроении сверхбыстродействующих многоканальных бескорпусных микросхем. Технологический процесс изготовления микросборок.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 21.08.2010
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

АНАЛИЗ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ ИЗГОТОВЛЕНИЯ ГИБРИДНЫХ МИКРОСБОРОК

В настоящее время в ряде отраслей (авиакосмическом приборостроении, в телекоммуникационной отрасли, в робототехнике) все шире используются сверхбыстродействующие многоканальные бескорпусные микросхемы с шагом контактных площадок 50 мкм и менее, что открывает возможность создания устройств с повышенной функциональной емкостью. Как правило, к таким устройствам предъявляются очень жесткие требования по массогабаритным характеристикам, объему и возможности компоновки изделия в трех плоскостях в виде многослойных блоков и пакетов. Проблема соответствия таким высоким требованиям была решена за счет новых конструктивно-технологических решений на основе технологии “кристалл на гибкой плате” или “chip on flex” (COF).

Попытка совместить преимущества гибридных технологий с дешевизной традиционного поверхностного монтажа (Surface Mount Tehnology - SMT) привела к созданию в середине 1980-х годов технологии “кристалл на плате” или “chip on boаrd” (СОВ-технология). Процесс сборки изделий по СОВ-технологии подобен процессу сборки гибридных микросхем. В СОВ-технологии в качестве основы используется печатная плата, а бескорпусные полупроводниковые кристаллы герметизируются заливкой (glob-top), в результате исключается корпусирование.

В настоящее время в некоторых областях приборостроения СОВ-технология уже фактически вытеснила поверхностный монтаж. Быстрое развитие СОВ-технологии обусловлено минимизацией массогабаритных характеристик конечного изделия и максимизацией плотности размещения компонентов. Занимаемая кристаллом площадь уменьшается в десятки раз только из-за отсутствия корпуса. Дополнительным преимуществом СОВ-технологии является тот факт, что сварные соединения, являющиеся основой сборочной технологии “кристалл на плате” более надежны при воздействии вибрационных и термоциклических нагрузок, чем паяные соединения, применяемые в технологии поверхностного монтажа.

В середине 1990-х годов была разработана еще одна технология монтажа, которая является комбинацией традиционной технологии поверхностного монтажа (SМТ) и СОВ-технологии. Указанная технология получила название ТАВ-технологии (Tape Automated Bonding) и предназначалась для автоматизированного монтажа с помощью ленточных носителей микросхем с большим количеством выводов. В этом случае выводы микросхем привариваются к медным контактным площадкам рамок с выводами, предварительно изготовленных на медной ленте с изолирующим покрытием. Эти выводы затем припаиваются к металлическим проводникам на печатной плате. На ТАВ-носителях широко применяется монтаж специализированных ИС и многокристальных модулей. Сложность ТАВ-технологии заключается в необходимости применения специализированного автоматизированного оборудования и в проблемах пайки выводов, расположенных с малым шагом.

В современном приборостроении широко используются сверхбыстродействующие многоканальные бескорпусные микросхемы с шагом контактных площадок менее 50 мкм, что позволяет создавать устройства с повышенной функциональной емкостью. К таким устройствам предъявляются очень жесткие требования по массогабаритным характеристикам, объему и возможности компоновки изделия в трех плоскостях в виде многослойных блоков и пакетов. Ни СОВ-технология, ни ТАВ-технология уже не удовлетворяют таким высоким требованиям. Проблема была решена за счет новых конструктивно-технологических решений на основе технологии “кристалл на гибкой плате” или “chip on flex” (COF).

На начальном этапе СОF-технология представляла собой ту же самую СОВ-технологию за исключением того, что коммутирующие элементы изготавливались из гибких материалов. Сборка электронных устройств на гибких коммутирующих элементах осуществлялась на тех же автоматических линиях, которые используются в СОВ-технологии и с помощью тех же самых методов монтажа кристаллов, пассивных компонентов и формирования электрических соединений.

Гибкие кабели и платы изготавливались на основе различных фольгированных диэлектрических материалов, таких как майлар, лавсан, полиэтилен, полипропилен, полиэстер, полиимид и др., в зависимости от предъявляемых к аппаратуре требований. Гибкие коммутирующие элементы из фольгированных диэлектриков на основе лавсана, полиэтилена и т. д. менее дорогостоящие, но возможности монтажа компонентов на них ограничены. В этом случае монтаж компонентов осуществляется с помощью низкотемпературной пайки или с применением электропроводящих адгезивов. К сожалению, при обработке таких диэлектрических материалов не удалось в полной мере применить методы микроэлектронной технологии, основанной на принципе интегральной обработки материалов, и полностью исключить из технологического процесса изготовления гибких плат и кабелей механические операции формирования сквозных отверстий. Кроме того, хотя материалы типа полиэтилена и полипропилена характеризуются достаточно низкими диэлектрическими постоянными и, соответственно, обеспечивают хорошие емкостные характеристики коммутирующих элементов на их основе, они не являются радиационностойкими и не могут обеспечить высокую надежность и срок эксплуатации электронных изделий с жесткими требованиями к радиационной стойкости.

Только фольгированные полиимиды оказались практически незаменимыми для создания функционально сложных электронных изделий с высокими требованиями к радиационной стойкости, термостойкости, быстродействию и долговременной надежности. Стабильность электрических и размерных характеристик полиимидной основы обусловливает высокую технологичность данного материала. Температурная стабильность и высокая термостойкость полиимидных гибких плат позволяет применять высокотемпературные (вплоть до 300С) методы монтажа компонентов.

Важным фактором, способствующим развитию СОF-технологии, послужило появление на мировом рынке серии фольгированных медью полиимидов “Pyralux” на основе полиимидных пленок типа Kapton, разработанных компанией DuPont Electronic Technologies, которая является ведущим поставщиком электронных материалов в мире. В фольгированных диэлектриках “Pyralux LF” и “Pyralux FR” полиимидные пленки соединяются с отожженной медной фольгой с помощью акриловых адгезивов, что позволяет изготовить целый ряд одно- и двусторонних фольгированных диэлектриков с широким диапазоном толщин медных, адгезивных и полиимидных слоев. Благодаря применению таких материалов в изделиях электронной техники появилась возможность создания трехмерных конструкций в виде двухслойных или многослойных структур малой толщины и площади, существенно снизить их вес и объем, а также повысить их функциональную емкость, быстродействие и надежность.

Однако применение адгезивсодержащих фольгированных медью полиимидных пленок не позволило в полной мере реализовать преимущества COF-технологии при сборке микромодулей.

К недостаткам адгезивсодержащих фольгированных полиимидов можно отнести достаточно малый диапазон рабочих температур (-60°С ? +125)°С. Применение адгезивов в фольгированных полиимидах существенно усложняет процесс формирования сквозных отверстий в системе “металл-адгезив-полиимид” для межслойных соединений из-за необходимости использования сложных и трудноуправляемых процессов вскрытия “окон” в адгезивных слоях.

Эти недостатки были в значительной степени устранены после появления гибких одно и двусторонних безадгезивных фольгированных диэлектриков DuPont Pyralux с медной основой. Технологическое преимущество таких материалов состоит в том, что они не содержат адгезивных прослоек между медью и полиимидом, но обладают высокой силой сцепления между слоем меди и поверхностью полиимида.

Материалы с безадгезивной и высокопрочной структурой DuPont Pyralux AP и DuPont Pyralux AC являются высокотехнологичными при фотолитографической обработке, групповом избирательном травлении сквозных отверстий в переходах и формировании элементов топологии очень малых размеров. Наиболее важными характеристиками этих материалов является высокая избирательность при химобработке полиимида и меди; эластичность и механическая прочность полиимида; высокая термостойкость (+350°С) и холодостойкость (-196°С).

Ввиду хорошей адаптивности к фотохимическому избирательному травлению полиимида безадгезивная структура материала позволяет полностью исключить из техпроцессов изготовления гибких коммутирующих элементов применение механических операций сверления и фрезерования, заменяя их групповыми процессами, и, таким образом, сократить технологический цикл, снизить трудоемкость и, в конечном счете, уменьшить стоимость изготовления изделий.

Кроме того, для микросхем с высокой плотностью и прецизионностью элементов топологии при использовании указанных материалов, оказалось целесообразным применение методов микроэлектронной технологии, которая включает использование жидких фоторезистов, обладающих высокой чувствительностью и разрешающей способностью; использование практически всех способов нанесения жидких фоторезистов (центрифугирование, погружение, пульверизация); сочетание позитивных и негативных фоторезистов; применение стеклянных и гибких пленочных фотошаблонов; применение установок с односторонним и двусторонним экспонированием; применение плазмохимической и ионноплазменной избирательной обработки материалов.

Описанные выше достоинства безадгезивных медь-полиимидных пленочных материалов были использованы при создании коммутирующих элементов для детекторных микростриповых модулей в международном эксперименте STAR в BNL (США). Возможность формирования сквозных отверстий в слоях полиимида позволила отказаться от применения алюминиевой проволоки для соединения контактных площадок микросхем и сенсоров с выводами коммутирующих медь-полиимидных плат и кабелей и осуществлять присоединение выводов непосредственно к контактным площадкам микросхем и сенсоров с помощью ультразвуковой сварки через “окна” в полиимиде (рис. 1).

а)

б)

Рис. 1. Микросборка на медь-полиимидном носителе:

а) - фотография (вид со стороны микросхемы); б) - схематическое изображение зон сварки носителя с микросхемой (вид со стороны носителя)

Вышеописанные способы формирования межсоединений обеспечили уменьшение количества сварных соединений в детекторных модулях практически в два раза и позволили значительно упростить сам процесс сборки. При этом в процессе сборки полностью исключена возможность коротких замыканий в областях сварки контактных площадок сенсоров и микросхем с проводниками гибких кабелей и плат. Применение гибких плат специально для микросхем позволяет не только автоматизировать процесс сборки, но и обеспечить полный функциональный контроль микросхем, в том числе по динамическим параметрам и, таким образом, исключить возможность появления брака из-за микросхем при дальнейшей сборке микромодулей.

Тем не менее, и в этом случае остались нерешенными некоторые проблемы, присущие традиционной COF-технологии на основе медь-полиимидных фольгированных диэлектриков. По-прежнему для обеспечения надежного безкоррозионного соединения с алюминиевыми контактными площадками микросхем и сенсоров на медные проводники гибких плат и кабелей необходимо нанесение дополнительных слоев никеля и золота, что усложняет процесс формирования гибких коммутирующих элементов. С этой точки зрения наиболее оптимальным вариантом дальнейшего совершенствования COF-технологии является применение безадгезивных алюминий-полиимидных лакофольговых диэлектриков.

Безадгезивные алюминий - полиимидные диэлектрики, используюмые в качестве гибких коммутирующих элементов в COF-технологии, обладают всеми теми достоинствами, которыми обладают и безадгезивные медь-полиимидные материалы. Однако ряд их преимуществ по сравнению с медь-полиимидными диэлектриками позволил существенно расширить возможности COF-технологии на современном этапе развития приборостроения.

Прежде всего, алюминий обладает высокой коррозионной стойкостью. Кроме того, алюминий имеет радиационную длину почти в 6 раз превышающую радиационную длину меди. Несмотря на то, что алюминий по сравнению с медью обладает меньшей механической прочностью; меньшей теплопроводностью, удельным электрическим сопротивлением примерно в 1,6 раза большим удельного электрического сопротивления меди, важное значение имеет тот факт, что алюминий почти в 3,5 раза легче меди. Благодаря малой плотности алюминия обеспечивается большая электрическая проводимость на единицу массы. Таким образом, коммутирующие элементы на основе алюминий-полиимидных лакофольговых диэлектриков позволяют максимально минимизировать массу вещества в рабочем объеме, что особенно перспективно для сенсорных систем с высокой плотностью каналов информации.

Алюминиевая COF-технология хорошо адаптируется к современному автоматизированному оборудованию ультразвуковой сварки типа Delvotec. При этом обеспечивается высокое качество и надежность сварных соединений не только из-за того, что свариваются однородные материалы (алюминиевые контактные площадки электронных компонентов и алюминиевые проводники коммутирующих элементов), но также и из-за того, что сварочные электроды, применяемые в сварочных установках, позволяют обеспечить оптимальные режимы процессов сварки. Кроме того, коммутирующие элементы на основе безадгезивных алюминий-полиимидных диэлектриков позволяют значительно улучшить емкостные характеристики электронных устройств.

Специалистами Государственного предприятия Научно-исследовательский технологический институт приборостроения (ГП НИТИП, г. Харьков) разработана и освоена инновационная технология изготовления гибких коммутирующих элементов на основе безадгезивных алюминий-полиимидных лакофольговых диэлектриков и технология сборки гибридных микромодулей и электронных узлов высокой степени интеграции.

Практическое применение предложенная технология нашла при построении современных систем автоматического управления летательными аппаратами различного предназначения. Гибкие кабели и платы на основе лакофольговых диэлектриков ФДИ-А-50 и ФДИ-А-24 (полиимид толщиной 10?20 мкм и алюминий толщиной 14?30 мкм) характеризуются пластичностью, гибкостью и стабильностью электрических характеристик и успешно заменяют проволочный монтаж при сборке микромодулей.

Описанную компоновку невозможно реализовать при проволочном монтаже, так как в этом случае объекты сварки должны иметь одностороннее расположение и практически невозможно изменить конфигурацию проводников после сварки.

Алюминиевая COF-технология также позволяет без ограничений располагать на одних и тех же гибких платах вместе с кристаллами микросхем различные навесные компоненты. В этом случае, в отличие от СОВ-технологии, SMD-компоненты устанавливаются на платы с помощью гибких алюминий-полиимидных носителей (рис. 2, а). Сначала на гибкие носители с помощью пайки устанавливаются SMD-компоненты (рис. 2, б), а затем гибкие носители с навесными SMD-компонентами монтируются на гибкие платы с помощью ультразвуковой сварки. Контакты для пайки на носителях формируются путем химического и электрохимического осаждения слоев никеля толщиной 2 ? 3 мкм и олово-висмута толщиной 7 ? 10 мкм. Применение таких гибких носителей с SMD-компонентами позволяет заменять навесные компоненты в процессе проверки функционирования микросборок.

а)

б)

Рис. 2.  Монтаж SMD-компонентов по COF-технологии с помощью гибких алюминий-полиимидных носителей:

а) - гибкие алюминий-полиимидные носители; б) - гибкие носители с SMD-компонентами, установленными пайкой

При этом в процессе изготовления микросборок полностью исключается опасность загрязнения основных плат остатками флюсов, а так же повышается технологичность слоев гибких плат и сборочных единиц благодаря тому, что нанесение припойных покрытий (Ni-SnBi) и сборка SMD-компонентов на гибких носителях выполняются в ходе отдельных технологических процессов.

Разработанная в ГП НИТИП инновационная технология ультразвуковой сварки алюминий-полиимидных плат и кабелей с микросхемами и приемниками радиационного излучения адаптирована для применения автоматизированных сварочных установок типа FK Delvotec-6400, ЭМ-4370 и др., позволяющих обеспечить точность позиционирования при сварке ± 3 ? 5 мкм.

В качестве основных материалов в разработках использованы безадгезивные алюминий-полиимидные лакофольговые диэлектрики типа ФДИ-А (ЫУО.037.042 ТУ) производства ООО “Тэтраэдр” (г. Москва, Россия).

Лакофольговые алюминий-полиимидные диэлектрики типа ФДИ-А представляют собой алюминиевую рулонную фольгу с односторонне нанесенным полипирометиллитимидным лаковым покрытием с последующей термической (при температуре 300°С в течение 30 мин) имидизацией до состояния собственно полиимида. Пленочные безадгезивные композиции были разработаны и широко применялись в СССР еще в середине восьмидесятых годов. Они нашли широкое применение в производстве лент-носителей ИС и БГИС с числом выводов до 500, гибких шлейфов, многослойных плат с числом слоев до 20 и других изделий, придавая им легкость, компактность, возможность соединения подвижных частей и формирования трехмерных схем. Однако на тот период времени алюминий-полиимидные диэлектрики использовались только для коммутации микросхем с шагом проводников 200 мкм и более. При участии специалистов ГП НИТИП в разработках гибких кабелей и плат для микромодулей международных проектов СВМ, ALICE, удалось значительно усовершенствовать сборочную технологию “сhip on flex” и адаптировать ее к самым высоким современным требованиям и задачам.

Список использованных источников

1. Фарассат Ф., Валев С. “Кристалл на плате” (СОВ): новая эра сборочной технологии // Технологии в электронной промышленности. - 2005. - № 6. - C. 71 - 76.

2. Still А. CDF Run II silicon tracking projects // Nucl. Instr. and Meth. - 2008.- A 447.-Р. 1 - 8.

3. Merkel P. et al. CDF Run IIb Silicon Detector: Тhe Innermost Layer // IEEE Transactions on Nuclear Science. - 2004. - Vol. 51, No 5. - Р. 2215-2219.

4. Tricomi A. The CMS Inner Tracker Silicon Microstrip Modules: Production and test // Nucl. Instr. аnd Meth.- 2007. - A 570. - Р. 248 - 252.


Подобные документы

  • Технологический процесс гибридных микросхем. Процессы формирования на подложках пассивных пленочных элементов и проводников соединений. Контроль пассивных элементов на подложках. Технология получения ситалла. Резка слитков и ломка пластин на платы.

    курсовая работа [871,3 K], добавлен 03.12.2010

  • Методика конструирования и технология толстопленочных гибридных интегральных микросхем, характеристика основных технологических операций и принципы выбора материала. Порядок расчета конденсаторов разрабатываемых микросхем, выбор и характеристика корпуса.

    курсовая работа [261,9 K], добавлен 08.03.2010

  • Комплекс материалов, использующихся на предприятии ККБ "Искра" для изготовления различных элементов СВЧ и микросборок. Способы компоновки изделий на производстве. Получение рисунка плат и ознакомление с системами автоматизированного проектирования.

    отчет по практике [18,7 K], добавлен 08.05.2009

  • Анализ схемы логического элемента, принципиальная схема логического элемента. Расчет комбинации входных сигналов "1101" и мощности, потребляемой микросхемой для каждой комбинации. Достоинства и недостатки гибридных микросхем по требованиям схемотехники.

    реферат [378,1 K], добавлен 23.07.2011

  • Выпуск и применение интегральных микросхем. Конструирование и технология толстопленочных гибридных интегральных микросхем. Коэффициент формы резисторов. Защита интегральных микросхем от механических и других воздействий дестабилизирующих факторов.

    курсовая работа [234,5 K], добавлен 17.02.2010

  • Технологические свойства керамики. Основные компоненты, предназначенные для изготовления ответственных изделий электронной техники. Особенности процесса гидростатического прессования на примере получения заготовок для высоковольтных конденсаторов.

    курсовая работа [2,4 M], добавлен 11.01.2011

  • Технология изготовления платы фильтра. Методы формирования конфигурации проводящего, резистивного и диэлектрического слоя. Выбор установки его напыления. Расчет точности пленочных элементов микросхем и режимов изготовления тонкопленочных резисторов.

    контрольная работа [359,2 K], добавлен 25.01.2013

  • Этапы проектирование полупроводниковых интегральных микросхем. Составление фрагментов топологии заданного уровня. Минимизация тепловой обратной связи в кристалле. Основные достоинства использования ЭВМ при проектировании топологии микросхем и микросборок.

    презентация [372,7 K], добавлен 29.11.2013

  • Анализ технологии изготовления плат полупроводниковых интегральных микросхем – такого рода микросхем, элементы которых выполнены в приповерхностном слое полупроводниковой подложки. Характеристика монокристаллического кремния. Выращивание монокристаллов.

    курсовая работа [2,0 M], добавлен 03.12.2010

  • Разработка конструкции и технологии изготовления полупроводниковой микросхемы выполненной в интегральном исполнении. Обоснование выбора технологии изготовления микросхемы, на основании которого разработан технологический процесс, топология кристалла.

    курсовая работа [708,7 K], добавлен 13.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.