Этапы развития электроники

Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 22.03.2015
Размер файла 84,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

До сих пор использованию металлов мешал тот факт, что после имплантации примесей пластина проходит отжиг при температуре 900-1000 °C, что выше температуры плавления многих металлов (включая алюминий) и сплавов, но не поликремния. Хотя даже и без плавления при повышении температуры металл может диффундировать в подлежащие слои. Теперь ясно, почему точная формула сплавов держится в секрете -- их действительно трудно подобрать. Не зря лично Гордон Мур назвал HKMG наибольшим достижением с момента изобретения поликремниевого затвора в 1969 г. До этого момента алюминиевые затворы никому не мешали, т. к. не было ни высокотемпературного отжига, ни формирования истоков и стоков впритык к затворам. Сегодня же приходится применять всё более экзотические материалы -- например, Panasonic легирует сплав для n-каналов своих HKMG-транзисторов редкоземельным элементом лантаном. Не меньше вопросов возникает при обсуждении двух версий технологии. Intel сначала формирует обычный поликремниевый затвор, работающий лишь как маска для создания истока и стока, затем вытравливает его, осаждает сплав для p-каналов, удаляет его из n-транзисторов, осаждает сплав для n-каналов и добавляет ко всем затворам алюминиевый заполнитель -- этот вариант называется Gate last, «затвор последним». IBM и GF используют Gate first, «затвор первым»: на подзатворный изолятор осаждается p-сплав, удаляется над n-каналами, осаждается n-сплав, удаляется над p-каналами, осаждается поликремний в качестве заполнителя и маски -- а далее как обычно. Intel утверждает, что её версия лучше совместима с напряжённым кремнием (потому что ему не мешает металл затвора) и позволяет использовать большее разнообразие металлов (потому что они осаждаются после высокотемпературных обработок), тогда как у конкурентов сложнее получить разные виды транзисторов (по нагрузке, скорости, напряжению и пр.), и они всё равно окажутся чуть медленнее и с меньшим выходом годных. IBM и GF отвечают, что их способ дешевле и требует меньших ограничений на расположение транзисторов, что позволяет разместить их на 10-20% плотней, а в Intel приходится мириться с жёсткими ограничениями на размеры и расположение. Intel тут в меньшинстве, потому что «затвор первым» формируют и в Chartered, Freescale, Infineon и Samsung. Последняя, правда, недавно заявила, что для её 20-нанометрового процесса затвор всё же будет «последним».

Формирование широко применяемых в современных чипах тонких плёнок было бы невозможно без технологии молекулярного наслаивания, она же -- послойное атомное осаждение (Atomic Layer Deposition, ALD). Её суть заключается в том, что за один цикл обработки, длящийся всего несколько секунд, образуется ровно один слой молекул, так что толщину откладываемой плёнки можно регулировать с максимальной возможной точностью (для самых простых веществ -- ±10 пм) лишь числом циклов. Каждый цикл состоит из двух стадий осаждения из газовой фазы прекурсоров (химических предшественников осаждаемого вещества) и двух продувок для удаления излишков. Прекурсоры подбираются так, чтобы лишь один их слой мог прилипнуть к уже осаждённому материалу -- к подложке для 1-го осаждения, к предыдущему слою для нечётных осаждений (после 1-го) или к первому прекурсору для чётных. Способ подходит не только для составных веществ, но и для некоторых чистых металлов.

Молекулярное наслаивание впервые опробовано в начале 60-х профессором Станиславом Кольцовым из Ленинградского Технологического Института имени Ленсовета (ныне -- СПбГТИ), а сама идея предложена профессором Валентином Алесковским в 1952 г. в его докторской диссертации «Остовная гипотеза и опыт синтеза катализаторов». Во всём остальном мире наслаивание появилось лишь в 1977 г. под именем «Atomic Layer Epitaxy» (ALE). Однако до микроэлектронного применения дело дошло лишь в середине 90-х -- до этого очень тонкие плёнки были не нужны. Сейчас же, когда отдельные части транзистора исчисляются единичными атомными слоями, без ALD не обойтись

Расскажем и о двух экзотических техниках, применяемых лишь некоторыми компаниями. Первую Toshiba и NEC используют с 2009 г. в своём 32-нанометровом процессе -- структурированный свет, меняющий форму луча лазера. Его сечение при этом оказывается кольцевым, 4-полюсным или каким-то ещё, и это позволяет обойтись без дорогостоящего двойного шаблонирования (которое у этих фирм вызвало 25-процентное увеличение дефектности). Обычно на таких размерах одно экспонирование единственной маски на слой приводит к сильным искажениям прямых дорожек (не смотря на OPC). Но структурированный свет решает эту проблему и даже позволяет уменьшить шаг между элементами. Поэтому у Toshiba и NEC получилась самая маленькая (среди 32-нанометровых процессов всех фирм) ячейка СОЗУ -- на 0,124 мкІ (позже мы сравним эти цифры детальней), а плотность транзисторов в логике -- 3,65 млн. вентилей/ммІ. И всё это по вдвое меньшей удельной цене, чем для своих же 45 нм, и на 9% дешевле, чем с применением двойного шаблонирования.

В том же 2009 г. IBM реализовала в массовом производстве технологию воздушных зазоров (Airgap) в качестве внутрислойных изоляторов, разделяющих медные проводники одного слоя. Состоит такой диэлектрик из тонкостенных пузырей размером в 20 нм, стенки которых собираются из полимера методом самосборки. Пузыри содержат, вопреки названию, не воздух, а вакуум -- идеальный изолятор с проницаемостью, равной 1 (впрочем, у воздуха почти столько же). По заявлению IBM, с уменьшением межпроводной ёмкости чип потребляет на 35% меньше энергии или работает на 15% быстрее. Впрочем, почувствовать это могли лишь покупатели серверов IBM с ЦП архитектуры POWER. «Могли», потому что в 32-нанометровом процессе IBM воздушные зазоры исчезли -- видимо, механическая прочность «дырявого» слоя оказалась слишком малой для его достаточно низкодефектной планаризации.

На одной 300-миллиметровой пластине умещается 568 процессоров Core 2 Duo с 6 МБ кэша L2, изготовленных по технорме 45 нм. Средний темп выхода пластин при производстве на фабах Intel -- ?20 мин. на лот (25 пластин). Проверить пластину на сбойность менее чем за 50 секунд полностью не получится, поэтому применяется быстрая оценка состояния транзисторов. Для этого в свободных местах каждого будущего кристалла расположены десятки простейших осцилляторов (чёрные точки), транзисторы которых имеют те же параметры, что и для окружающей логики или кэшей. Замерив частоты каждого осциллятора и зная их расположение, для каждого процессора строится карта отклонений параметров транзисторов После разрезания пластины на отдельные кристаллы те, которые после оценочных тестов признаны хоть на что-то годными, отправляются на сборочный завод. Там они корпусируются, проходят программирование прошивки, детальное тестирование, отключение неработающих, медленных или слишком прожорливых частей (если требуется) и присваивание множителей и напряжений.

электроника полупроводник микропроцессор литография

Заключение

В настоящее время микроэлектроника переходит на качественно новый уровень - наноэлектронику. Наноэлектроника в первую очередь базируется на результатах фундаментальных исследований атомных процессов в полупроводниковых структурах пониженной размерности. Квантовые точки, или нульмерные системы, представляют собой предельный случай систем с пониженной размерностью, которые состоят из массива атомных кластеров или островков нанометровых размеров в полупроводниковой матрице, проявляющих самоорганизацию в эпитаксиальных гетероструктурах. Одним из возможных работ связанных с наноэлеткроникой является работы по созданию материалов и элементов ИК-техники. Они востребованы предприятиями отрасли и являются основой для создания в ближайшем будущем систем «искусственного» (технического) зрения с расширенным, по сравнению с биологическим зрением, спектральным диапазоном в ультрафиолетовой и инфракрасной областях спектра.

Системы технического зрения и фотонные компоненты на наноструктурах, способные получать и обрабатывать огромные массивы информации, станут основой принципиально новых телекоммуникационных устройств, систем экологического и космического мониторинга, тепловидения, нанодиагностики, робототехники, высокоточного оружия, средств борьбы с терроризмом и т.д. Применение полупроводниковых наноструктур значительно уменьшит габариты устройств наблюдения и регистрации, уменьшит энергопотребление, улучшит стоимостные характеристики и позволит использовать преимущества массового производства в микро- и наноэлектронике ближайшего будущего.

Список использованной литературы

1. William F. Brinkman, Douglas E. Haggan, William W. Troutman. A History of the Invention of the Transistor and Where it will lead us // IEEE Journal of Solid-State Circuits. Vol.32, No.12. December 1997.

2. Hugo Gernsback. A Sensational Radio Invention // Radio News. September 1924.

3. Носов Ю. Парадоксы транзистора // Квант. 2006. № 1.

4. Малютин А. Е., Филиппов И. В. История электроники М.: Электронный учебник -- РГРТА, 2006 - 357 C.

5. Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991). IBM's 360 and early 370 systems. MIT Press. p. 34. ISBN 0-262-16123-0.

6. Veendrick, H.J.M. (2011). Bits on Chips. p. 253. ISBN 978-1-61627-947-9.

7. Грабовски Б. Краткий справочник по электронике -- БХВ- Петербург. - Санкт-Петербург, 2002.- 108 с

8. Роман Морозов Кремниевый оверлорд. Бренд Intel, часть 1 // Железо: журнал. -- 2011. -- № 2 (84). -- С. 84--87.

Размещено на Allbest.ru


Подобные документы

  • Краткая историческая справка о развитии интегральных схем. Американские и советские ученные, которые внесли огромный вклад в разработку и дальнейшее развитие интегральных схем. Заказчики и потребители первых разработок микроэлектроники и ТС Р12-2.

    реферат [28,1 K], добавлен 26.01.2013

  • Анализ и назначение сверхбольших интегральных схем программируемой логики. Сущность, особенности, структура и классификация микропроцессоров. Общая характеристика и задачи системы автоматизированного проектирования матричных больших интегральных схем.

    курсовая работа [447,3 K], добавлен 31.05.2010

  • Источники обеспечения действующей армии средствами связи в годы Великой Отечественной войны. Совершенствование способов организации связи проводными средствами, его этапы и направления, значение в ходе боевых действий и в послевоенное время в СССР.

    курсовая работа [322,9 K], добавлен 23.02.2012

  • Создание интегральных схем и развитие микроэлектроники по всему миру. Производство дешевых элементов электронной аппаратуры. Основные группы интегральных схем. Создание первой интегральной схемы Килби. Первые полупроводниковые интегральные схемы в СССР.

    реферат [28,0 K], добавлен 22.01.2013

  • Проектирование устройства, выполняющего быстрое преобразование Фурье на 512 точек сигналов. Описание архитектуры процессоров ЦОС семейства ADSP-219x. Реализация последовательного канала связи. Разработка структурной и функциональной схем устройства.

    курсовая работа [1,6 M], добавлен 16.01.2013

  • Этапы проектирование полупроводниковых интегральных микросхем. Составление фрагментов топологии заданного уровня. Минимизация тепловой обратной связи в кристалле. Основные достоинства использования ЭВМ при проектировании топологии микросхем и микросборок.

    презентация [372,7 K], добавлен 29.11.2013

  • Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.

    дипломная работа [6,3 M], добавлен 18.07.2014

  • Основные этапы проектирования приборов. Роль и место радиоэлектронной промышленности в национальной технологической системе России. Формирование рынка контрактной разработки. Технология производства полупроводниковых приборов и интегральных микросхем.

    курсовая работа [3,6 M], добавлен 22.11.2010

  • Понятие, области, основные разделы и направления развития электроники. Общая характеристика квантовой, твердотельной и вакуумной электроники, направления их развития и применения в современном обществе. Достоинства и недостатки плазменной электроники.

    реферат [344,7 K], добавлен 08.02.2013

  • Рассмотрение схемы однотактного широтно-импульсного преобразователя постоянного напряжения в пакете MathCAD. Использование программы черчения и симуляции схем цифровой электроники для построения временной диаграммы сигнала управления транзистором.

    лабораторная работа [339,3 K], добавлен 11.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.