Исследование нелинейно-оптических процессов в неоднородных средах на основе пористых полупроводников
Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 18.07.2014 |
Размер файла | 6,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
"КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"
(ФГБОУ ВПО "КубГУ")
Физико-технический факультет
Кафедра оптоэлектроники
ДИПЛОМНАЯ РАБОТА
Исследование нелинейно-оптических процессов в неоднородных средах на основе пористых полупроводников
Работу выполнил Кучеря Александр Александрович
Специальность 210401 - Физика и техника оптической связи
Научный руководитель
канд. физ. - мат. наук, доцент Л.Р. Григорьян
Нормоконтролер инженер А. Прохорова
Краснодар 2013
Реферат
Дипломная работа: ___ с., 24 рис., 17 используемых источников.
ПОРИСТЫЙ КРЕМНИЙ, ПОРИСТОСТЬ, ФОТОННО-КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ, НЕЛИНЕЙНЫЕ ПРОЦЕССЫ.
Объектом рассмотрения данной курсовой работы является многослойные структуры на основе пористого кремния.
Целью работы является исследование линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.
В результате выполнения курсовой работы были рассмотрены способы получения пористых полупроводников на примере кремния, процесс формирования, методы исследования, линейные и нелинейные процессы в неоднородных средах на основе пористых полупроводников.
Содержание
- Введение
- 1. Структурные модификации кремния
- 1.1 Кремний как материал современной электроники
- 1.2 Монокристаллический кремний
- 2. Пористый кремний
- 2.1 Формирование слоёв пористого кремния
- 2.2 Свойства и применение пористого кремния
- 3. Пористый фосфид галлия
- 4. Фотонно-кристаллические структуры на основе пористых полупроводников
- 5. Упорядоченные оптически неоднородные среды на основе пористых полупроводников
- 5.1 Одномерные фотонно-кристаллические структуры на основе пористого кремния
- 5.1.1 Спектры отражения
- 5.1.2 Дисперсионные свойства
- 5.2 Одномерные фотонно-кристаллические структуры на основе окисленного пористого кремния
- 6. Модификация нелинейной восприимчивости в пористых проводниках
- 7. Нелинейно-оптические процессы в оптически неоднородных средах на основе пористых полупроводников
- 7.1 Генерация второй гармоники в структурах на основе микропористого кремния
- 7.2 Генерация третьей гармоники в структурах на основе мезопористого кремния
- Заключение
- Список использованных источников
Введение
Возрастающие потребности в передаче данных требуют создания новых приборов и устройств, позволяющих в широком спектральном диапазоне осуществлять быстрое переключение и изменять частоту сигнала. Дальнейшее развитие таких систем будет в основном определяться возможностью генерировать, переключать и детектировать оптический сигнал, используя нелинейно-оптические процессы. В то же время современные телекоммуникационные технологии требуют миниатюризации устройств для управления распространением изучения. Однако большинство имеющихся на сегодня нелинейно-оптических кристаллов обладают либо сравнительно малой нелинейной восприимчивостью, но при этом в них возможна большая длина нелинейно-оптического взаимодействия, например за счёт фазового согласования процесса, либо, наоборот, при большой нелинейной восприимчивости длина взаимодействия очень мала и зачастую ограничена несколькими длинами волн. В связи с этим встает необходимость в развитии новых подходов, которые приведут к формированию новых искусственных материалов на основе наноструктур, позволяющих сочетать высокую нелинейную восприимчивость с большой длиной взаимодействия.
Получение и исследование новых материалов с требуемыми структурными и оптическими свойствами представляет собой актуальную задачу современной лазерной физики, решаемую методами нанотехнологии. Для этого проводится "сборка" тем или иным способом нанокристаллов или нанокластеров, электронные и оптические свойства которых определяются их размером и формой. Оптические свойства ансамбля наночастиц будут определяться не только взаимодействием между атомами, но и взаимным расположением нанокластеров, а также их объемной долей. Важным примером таких сред являются пористые полупроводниковые и диэлектрические материалы, образующиеся в результате процесса электрохимического травления. Они представляют собой нанокомпозитные среды, образованные пустотами в объеме (порами) и оставшимися после удаления части материала нанокристаллами или нанокластерами полупроводника.
Одним из способов создания новых материалов с заданными структурными, электронными и оптическими свойствами является формирование наноструктурированных сред. Принципиальную роль для создания новых нанокомпозитных сред играет не только материал, используемый для их изготовления, но и их микроструктура этих сред. Свойства таких нанокомпозитов определяются размером, формой и упорядоченностью составляющих их наночастиц, а также факторами заполнения наночастицами.
Среди разнообразных наноструктурированных сред следует особо отметить пористые полупроводники и диэлектрики, образованные путем удаления части материала из объёма. Возникающие при этом поры и остающиеся нанокристаллы имеют размеры от единиц до сотен нанометров. Физические свойства получившихся структур отличаются от свойств исходного материала, зачастую радикально. Можно выделить три основные причины модификации их свойств:
1) квантово-размерные эффекты для нанообъектов, размеры которых не превосходят длины волны де Бройля электрона;
2) поверхностные эффекты, связанные с появлением новых электронных и фононных состояний поверхности, площадь которой заметно (иногда на несколько порядков) увеличилась после образования пор;
3) локальные поля в нанокомпозитной среде, которые определяются размерами, формой и упорядоченностью нанообъектов.
полупроводник кремний электроника пористый
1. Структурные модификации кремния
1.1 Кремний как материал современной электроники
Кремний является основным материалом современной электроники: на его основе изготавливаются 95% интегральных схем и свыше 90% полупроводниковых приборов и устройств. Достоинством материала является то, что он может быть получен в разных структурных модификациях (монокристаллической, аморфной, поликристаллической, микрокристаллической, нанокристаллической, пористой), каждая из которых обладает уникальным набором свойств, совместима друг с другом и с технологическими процессами кремниевой технологии. Пористый кремний (ПК) был открыт во второй половине 50-х годов 20-го века при изучении процессов электрохимической полировки кремниевых пластин. Первые же исследования показали, что наличие в монокристаллическом кремнии развитой сети мелких пор приводит к появлению в материале ряда специфических явлений, таких как высокая удельная поверхность (до 800 м2/см3) и повышенная химическая активность, когда скорости химических реакций увеличиваются в 10-100 раз по сравнению с монокристаллическим кремнием. Эти свойства были использованы в 60-70-е годы в микроэлектронике для формирования толстых диэлектрических слоев по IPOS (Isolation by Porous Oxidized Silicon) и FIPOS (Full Isolation by Porous Oxidized Silicon) технологиям, для создания структур кремний-на - изоляторе. После открытия в 1990 году Кэнхемом явления люминесценции ПК при комнатной температуре в видимой области спектра началось активное всестороннее изучение свойств ПК. Если в период с 1980 по 1990 гг. число публикаций по тематике ПК не превышало 20 журнальных статей в год, то после 1995 года эта цифра стала больше 400. Комплексные исследования показали многообразие свойств ПК, были предложены новые области применения пористых кремниевых слоев [4]. В настоящее время на основе ПК активно разрабатываются функциональные элементы сверхбольших интегральных схем, оптоэлектронные пары излучатель-приемник, устройства ультразвуковой электроники, солнечные элементы, волноводы, датчики влажности и состава газов, приборы для мониторинга окружающей среды, биосенсоры, биоматериалы, антиотражающие покрытия, фотонные кристаллы, интегральные конденсаторы и т.д.
1.2 Монокристаллический кремний
Широкое использование монокристаллов кремния в устройствах электроники стало настолько привычным, что мало кто задается вопросом, почему именно кремнию из всех полупроводников отдается предпочтение при создании электронных приборов. Ведущее положение кремния связано с широким набором положительных свойств, многих из которых нет у других полупроводниковых материалов. Кремний как химический элемент широко распространен в природе, и его содержание в земной коре составляет 29,5%. Он технологичен, инертен в обычных условиях, выдерживает высокие температуры, сопровождающие процесс изготовления приборов и интегральных схем. Для создания диэлектрических слоев нет необходимости специально искать диэлектрические материалы - собственный окисел SiO2, формируемый на кремнии при высоких температурах в окислительной среде, прекрасно выполняет изолирующие и маскирующие функции. В кристаллической решетке атомы кремния занимают только 25% объема, в результате чего материал имеет малую плотность (2,32 г/см3, для Ge 5,35 г/см3) и допускает сильное легирование элементами III и V групп. Каждый введенный в кристалл кремния атом III или V группы добавляет один носитель заряда с положительным знаком (дырку) или один электрон соответственно. Концентрация носителей заряда в результате этого может изменяться в широких пределах - от 1010 до 1021 см-3. Высокие значения коэффициентов диффузии легирующих элементов в кремнии позволяют формировать локальные области микронных и субмикронных размеров с дырочным (p-Si) или электронным (n-Si) типом проводимости, совокупность которых и составляет основу любой интегральной схемы или полупроводникового прибора. Производство кремниевых монокристаллов превышает 3000 тонн в год.
Однако монокристаллический кремний имеет и недостатки. Один из них связан с относительно невысокой подвижностью носителей заряда (для электронов 1500 см2/ (В с), дырок 600 см2/ (В с)), что ограничивает быстродействие приборов. Для этих целей применяют другой полупроводник - арсенид галлия GaAs, у которого подвижность электронов при комнатной температуре 8500 см2/ (В с), а при температуре кипения жидкого азота (77 К) 250 000 см2/ (В с). Результатом этого стало появление нового технологического направления, получившего название арсенид-галлиевой микроэлектроники. Другой недостаток монокристаллического кремния заключается в том, что его нельзя использовать для создания светоизлучающих приборов. Светоизлучающие структуры широкого спектрального диапазона изготавливают на основе других полупроводников (GaAs, GaP, GaN, ZnS, ZnSe и др.), однако решение этой задачи в перспективе все же возможно в рамках кремниевой технологии. В настоящее время существуют два подхода к этой проблеме. Один из них состоит в легировании кремния редкоземельными элементами (Er, Eu, Gd), в результате чего такой модифицированный кремний обладает излучающими свойствами в инфракрасном диапазоне. Другой подход заключается в формировании на поверхности или в объеме диэлектрических материалов (например, SiO2) кремниевых кристаллов нанометровых размеров (1 нм = 1 10-9 м). Способы получения наноструктурированных материалов множество. Среди таких технологических приемов наиболее доступным и дешевым является создание нанокристаллов посредством вытравливания в монокристаллах кремния мельчайших пустот, в результате чего оставшиеся области кремния могут иметь размеры в несколько нанометров. Монокристаллический кремний, пронизанный сетью пор (пустот), получил название пористого кремния. Такой материал, как будет показано ниже, не только обладает светоизлучающими, но и другими уникальными свойствами.
На рисунке 1 видно, что кремний существует в нескольких структурных модификациях. Все эти материалы имеют различные физические свойства, разные области применения, хорошо совместимы и, взаимно дополняя друг друга, обеспечивают широкие возможности кремниевой технологии. Каждый из семейства кремниевых "братьев" достоин отдельного рассмотрения, однако перейдем к описанию самого загадочного из них - кремния с пористой структурой.
Рисунок 1 - Семейство кремния и области применения материалов
2. Пористый кремний
2.1 Формирование слоёв пористого кремния
Пористый кремний получается при анодной электрохимической обработке монокристаллического кремния в растворах на основе плавиковой кислоты HF [4]. Основными параметрами режима травления являлись плотность анодного тока j, время анодирования ta, состав электролита, освещенность и т.д. Плотность анодного тока определялась как:
j =Ia/S*,
где Ia - ток анодирования, S* - площадь обрабатываемой пластины.
Кремниевая пластина в таких экспериментах (рисунок 2) является анодом, а катодом служит платиновый электрод. Впервые пористый кремний был получен в середине 1950-х годов в ходе исследований процесса электрохимической полировки поверхности кремния в водных растворах HF. Такая операция необходима для придания рабочей поверхности идеально гладкого, зеркального состояния. В ходе травления было обнаружено, что при определенных режимах (низкой плотности анодного тока и высокой концентрации HF в электролите) вместо процесса электрополировки наблюдалось образование окрашенных пленок на поверхности кремния. Было установлено, что цветные слои имеют в своем объеме сеть мельчайших пор. Формирование пор начинается на поверхности пластины, с течением времени анодной обработки концы пор все дальше продвигаются вглубь кристалла. В результате этого толщина пленок пористого кремния в зависимости от времени травления может изменяться от нескольких микрон (1 мкм = 10-6 м) до сотен микрон.
Рисунок 2 - Электролитические ячейки для формирования слоев пористого кремния: а - ячейка вертикального типа, б - двухкамерная ячейка с жидкостным контактом к Si.1 - фторопластовая ванна, 2 - кремниевая пластина, 3 - платиновый электрод, 4 - уплотнители, 5 - слой пористого кремния, 6 - металлический электрод
Пленки пористого кремния длительное время считали лишь лабораторным курьезом и детально не изучали. И все же этот материал привлекал внимание исследователей, поскольку механизм его формирования был совершенно непонятен. Действительно, почему одни микрообласти на поверхности Si-анода растворяются, а другие остаются нетронутыми? Почему фронт травления движется равномерно вглубь пластины, при этом поры не обгоняют друг друга?
Модельные представления о механизме порообразования начали формироваться с середины 1960-х годов, но единая точка зрения пока так и не выработана. Обобщая различные модели, можно отметить следующее. Поверхность Si при контакте с водными растворами HF насыщается водородом и становится химически инертной по отношению к электролиту. Если на электроды подать разность потенциалов, то дырки в кремниевой пластине начинают мигрировать к поверхности раздела кремний-электролит. При этом атомы Si освобождаются от блокирующего их водорода, начинают взаимодействовать с ионами и молекулами электролита и переходят в раствор. Если электролиз проводят при высокой плотности тока, то к поверхности электрода поступает большое количество дырок. Они движутся к границе раздела сплошным фронтом и обеспечивают реакционную способность практически каждому атому Si. Поскольку микровыступы имеют большую поверхность, чем ровные участки, то они растворяются быстрее. Таким образом, поверхность кремниевого анода постепенно выравнивается. Это и есть режим электрохимической полировки [4].
Если же электролиз проводить при низкой плотности тока, то количества дырок не хватает для организации сплошного фронта и поэтому происходит локальное растворение кремния на поверхности. Согласно различным моделям, зарождение пор может начинаться на микроуглублениях, дефектах структуры, механически напряженных участках или локальных возмущениях потенциального поля поверхности. С течением времени появившиеся поры продолжают свой рост вглубь электрода за счет дрейфа дырок к кончикам пор, где напряженность электрического поля выше.
Очевидно, что в кремнии n - и p-типа количество дырок различно и поэтому процессы порообразования в n-Si и p-Si имеют свои особенности. В p-Si дырки являются основными носителями заряда и их концентрация составляет 1014-1018 см-3. В этом случае, как правило, формируются поры нанометровых размеров. Тонкая высокопористая структура типа губки показана на рисунке 3, а. В n-Si, где основными носителями заряда являются электроны, концентрация дырок крайне мала (102-106 см-3). Необходимое минимальное количество дырок можно получить за счет фотогенерации (при подсветке Si-электрода) или за счет лавинной генерации (при анодировании в области высоких напряжений). Полученная структура пор существенно отличается от предыдущей и характеризуется наличием пор достаточно большого диаметра (рисунок 3, б). На рисунке 3, а, б представлены два предельных случая в ряду получаемых пористых структур. Изменяя условия анодирования, можно получать пористый кремний с различной морфологией (геометрией) пор. На поперечный размер R пор влияют плотность тока анодирования, время, дополнительная подсветка, состав электролита, уровень и вид легирования кремния и т.д., в результате чего этот размер может меняться от 10 мкм до 1 нм. По существующей классификации пористый кремний подразделяется на микропористый (R < 2 нм), мезопористый (2 нм < R < 50 нм) и макропористый (R > 50 нм).
Рисунок 3 - а - изображение структуры пористого кремния на p-Si, полученное на просвечивающем электронном микроскопе. Размеры пор составляют около 50 нм, а кремниевые нити (темные области) имеют диаметр менее 10 нм.; б - электронно-микроскопический снимок структуры макропористого кремния на n-Si. Размеры пор составляют 0,7-1,0 мкм. Темная область внизу - монокристаллический кремний [9]
Основным параметром любого пористого материала является показатель пористости П. Он определяет, какая доля объема материала занята порами. Для пористого кремния значения пористости могут находиться в необычайно широком интервале от 5 до 95% (!). Когда объем, занимаемый порами, невелик (5%), свойства такого материала близки к свойствам кристаллического кремния. При высоких показателях пористости картина существенно изменяется и такой пористый кремний проявляет новые свойства, многие из которых являются уникальными. В заключение сказанного необходимо отметить, что пористая структура кремния может быть получена и другими способами, например при лазерном распылении кремния и его осаждении на расположенную рядом подложку (метод лазерной абляции).
2.2 Свойства и применение пористого кремния
Когда специалисты применяют термин "пористый кремний", то обязательно имеют в виду, что речь идет о материале не с фиксированными параметрами, а с изменяющимися разнообразными свойствами, зависящими от показателя пористости и морфологии пор. Известно, что поры принимают самые причудливые формы и могут иметь вид кактуса с отростками, зигзагообразного колодца, корневой системы дерева, цилиндрических колонн и т.д. Поэтому многообразие морфологии пор пористого кремния неизбежно приводит к многообразию оптических, электрических, механических характеристик материала. Кроме этого необходимо иметь в виду, что стенки пор покрыты продуктами электрохимических реакций и адсорбированными атомами, химический состав которых заметно влияет на свойства пористого кремния.
Характерной чертой пористого кремния является большая суммарная площадь его внутренней поверхности. В зависимости от величины пористости и геометрии пор она может составлять для макропористого кремния от 10 до 100 м2/см3, для мезопористого от 100 до 300 м2/см3 и для микропористого от 300 до 800 м2/см3. Для того чтобы наглядно представить себе последнюю цифру, попробуем мысленно развернуть 1 см3 такого материала. В результате нашего эксперимента мы закроем площадь больше футбольного поля! Для сравнения следует отметить, что удельная поверхность монокристаллического кремния составляет всего 0,1-0,3 м2/см3. Наличие развитой химически активной поверхности определило первые области практического применения пористого кремния в микроэлектронике, две из которых будет рассмотрено ниже.
Для создания кремниевых приборов, работающих при высоких напряжениях, возникла необходимость в толстых диэлектрических слоях толщиной более 10 мкм. Известно, что диэлектрические пленки SiO2, получаемые методом термического окисления кремния, не могут быть толще нескольких микрон. Для создания толстых диэлектрических пленок во второй половине 1970-х годов было предложено использовать слои пористого кремния. Если такой материал подвергнуть операции термического окисления, то за счет развитой системы пор молекулы кислорода способны проникнуть на всю толщину пористого кремния и привести к полному его окислению. Показано, что оптимальными для этих целей являются слои с пористостью около 50%. Это связано с необходимостью минимизации механических напряжений, возникающих при окислении, так как при этом происходит увеличение объема твердой фазы приблизительно на 56%, которое компенсируется за счет пространства пор. Важно отметить, что процесс формирования диэлектрических пленок с использованием пористых слоев происходит при температурах более низких, чем при традиционном термическом окислении кремния.
К середине 1970-х годов возникла необходимость решения и другой задачи. Плотность упаковки интегральных схем увеличилась настолько, что активные элементы стали очень близко располагаться один к другому. Для исключения токов утечки между ними через кремниевую подложку была предложена структура "кремний на изоляторе" (КНИ). КНИ-структура представляет собой основу из диэлектрического материала с выращенным монокристаллическим слоем кремния. В этом случае элементы интегральных схем формируются в объеме слоя, после чего выполняется операция локального окисления по их периметру и каждый элемент становится изолированным от своих соседей. В качестве изолирующей основы КНИ-структур уже в первых экспериментах хорошо зарекомендовал себя окисленный пористый кремний. Последовательность технологических операций включала в себя формирование пористого кремния, выращивание на его поверхности слоя монокремния с последующим прокислением пористого материала.
Дальнейшие исследования показали, что пористый кремний служит хорошей основой не только для выращивания монокристаллических пленок кремния. Низкопористые слои (П < 30%) оказались эффективными в качестве буферного слоя при выращивании (эпитаксии) монокристаллических пленок других полупроводников на кремнии. Одним из основных условий проведения процесса эпитаксии является условие близости величин постоянных решеток кремния и наносимого материала. Однако для многих полупроводниковых материалов и кремния этот критерий не выполняется, в результате чего на поверхности растут пленки с плохими структурными характеристиками. Использование промежуточных слоев пористого кремния позволило решить задачу выращивания качественных пленок полупроводников GaAs, PbS, PbTe и других с большим рассогласованием параметров кристаллических решеток.
В пористом кремнии в ходе электрохимического травления возможно формирование кремниевых элементов нанометровых размеров. Для нанокристаллов с размерами менее 4 нм в пористом кремнии наблюдаются те же явления, что и в других наноструктурированных материалах: квантование энергетического спектра, увеличение ширины запрещенной зоны с 1,1 до 1,8-2,9 эВ, уменьшение диэлектрической проницаемости. Возможности технологии анодного травления позволяют получать квантовые точки, квантовые нити, элементы с различной фрактальной размерностью. Поэтому пористый кремний с П> 50% следует рассматривать как один из материалов наноэлектроники. Более того, перспективным может оказаться заполнение пор другими химическими соединениями, что даст возможность формировать дополнительные низкоразмерные элементы в объеме пористого кремния. Первые эксперименты в этом направлении уже начаты в ведущих научных лабораториях мира.
Необычайный интерес исследователей к пористому кремнию вызвало обнаруженное в 1990 г.Л. Кэнхэмом излучение света пористым материалом (П> 50%) при комнатной температуре в видимой области спектра при облучении лазером. Уже говорилось о том, что монокристаллический кремний не может быть использован для создания светоизлучающих устройств, так как его излучательная способность ничтожно мала (менее 0,001%). Открытие Кэнхэмом интенсивной фотолюминесценции с эффективностью 5% дало возможность приступить к разработке кремниевых приборов, испускающих свет в широком спектральном диапазоне. Исследования показали, что длиной волны л, определяющей цвет излучения, можно управлять изменяя условия анодирования. Оказалось возможным получать красный, зеленый и синий цвета, необходимые для изготовления цветных дисплеев. Вслед за этим открытием в начале 1990-х годов были созданы первые электролюминесцентные ячейки на основе пористого кремния, которые излучали свет в многослойной структуре прозрачный электрод - пористый кремний - монокристаллический кремний - металл при протекании тока.
Эффективность первых электролюминесцентных приборов была невелика (10-5%), фотолюминесцентные и электролюминесцентные структуры быстро деградировали. В настоящее время удалось выяснить причины старения светоизлучающего пористого кремния и наметить пути создания стабильных во времени структур. Явление фотолюминесценции эффективно поддерживается при введении в объем атомов углерода или железа, а современные электролюминесцентные приборы имеют срок службы несколько лет при квантовой эффективности порядка 10-1%. [3]. Некоторые прогнозы говорят, что в будущем реально поднять квантовую эффективность электролюминесцентных ячеек до 10%.
Пористый кремний в зависимости от условий травления обладает широким интервалом величин удельного сопротивления (10-2-1011 Ом см), диэлектрической проницаемости (1,75-12) и показателя преломления (1,2-3,5). Это означает, что пористый кремний может быть использован как в качестве полупроводниковых, так и диэлектрических слоев в приборах и интегральных схемах. Оказалось, что в рамках одного процесса травления варьированием режимов (плотностью тока анодирования, освещенностью) можно получать многослойные структуры, когда каждый слой обладает заданной пористостью и геометрией пор. Такая технология содержит в себе большие потенциальные возможности для разработки различных устройств. Наглядным примером использования многослойных пористых структур является создание световодных элементов. Назначение световодов заключается в передаче светового луча без потерь энергии, в том числе и по криволинейным трассам.
Для целей интегральной оптики применяются планарные световоды, представляющие собой пленочную структуру, в которой свет распространяется в слое с высоким показателем преломления, ограниченном с двух сторон слоями с меньшим показателем преломления. Для пористого кремния этот показатель зависит от пористости (чем больше пористость, тем меньше показатель преломления), и поэтому формирование многослойных структур с разной пористостью позволяет получать на их основе волноводные элементы с низким уровнем потерь. Потери на поглощение можно дополнительно уменьшить окислением слоев пористого кремния.
Другим примером использования многослойных пористых структур является их применение в качестве интерференционных фильтров в оптике для инфракрасной, видимой или ультрафиолетовой области спектра. Интерференционный фильтр Фабри-Перо на основе пористого кремния представляет собой семислойную структуру, в которой между толщиной слоев пористого кремния и их коэффициентами преломления существует определенная взаимосвязь. Применение таких фильтров позволяет при прохождении света выделить из него узкий интервал длин волн Дл= 10 нм. Кроме этого пористый кремний обладает низкой теплопроводностью (на два-четыре порядка меньше, чем у монокремния), что дает возможность использовать его в качестве теплоизоляционного слоя в устройствах кремниевой электроники.
Большие перспективы пористый кремний имеет для создания датчиков влажности, газовых, химических и биологических сенсоров. Принцип действия таких датчиков основан на влиянии внешних молекул на электронное состояние поверхности. В случае пористого кремния за счет высокой удельной поверхности это влияние становится более эффективным и сенсоры обладают высокой чувствительностью. Обычно такие датчики фиксируют изменение емкостных, проводящих, люминесцентных свойств пористого кремния при наличии в контролируемой среде заданных молекул и химических соединений. Интересным представляется применение пористого кремния в качестве рабочего элемента биохимических и биологических сенсоров. Это стало особенно актуальным после того, как было показано, что пористый кремний является биосовместимым материалом. Биоматериалы по своим свойствам подразделяются на биоинертные, биоактивные и биорезорбируемые. Биоинертные материалы (титан) испытывают минимальные изменения в окружающей ткани, биоактивные материалы (bioglass) подвергаются определенным изменениям в живом организме, а биорезорбируемые материалы обладают способностью рассасывания в тканях с регулируемой скоростью. Оказалось, что в зависимости от величины пористости пористый кремний может быть отнесен к любому из этих классов, что открывает большие перспективы в создании биомедицинских приборов.
Новым этапом в исследовании и применении пористого кремния стало создание регулярных пористых матриц - кремниевых кристаллов, в которых в определенном порядке сформированы глубокие (до 500 мкм) поры с поперечным размером до 20 мкм (рисунок 4) [9]. Как формируются такие структуры? На первом этапе на поверхности кремниевой пластины n-типа создается пленка SiO2, в которой методом фотолитографии формируется сетка правильных отверстий (окон). Далее в окнах создаются ямки травления в виде перевернутых пирамид. После этого проводится уже знакомое нам электрохимическое травление при дополнительной подсветке с тыльной стороны.
Рисунок 4 - а - регулярная макропористая структура, используемая для создания интегральных конденсаторов. Выполнен срез образца под углом 45°. Размер прямоугольной рамки в центре - 2 х 3,5 мкм; б - элемент макропористой матрицы фотонного кристалла. Расстояние между порами 1,5 мкм
Такие структуры можно использовать в различных областях, в частности для создания интегральных конденсаторов и фотонных кристаллов. Фотонные кристаллы, разрабатываемые для применения в системах телекоммуникации и лазерных технологиях, представляют собой двумерные структуры с периодически изменяющейся в пространстве диэлектрической проницаемостью. Эти структуры имеют частотную щель, позволяющую с высокой точностью контролировать частоту распространяющейся электромагнитной волны в зависимости от направления волнового вектора. Пространственно модулированная макропористая структура подпадает под приведенное определение фотонного кристалла. В настоящее время на основе макропористых периодических структур созданы фотонные кристаллы для ближней инфракрасной области спектра с Дл = 4,9 мкм.
О свойствах и применении пористого кремния можно говорить достаточно много, однако на основании рисунка 5 можно представить себе возможности материала. Достаточно, например, заметить, что на базе пористого кремния могут быть созданы светоизлучающие диоды, фотоприемники и световоды, которые в одной твердотельной схеме могут быть объединены в единый комплекс излучатель - оптическая среда передачи информации - приемник. Легкость управления свойствами пористого материала, совместимость с технологическими операциями кремниевой микроэлектроники позволяют надеяться на разработку и других электронных и оптических приборов на основе слоев с низкой, средней, высокой пористостью и макропористых регулярных структур.
Рисунок 5 - Основные области применения пористого кремния
3. Пористый фосфид галлия
Пористый фосфид галлия (ПФГ) представляется весьма перспективным материалом для разнообразных оптических применений. Более широкая, чем в с-Si, запрещенная зона GaP делает возможным его использование в красной и желтой спектральных областях видимого диапазона (длина волны больше 550 нм), а нецентросимметричность его кристаллической решетки обусловливает высокую дипольную квадратичную нелинейную восприимчивость (200 пм/В), которая на два порядка превышает эту же величину для большинства кристаллов, применяемых для удвоения частоты. Все вышеперечисленные свойства, а также размер неоднородностей (пор и нанокристаллов), сравнимый с длиной оптической волны, делают ПФГ многообещающим объектом для исследования эффектов локализации света
Слои ПФГ формируются с помощью электрохимического травления пластин n-GaP, легированного Te или S, в растворах H2SO4 и HF. Приложение высокого положительного потенциала (около 15 В) к пластине GaP приводит к сильному изгибу энергетических зон на границе GaP/электролит.
В результате межзонного туннелирования электронов из валентной зоны в зону проводимости на поверхности GaP образуется избыток дырок, которые расходуются в процессе травления (рисунок6).
Неравновесные носители заряда также создаются при освещении кристалла GaP. Концентрация дырок в приповерхностной области GaP неоднородна вдоль поверхности, что приводит к росту пористой структуры вглубь образца.
Рисунок 6 - Схематическое изображение энергетических зон GaP на границе раздела с электролитом
Реакция электрохимической диссоциации для GaP имеет вид:
GaP + 6OH - + 6h+ > 0.5Ga2O3 + 3H2O.
Распространение пор в GaP происходит, как правило, вдоль выделенных кристаллографических направлений <111>, поскольку вдоль них химическая связь наиболее слабая.
Формирование пор в GaP характеризуется выраженной доменной структурой (рисунок 7). Рост пор начинается с травления поверхностного дефекта, который является центром образующегося домена пористого GaP. Затем поры распространяются вглубь монокристалла, и домен увеличивается в размерах до тех пор, пока его рост не будет ограничен соседними доменами. Размеры доменов составляют от 5 до 20 мкм в зависимости от условий травления. C увеличением напряжения на ячейке размер доменов и средний радиус пор увеличиваются. Как свидетельствуют изображения поверхностей ПФГ, полученные с помощью атомно-силовой микроскопии (АСМ), размер неоднородностей (пор и нанокристаллов) составляет от 0,05 до 1 мкм (рисунок 8).
а б
Рисунок 7 - Изображения поверхности ПФГ (GaP: S (6 1017 см-3), 2М спиртовой раствор HF, U = 20 В), полученные с помощью растровой электронной микроскопии: a) доменная структура поверхностного слоя, б) пористая структура на сколе образца
Рисунок 8 - Изображения поверхностей ПФГ c ориентациями поверхности (110) (а) и (111) (б), полученные методом атомно-силовой микроскопии
Рисунок 9 - Зависимости плотности тока от времени при электрохимическом травлении монокристаллического (111) GaP в 2M спиртовом растворе HF в режиме стабилизации напряжения. На врезке представлена вольт-амперная характеристика для указанных условий
Рисунок 9 представляет зависимости плотности тока травления GaP j в спиртовом растворе HF от времени t для различных величин приложенного напряжения смещения. На врезке к рисунку 9 показана вольт-амперная характеристика для границы раздела GaP/электролит. Как видно, рост тока начинается при критическом напряжении Uc =5 В, для которого становится возможным туннелирование электронов, и продолжается до напряжения пассивации Upass=23 В; в этом интервале напряжений возможно формирование пористого слоя. Дальнейшее увеличение напряжения приводит к спаду тока, связанному с образованием на поверхности оксидного слоя. Зависимость j (t) является немонотонной, и в ней может быть выделено несколько этапов:
первый этап (0 - 1 с) - начало роста плотности тока - соответствует началу роста пор в определенных точках поверхности;
второй этап (1 - 4 с) - рост плотности тока и достижение максимума - соответствует росту отдельных доменов ПФГ; максимум в зависимости j (t) достигается, когда домены встречаются друг с другом, после чего начинается
третий этап (с 4 с) - медленный спад плотности тока и её выход на постоянный уровень - соответствует режиму роста, при котором размер доменов постоянен и формируется плоская граница между пористым слоем и кристаллом GaP.
Структура пор в GaP, формирующихся во фторидных электролитах, в значительной степени зависит от напряжения, подаваемого на ячейку. В случае кристаллов с высоким уровнем легирования (~1018см - 3) активное порообразование (j ~ 0, 5 A/см2) происходит при напряжениях 12 - 14 В. При этом наблюдается спонтанное образование пор в направлении <111> на стыках граней 100 и 110. Снижение напряжений до значений близких к Uc не обеспечивает перехода к выраженной анизотропии в распространении пор по определенному направлению. Тем не менее, поры приобретают треугольное сечение, и начинает проявляться тенденция к движению их по направлениям <211>. Можно также отметить, что в сильно легированном GaP, несмотря на отсутствие явной привязки направлений пор к кристаллографическим осям, траектории их движения лежат преимущественно в плоскостях 110. Для низколегированного GaP (1016 - 1017 см-3), формирование сплошных пористых слоев становится возможным при напряжениях на ячейке более 20 В. В этих условиях практически утрачивается связь конфигурации системы полостей и соединяющих их каналов в пористых слоях со структурой решетки кристалла. При использовании в качестве электролита водного раствора H2SO4 структура пор получается несколько более упорядоченной (рисунок 8б).
4. Фотонно-кристаллические структуры на основе пористых полупроводников
К фотонным кристаллам относятся такие композитные среды, у которых неоднородности периодически упорядочены, причем период сравним с длиной волны. Распространение света в таких средах аналогично движению электрона в периодическом потенциале кристалла [6]. В частности, для некоторого спектрального диапазона интерференция волн приводит к возникновению запрета на распространение света в некоторых направлениях. По аналогии с твердым телом, мы можем говорить о фотонной запрещенной зоне (ФЗЗ). Огромный интерес к фотонным кристаллам объясняется перспективностью их использования для решения разнообразных задач оптики и лазерной физики: управления параметрами лазерного излучения, фазового согласования процесса генерации оптических гармоник, управления спонтанным излучением и др.
Фотонные кристаллы с успехом можно изготовить на основе пористых полупроводников. Поскольку пористость и показатели преломления, определяются плотностью тока электрохимического травления, то периодически варьируя эту величину, мы можем создавать из пористых полупроводников структуры с чередующимися слоями различной пористости и, следовательно, различных показателей преломления. Таким образом формируется одномерный фотонный кристалл на основе ПК или ПФГ (рисунок 10) [6].
Возможно также создание структур с дефектом в ФЗЗ и микрорезонаторов. Подобные структуры могут найти своё применение для управления фотолюминесценцией, создания цветочувствительных фотодиодов, сенсоров паров, биосенсоров, усиления эффективности ИК колебаний и комбинационного рассеяния света, волноводных структур и т.д. На основе ПК также возможно создать латеральные периодические структуры, используя фоточувствительность процесса травления и интерференционную картину, создаваемую двумя лазерными пучками. Наличие пор и возможность их заполнения жидкостями или газами, а также внедрения в эти поры различных веществ, является весьма важным преимуществом фотонно-кристаллических сред на основе ПК, позволяющим рассчитывать на их широкое применение.
Рисунок 10 - Схематическое изображение многослойной структуры. Изменение во времени плотности тока травления при изготовлении многослойной структуры на основе ПК
В кремнии n-типа удается создать макропористые структуры, представляющие собой дву - и трехмерные фотонные кристаллы с ФЗЗ в инфракрасном диапазоне. Вначале с помощью фотолитографии размечаются места, в которых появятся поры, затем с помощью травления в щелочи в них создаются ямки, которые послужат зародышами для пор. Макропоры формируются в процессе фотоэлектрохимического травления. Таким образом создаются двумерные фотонные кристаллы, ФЗЗ которых лежит от 8 до 1,3 мкм. Периодические изменения интенсивности подсветки, приводящие к изменению диаметра поры, позволяют сформировать трехмерный фотонный кристалл [4,11]. Возможно также сформировать структуры с нарушением периодичности - дефектами.
5. Упорядоченные оптически неоднородные среды на основе пористых полупроводников
Под оптически неоднородными будем здесь подразумевать такие композитные среды, в которых либо размеры составляющих среду компонентов, либо расстояние между ними сравнимо с длиной оптической волны. К числу таких систем относятся, с одной стороны, неупорядоченные среды, обладающие значительным рассеянием, а, с другой стороны, среды, в которых чередование областей с разными показателями преломления происходит упорядоченным образом, например периодически (фотонные кристаллы). Общим для таких систем является необходимость учёта интерференции рассеянных (в первом случае) и отражённых (во втором) волн.
Распространение света в фотонных кристаллах аналогично движению электрона в периодической решетке кристалла, чем и обусловлено их название. Вследствие периодической модуляции их оптических свойств, фотонные кристаллы характеризуются особыми режимами распространения световых волн в определенных интервалах длин волн и волновых векторов. В частности, интерференция электромагнитных волн, распространяющихся вдоль определенных направлений в подобных структурах, приводит к запрету на распространение волн с определённым диапазоном частот, т.е. возникновению фотонных запрещенных зон (ФЗЗ). Подобные зоны аналогичны электронным запрещенным зонам, возникающим в физике твердого тела
В данном разделе мы рассмотрим оптические свойства одномерных фотонно-кристаллических структур, сформированных на основе пористых полупроводников.
5.1 Одномерные фотонно-кристаллические структуры на основе пористого кремния
5.1.1 Спектры отражения
Одномерные фотонно-кристаллические структуры на основе ПК были получены путем периодического чередования плотностей тока при электрохимическом травлении кристаллического кремния. Основной способ характеризации полученных многослойных структур - это измерение их спектра отражения или пропускания [1,11]. Форма такого спектра может быть рассчитана с использованием, например, матричного метода. В таких системах положение фотонной запрещенной зоны определяется толщинами и эффективными показателями преломления слоев ПК (т.е., в конечном счёте, их пористостью) (рисунок 11) [1].
Рисунок 11-Спектры отражения многослойной структуры на основе ПК с различными периодами
В многослойной системе, образованной чередующимися слоями с эффективными показателями преломления n1, n2 и толщинами d1,d2 соответственно условие возникновения ФЗЗ первого порядка с центром на длине волны лбудет иметь вид:
n1d1 + n2d2 =л/2, (5.1)
Отметим, что величина коэффициента отражения, а также крутизна границ получающейся ФЗЗ определяется числом периодов в многослойной структуре (рисунок 12).
Рисунок 12 - Спектры отражения многослойной структуры на основе ПК для различного количества периодов
Нарушение периодичности структуры является аналогом дефекта в твердом теле и ведет к возникновению узких полос пропускания в спектрах (рисунок 13).
Рисунок 13-Спектры отражения многослойной структуры на основе ПК для различного количества периодов
Используя двулучепреломляющие слои ПК, мы можем сформировать одномерный фотонный кристалл, у которого положения фотонных запрещенных зон зависит от поляризации (рисунок 14) [11]. Подобные многослойные структуры могут быть полезны для создания дихроичных зеркал и фильтров.
Рисунок 14 - Спектры отражения многослойной структуры на основе анизотропного пористого кремния [1]
5.1.2 Дисперсионные свойства
Многослойные структуры отличаются своим законом дисперсии, обусловленным их периодичностью. Для одномерной бесконечной структуры электрическое и магнитное поля могут быть в соответствии с теоремой Блоха представлены в виде [12]:
eiKzu (z), (5.2)
где u (z) - периодическая функция, а K - блоховский вектор, подчиняющийся для TE и TM поляризованных волн соотношениям:
cos (Kd) =cos (k1d1) cos (k2d2) + (k2/k1+k1/k2) sin (k1d1) sin (k2d2), (5.3)
cos (Kd) =cos (k1d1) cos (k2d2) + (n22 k1/n12k1+ n12k1/ n22k1) sin (k1d1) sin (k2d2), (5.4)
где d1,n1,k1=2рn1/л и d2,n2,k2 = 2рn2/л - толщины, показатели преломления и волновые вектора каждого из слоёв соответственно, л - длина волны в вакууме, d = d1 + d2 - период структуры.
Многослойную структуру, состоящую из конечного числа слоёв, также можно характеризовать эффективным показателем преломления neff = Kc/л, где K - эффективный волновой вектор, определяемый дисперсией всей структуры как целого, c - скорость света в вакууме, а также параметрами дисперсии первого порядка u = дщ/ дK и второго порядка k2 = д2K/dщ2. Эти параметры были определены для реальной структуры, состоящей из 12 чередуюшихся пар слоёв ПК низкой и высокой пористости; спектр отражения этой структуры приведен на рисунке 15, а.
Показатели преломления и толщины слоёв были уточнены путём подгонки расчётного спектра под реальный и составили n1=1.42, d1 = 110 нм, n2 = 1.22, d2 = 127 нм. Чтобы определить эффективный показатель преломления были выполнены расчёты коэффициента пропускания многослойной структуры для поля t матричным методом [12] (коэффициент пропускания T = |t|2). Тогда argt = Д?, где Д? разность фаз падающей на структуру и прошедшей через нее волн. Отсюда удаётся найти действительную часть эффективного показателя преломления:
Re neff=Д?л/2рL, (5.5)
где L - толщина образца, и его мнимую часть:
Im neff=? (л/2рL) ln|t | (5.6)
Зависимости эффективного показателя преломления от длины волны представлены на рисунке 15, б.
Возможность управления дисперсией многослойной структуры предоставляет нам большую свободу для управления параметрами ультракоротких лазерных импульсов. В частности, если длина волны лазерного излучения находится вблизи края фотонной запрещенной зоны, можно достичь низкого значения групповой скорости лазерного импульса, что приведет к усилению локального поля (рисунок 15, в) и, следовательно, к повышению эффективности многих нелинейно-оптических процессов. Также были рассчитаны величины для таких структур. Спектр k2 приведен на рисунке 15, г. Полученные высокие значения k2 означают, что управление фазой и компрессия короткого светового импульса могут осуществляться на сравнительно небольшом расстоянии, что позволяет создать на основе ПК компактные оптические компрессоры и иные устройства для фазово-модулированных импульсов.
Подобные документы
Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.
реферат [211,5 K], добавлен 29.06.2015Типы проводимостей полупроводников и их отличия. Преимущества гетероэпитаксиальных структур КРТ по сравнению с объемными кристаллами КРТ, выращивание. Разновидности полупроводниковых фотоприёмников. Приборы на основе КРТ: принцип действия и устройство.
курсовая работа [3,3 M], добавлен 18.10.2009Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.
лекция [4,4 M], добавлен 24.01.2014Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.
курс лекций [1,7 M], добавлен 11.01.2013Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016Обзор истории создания конденсатора с двойным слоем на пористых угольных электродах. Исследование устройства и характеристик ионисторов, электрохимических приборов, предназначенных для хранения электрической энергии. Анализ их достоинств и недостатков.
реферат [129,1 K], добавлен 04.12.2015Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.
реферат [84,0 K], добавлен 22.03.2015Солнечная батарея как объект моделирования. Общие принципы построения и отладки математической модели солнечных батарей. Кристаллические полупроводниковые материалы. Рекомендации по построению фотоэлектрических систем космического и наземного назначения.
автореферат [451,5 K], добавлен 20.05.2012Интроскопия - внутривидение, визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, в условиях плохой видимости. Классификация методов диагностики. Общность методов и средств обработки иитроскопических изображений.
реферат [265,7 K], добавлен 01.02.2009