Digital transmission system (DTS)

Analyses o the current situation on the project and the development of their technical realization. Brief description of the existing zonal area network. Basic requirements for communication lines. Calculation of the required number of channels.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык английский
Дата добавления 20.09.2016
Размер файла 771,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- The difference between the linear attenuation equalizer frequencies

247 KHz and 17 dB. . . . . . . . . . . . . . . . . . . . . . 17.0; 18.6; 20.2; 22; 23.6; 25

- Linear attenuation equalizer at the frequency of 252 kHz, dB. . . . . . . . . . .1

- Damping of two linear transformers, dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

- Trunk equalizers:

1) the distance between them away. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60-8

2) attenuation at 252 kHz frequency, dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

- Artificial line:

- The equivalent cable length, km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3; 6

1) attenuation in dB at a frequency of 252 kHz IL3. . . . . . . . . . . . . . . . . . .7.4

IL6. . . . . . . . . . . . . . . . 14.9

IL3-IL6. . . . . . . . . . . . .22.3

2) attenuation in dB at a frequency of 12 kHz IL3. . . . . . . . . . . . . . . . . . . .2.2

IL6. . . . . . . . . . . . . . . . . 4.3

IL3-IL6. . . . . . . . . . . . . .6.5

- The range of variation gain ground AGC when the temperature changes

on 20С (from -2 to + 18С, from -10 to + 10С, from +10 to + 30 ° C), dB; for balanced trunk cable at frequencies of 12 kHz. . . . . . . . . . . . . . . . . . . . . . .1

252 kHz. . . . . . . . . . . . . . . . . . . . 2.1

- AGC adjust limits on control frequency, dB:

1) for the two-frequency amplifiers with AGC:

flat (248 kHz). . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 4

oblique (12 kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 3.5

2) for the three-frequency amplifiers with AGC:

flat (248 kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .± 4

inclined (12kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 3.5

curved (80kGts). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .± 3.5

- Error frequency AGC dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.5

- Accuracy of the temperature AGC dB. . . . . . . . . . . . . . . . . . . . . . . . . .± 0.2

- The maximum gain of the amplifier stations on frequency 252 kHz

at the maximum AGC regulators, dB:

1) for the UAI. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2) to the SAI, OP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

- Minimum gain amplifier stations on the frequency of 252 kHz, dB:

1) for the UAI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2) to the SAI, OP. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

- Psophometric average noise power, pW, at zero

relative level introduced into the channels of the PM system:

linear path at the transmission distance of 2500 km. . . . . . . . . . . . . . . . 7500

equipment two terminal stations with the bass end of the channel

Bass and transit facilities. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .500

HF transit equipment (for primary groups). . . . . . . . . . . . . . . . . . . . . . . . .200

- Allocating channels equipment (4, 12, and 24 channels) in a path:

direct passage. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .30

isolating and introducing four channels. . . . . . . . . . . . . . . . . . . . . . . . . . 350

- Power noise level in the spectrum of the channel PM

(248-252 kHz), powered by input line amplifier in dB:

UAI and SAI -2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -132

SAI -3 and OP. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -129

Figure 1 - Scheme of frequency transformation of K-60P transmission system

Figure 2 - The road Stepnogorsk - KOCshetau

Application B

Figure 1 - Block diagram of a synchronous multiplexer SDM-1

Application C

Proposals for selection Timing sources SDH network.

There is a list of recommendations ITU sets standards for most timings: G.803, G.810, G.811, G.812, G.823, G.824.

The main components of the circuit SDH synchronization are:

- a primary reference clock generator - PRC determines the long-term stability of the frequency synchronization;

- secondary (slave) oscillator - SSU (Synchronization Supply Unit), a clock signal regenerating circuit after passing the network elements and serves as a temporary substitute for part of the network in case of failure or loss of connection PRC therewith;

- internal clock in SDH network elements - SETS (SDH Equipment Timing Source), provides greater flexibility in the choice of signals for synchronization.

These clock sources have the following characteristics.

There are two types of PRC - Autonomous and RC on the GPS satellite navigation system (ITU G.811):

- output interface 2048 MHz and 2048 kbit / s (ITU Recommendation G.703);

- own accuracy: ± 110E-11.

The secondary (slave) clock generator SSU - the second level of the quality of the synchronization equipment hierarchy. Its characteristics (ITU Recommendation G.812):

- input interface 2048 MHz, 2048 kbit / s (ITU Recommendation G.703);

- output interface 2048 MHz and 2048 kbit / s (ITU Recommendation G.703);

- own accuracy: 210E-9 ... 310E-7.

SDH synchronization source in SETS equipment connected to the input or output signals through interfaces of the network element, or transmitting payload synchronization interfaces.

Features (ITU Recommendation G.813):

- clock inputs:

- T1 source - SDH, (STM-N) (G.707);

- T2 power - PDH, 2048 kbit / s (G.703 / 704);

- T3, the source - clock 2048 MHz or 2048 kbit / s (G.703 / 704);

- clock outputs:

a) T4, external synchronization signal 2048 MHz (G.703);

b) T4, 2048 kbit / s (G.703 / 704).

- own accuracy: ± 4,6 • minimal 10E-6.

SETS Block diagram shown in Figure 1.

Figure 1 - Synchronization SDH equipment

For transporting the synchronization signal in the SDH network typically used payload signals (traffic). To meet the quality standards of international digital connections (G.822) the primary clock source must comply with PRC standard (G.822).

For secure synchronization, SDH multiplexers network should have multiple redundant clock sources:

- PRC or the source of the signal quality is not lower than PRC;

- Secondary clock (SSU);

- Your own timing source (SETS).

The maximum allowable number of network elements of the network (NE) between the two SSU is 20, the maximum number of SSU in the chain synchronization - 10. Total number of consecutive sync items (NE and SSU) shall not exceed 60.

Self-healing SDH network structure in a crash on the network perform automatic reconfiguration of the synchronization, which is controlled by a time-marker and priority switching of SDH equipment. The criterion for switching sources in synchronization network elements are the following events:

- LOS (loss of signal);

- LOF (loss cycle);

- AIS (Alarm Indication Signal);

- TMA (alarm synchronization marker);

- Exc.BER (10 bit error rate).

Information about the quality of the timing source is transmitted in bits 5-8 S1 byte header MSOH STM-1 frame. Table 2 contains the information contained in the byte synchronization marker SSM.

Table 2 - The information in byte synchronization marker SSM

The values of bits 5-8 byte SM

The quality of the synchronization signal

The level of quality

0010

PRC (G.811)

Q1

0100

SSU-A, transit (G.812T)

Q2

1000

SSU-B, local (G.812L)

Q3

1011

SEC (G.813)

Q4

0000

Unknown quality

Q5

1111

Not used

Q6

Note: Notes to Table 2:

The PRC, SSM when receiving the value of bits 5-8, 0010, each network element is synchronized with this reference oscillator Q1 quality.

SSU-A, when receiving SSM bits 5-8 the value 0100 indicates the use of a timing source, respectively G.812T ITU-T with a level of quality Q2.

SSU-B, Q3 quality is almost an order of magnitude lower than for transit SSU.

SEC, SSM source clock multiplexer synchronization marker byte is sent when the priority list are no other sources of clock signals.

Quality is not known: the SSM byte is transmitted by the network element in the STM output as long as the internal crystal oscillator is not synchronized with the incoming clock signal sources.

To synchronize the unused byte synchronization marker with a value of 5-8 bits 1111 (Q6) is transferred automatically in the case of SDH-sync port in the opposite direction. This prevents the formation of the loop synchronization.

The basic requirement when planning the synchronization network is the availability of primary and backup synchronization signal pathways, in compliance with the required hierarchy, as well as the lack of opportunities for a closed loop synchronization.

Signal distribution network with land-KOCshetau Stepnogorsk shown in Figure 1

Figure 1 - Distribution of SDH network synchronization with the site-KOCshetau - Stepnogorsk.

The network element located in the city of KOCshetau appointed master (master node). On it sync signal from an external reference source PRC (Q1) at a frequency of 2048 kHz from the INSM. He is the first priority of the planned network. A highly accurate time generator is a strategic object, and therefore his whereabouts secret.

An alternative source for the synchronization master node SDH network is designed AMTS in KOCshetau. Summary Q1 synchronization is distributed in the STM-1 signal successively to the nodes Shchuchinsk, Stepnogorsk Saul and with first priority for these sites (Table 3).

Table 3 - Distribution synchronization sources

Network element

Source of first priority

The source of the second priority

KOCshetau

The signal with frequency 2048 kHz from PRC NISB

The signal with frequency 2048 kHz from ATE

Shuchinsk

Linear signal STM-1 on the node KOCshetau

Linear signal STM-1 on the node Saule

Saule

Linear signal STM-1 on the node Shuchinsk

Linear signal STM-1 on the node Stepnogorsk

Stepnogorsk

Linear signal STM-1 on the node Saule

Own the signal from node Stepnogorsk

Functional timing circuit designed SDH network is shown in Figure 3.

Размещено на Allbest.ru


Подобные документы

  • The lines of communication and the basic properties of the fiber optic link. Comparison of characteristics and selection of the desired type of optical cable. The concept of building a modern transmission systems. The main function module SDH networks.

    дипломная работа [2,1 M], добавлен 16.08.2016

  • Signals, channels and communication networks. Enabling Any-to-Any Communication. Next-Generation Mobile Networks. Challenges of Reinventing the Networking Infrastructure. Leading the Way by Providing Innovative Solutions. The review of similar schemes.

    курсовая работа [629,0 K], добавлен 07.12.2015

  • Общие сведения о сети Integrated Services Digital Network: история создания, компоненты, инкапсуляция, использование. Типы пользовательского интерфейса, которые поддерживает технология. Адресация в сетях, стек протоколов. Подключение оборудования к сети.

    курсовая работа [223,8 K], добавлен 21.07.2012

  • Device, constructive – technological features, circuit of insert. Conditions of insert of the transistor. Static parameters. Physical processes. Differential coefficient of transmission of a current. Condition a splitting contact. Condition of saturation.

    курсовая работа [129,2 K], добавлен 27.01.2003

  • Цифровая сеть с интеграцией услуг (Integrated Services Digital Network), создание технологии с возможностью одновременной передачи голоса и данных. Области применения сетей ISDN, эффективность использования, преимущества, возможности; телефонная связь.

    контрольная работа [27,1 K], добавлен 29.04.2011

  • Constructed and calculated at a three - phase rectifier working on active-inductive load. The review of constructive solutions. Calculation of rectifier working on active-inductive load. Principle of designed scheme operation, construction of the device.

    курсовая работа [413,6 K], добавлен 10.08.2015

  • Initial data for the term paper performance. Order of carrying out calculations. Analyze uncompensated system. Synthesize the real PD-compensator ( ) which would guarantee desired phase margin at gain crossover frequency . Analyze compensated system.

    курсовая работа [658,7 K], добавлен 20.08.2012

  • История образования и раскол в Microsoft, обзор GNU/Linux-подобных систем Fedora, Slackware. Обзор BSD-подобных систем OpenBSD, Frenzy. Unix-подобные операционные системы Extended File System ext. XFS и Unix File System, ядро linux-kernelи Emacs.

    реферат [135,9 K], добавлен 07.12.2010

  • Сравнительная характеристика телекоммуникационных сервисов - обычной телефонной связи (POTS), выделенных линий, Switched 56, ISDN, frame relay, SMDS, ATM и Synchronous Optical Network (SONET), их достоинства и недостатки. Основные преимущества сетей X.25.

    курсовая работа [1,1 M], добавлен 21.11.2009

  • Технология синхронной цифровой иерархии (Synchronous Digital Hierarchy, SDH). Создание коммутируемой инфраструктуры. Область применения технологии SDH. Схема мультиплексирования SDH и механизмы стандартов нового поколения. Элементы сети и стек протоколов.

    реферат [274,4 K], добавлен 03.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.