Модуляционно-легированные транзисторы MODFET, биполярные транзисторы на гетеропереходах. Резонансный туннельный эффект

Технические характеристики и структура модуляционно-легированных полевых транзисторов и биполярных транзисторов на гетеропереходах. Технологии создания приборов, их преимущества и применение. Понятие явления резонансного туннелирования электронов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 28.12.2013
Размер файла 522,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минобрнауки Российской Федерации

Федеральное государственное образовательное автономное учреждения высшего профессионального образования

Таганрогский Технологический Институт

Южного Федерального Университета

РЕФЕРАТ

на тему:

«Модуляционно-легированные транзисторы MODFET, биполярные транзисторы на гетеропереходах. Резонансный туннельный эффект»

Выполнил: студент группы МГЭ-42

Шепенев М.Э.

Таганрог 2013

Введение

Высокая степень интеграции, характерная для современной кремниевой технологии, не может быть достигнута при использовании полупроводниковых соединений AIIIBV, однако эти соединения обеспечивают большее быстродействие, прежде всего, за счет высокой подвижности р носителей и меньших значений эффективной массы электронов в таких соединениях. Подвижность носителей в GaAs примерно на порядок превышает соответствующее значение для чистого кремния. А скорость электронов в полупроводниковых материалах под влиянием внешнего электрического поля является основным параметром при проектировании новых высококоскоростных электронных приборов. MODFET на основе модулированно-легированных квантовых гетероструктур могут обеспечить очень высокое быстродействие благодаря очень высоким значениям ? при продольном транспорте электронов.

Граничная частота таких устройств обычно превышает соответствующие значения для полевых МОП-транзисторов на кремниевой основе, а также полевые транзисторы с барьером Шоттки в качестве затвора (MESFET) на основе GaAs. Необходимо также упомянуть, что высокая подвижность электронов в этих структурах является следствием квантования электронных состояний в образующихся двумерных системах, а также высокого совершенства изготовляемых поверхностей раздела AlGaAs--GaAs.

На рис. 1 представлена взятая из работы [1] зависимость рабочей частоты (в ГГц) различных типов модулированно-легированных полевых транзисторов от длины затвора (в микронах).

Благодаря своим характеристикам такие устройства получили также название полевых транзисторов с высокой подвижностью электронов (НЕМТ). Для сравнения на рис. 1 приведены также типичные характеристики кремниевых полевых МОП-транзисторов и полевых транзисторов с барьером Шоттки на основе GaAs. Значения частот приводятся для комнатной температуры (300 К), хотя стоит отметить, что они гораздо выше при температуре около 0 К вследствие роста подвижности при низких температурах. В настоящее время уже существуют модулировано-легированные полевые транзисторы с длиной затвора около 100 нм и рабочей частотой при комнатной температуре порядка нескольких сотен гигагерц (ГГц).

Рис.1 Зависимость максимальной рабочей частоты различных типов транзисторов (MODFET, MESFET и полевых МОП-транзисторов) от длины затвора

Использование квантовых гетероструктур не ограничивается полевыми транзисторами, в которых транспорт электронов осуществляется лишь параллельно поверхности квантовой ямы, а включает также транзисторы, в которых транспорт происходит перпендикулярно поверхности раздела гетероструктуры. Работа таких транзисторов основана на приложении разности потенциалов к эмиттеру, базе и коллектору, что напоминает механизм действия биполярных транзисторов.

Максимальная рабочая частота биполярных транзисторов ограничивается временем пролета носителей заряда через базу. Гетеропереходные биполярные транзисторы (НВТ) на основе переходов в AlGaAs --GaAs или Si --Ge позволяют значительно повысить ряд важных параметров, таких, как предельная частота (частота отсечки), (?-фактор, сопротивление базы и т. п. по сравнению с обычными кремниевыми биполярными транзисторами.

Обсуждая возможности создания транзисторов новых типов, следует особо отметить еще один очень интересный квантовый эффект, а именно так называемое резонансное туннелирование. При самом простом описании диоды с резонансным туннелированием (RTD), действующие на основе этого эффекта, представляют собой квантовую яму, окруженную двумя потенциальными барьерами, достаточно тонкими для того, чтобы через них могло осуществляться туннелирование электронов. Время пролета электронов через такую гетероструктуру чрезвычайно мало, вследствие чего устройства на основе RTD обладают исключительным быстродействием и могут работать при частотах порядка 1 ТГц. Объединяя RTD с биполярным или полевым транзистором, можно создать так называемые транзисторы с резонансным туннелированием (RTT). В этих транзисторах структура с резонансным туннелированием инжектирует горячие электроны (т. е. электроны с высокой кинетической энергией) в активную область транзистора, что позволяет создавать так называемые транзисторы на горячих электронах (НЕТ).

Снижение характерных размеров приборов в нанометровый диапазон приводит к заметному уменьшению числа электронов, соответствующих прохождению электрического сигнала через прибор. Эта тенденция неизбежно подводит к созданию так называемых одноэлектронных транзисторов (SET). Характеристики одноэлектронных транзисторов определяются эффектом кулоновской блокады, проявляющимся в нульразмерных полупроводниковых структурах, типа квантовых точек. Электронный ток через квантовую точку в одноэлектронном транзисторе, соединенном с выводами посредством туннельных переходов, позволяет контролировать поток электронов «поштучно» подачей сигнала на электрод, который в данном случае ведет себя подобно вентилю (затвору) транзистора.

транзистор гетеропереход резонансный туннелирование

1. Модуляционно-легированные полевые транзисторы (MODFET)

Наличие потенциальной ямы очень малых размеров, сформированной в гетеропереходах структуры AlGaAs--GaAs, может приводить к квантованию уровней энергии, соответствующих движению электронов в направлении, перпендикулярном поверхности раздела, хотя движение электронов в плоскости, параллельной поверхности раздела, практически не отличается от движения свободных частиц. При этом отмечалось, что подвижность электронов в этой плоскости может быть исключительно высокой, поскольку возникающие в слое AlGaAs электроны поступают в нелегированный слой GaAs, где отсутствует рассеяние на примесных атомах и они могут двигаться параллельно поверхности раздела совершенно свободно под воздействием электрического поля. Именно на этом принципе с начала 1980-х г. начали создаваться полевые транзисторы с высокой подвижностью носителей (НЕМТ), которые иногда называют полевыми транзисторами с модулированным легированием (MODFET), так как в них используются модулированно-легированные гетеропереходы, а их действие основано на возможности регулирования движения электронов вдоль канала воздействием электрического поля.

Модулированно-легированные полевые транзисторы (MODFET), которые уже нашли много полезных применений в высокочастотной технике, могут служить наглядным примером приборов, в которых высокие технические характеристики достигаются за счет использования квантового поведения электронов, локализованных в нанометровых потенциальных ямах с размерами меньше длины волны де Бройля электронов

Полевые транзисторы на гетероструктурах имеют слоистую структуру, позволяющую создавать двумерный электронный газ с высокой подвижностью. На рис. 2, а схематически представлено сечение типичного модулированно-легированного полевого транзистора (MODFET), включающего в себя все привычные электроды транзистора (сток, исток и затвор).

Рис. 2. (а) Схема сечения типичного модулированно-легированного полевого транзистора (MODFET или НЕМТ); (б) схематическое строение зоны проводимости в направлении, перпендикулярном структуре.

Диаграмма (а точнее, структура зоны проводимости в направлении, перпендикулярном структуре) приведена на рис. 2, б. Наиболее характерной особенностью транзисторов этого типа выступает квантовая яма для электронов, образующаяся между n-легированным слоем полупроводника AlGaAs и слоем обычного, нелегированного GaAs. Квантовая потенциальная яма в гетероструктурах AlGaAs--GaAs формируется на поверхности раздела из-за того, что ширина запрещенной зоны AlGaAs (Еg ~ 2 эВ) значительно превышает ширину зоны в GaAs (Еg ~ 1,41 эВ). Обычно ширина такой квантовой ямы (приблизительно треугольной формы) составляет около 8 нм, т. е. является настолько тонкой, что электронный газ действительно может образовывать двумерную систему. На рис.2, б показан только один энергетический уровень. Прослойка из нелегированного AlGaAs вводится в структуру для того, чтобы еще больше удалить проводящий канал от слоя AlGaAs n-типа (где генерируются носители) и тем самым повысить подвижность электронов вследствие ослабления взаимодействия с ионизированными донорами. Типичная ширина такой прослойки составляет около 50 А.

Легко заметить, что показанная на рис. 2 структура MODFET или НЕМТ очень похожа на полевые МОП-транзисторы, у которых потенциальная яма для электронного канала также располагалась на поверхности раздела структуры Si -- SiO2. Обычный режим работы полевых транзисторов с высокой подвижностью носителей (НЕМТ) похож на режим полевых МОП-транзисторов, в которых поток электронов движется от истока к стоку под воздействием приложенного напряжения. Такой ток может модулироваться сигналом напряжения, подаваемым на затвор. Аналитическое выражение для зависимости тока насыщения Idsat от напряжения на затворе Vg имеет вид: Idsat ~(Vg -- Vт)2, где величина Vт -- величина порогового напряжения. Поэтому вольтамперные характеристики модулированно-легированных полевых транзисторов очень похожи на характеристики полевых МОП-транзисторов. Скорость переключения и высокочастотные характеристики таких транзисторов могут быть повышены за счет уменьшения времени пролета электронов tr, для чего конструкторы таких устройств стремятся максимально сократить длину затвора L (которая обычно составляет около 100 нм), одновременно стараясь увеличить ширину затвора, поскольку это позволяет повысить величину сигнала и так называемую крутизну транзистора. Известно, что для изготовления полевых транзисторов с барьером Шоттки для достижения высокой крутизной необходимо использовать высоколегированные материалы (с уровнем легирования порядка 1018--1019 см-3), что ограничивает дрейфовую скорость электронов из-за рассеяния на большом числе примесных атомов. Таким образом, использование модулированно-легированных полевых транзисторов представляет конструкторам приборов дополнительные преимущества, так как в таких структурах транспорт носителей осуществляется в нелегированном слое (GaAs).

В настоящее время модулированно-легированные полевые транзисторы доминируют на рынке малошумящих приборов, так как они способны работать в очень широком диапазоне частот: от микроволновых до частот около 100 ГГц (см. рис.1). В новейших гетероструктурах систем AlGaAs-- InGaAs -- GaAs не только квантовая локализация электронов в ямах более эффективна, чем в гетеропереходах на основе AlGaAs--GaAs, но и электроны двигаются в слое InGaAs с более высокой дрейфовой скоростью насыщения, чем в GaAs. Крутизна такого транзистора достигает значений 100 мС/мм, частота отсечки составляет около 100 ГГц, а уровень шумов составляет лишь 2 дВ.

Такие высокие характеристики достигаются за счет уменьшения расстояния затвор --канал (из-за более резких барьеров) и снижения паразитных емкостей системы. По всем этим причинам модулирование-легированные полевые транзисторы превосходят другие приборы при усилении сигналов в микроволновом диапазоне, вплоть до частот 300 ГГц, т. е. примерно в шесть раз превышают по быстродействию лучшие из транзисторов, изготовленных на основе МОП-технологий при заданном уровне литографического разрешения. Модулированно-легированные полевые транзисторы могут также изготовляться на основе структур SiGe, однако такие устройства не выпускаются промышленно из-за относительно высоких значений токов утечки.

2. Биполярные транзисторы на гетеропереходах

Основной целью конструкторов гетеропереходных биполярных транзисторов является обеспечение максимального значения коэффициента усиления ? при возможно более высоких рабочих частотах. Максимальная рабочая частота зависит от многих факторов, в число которых входят геометрические размеры и степень легирования областей эмиттера, базы и коллектора.

Для повышения значений ? необходимо, чтобы значения двух важных параметров системы (а именно коэффициент усиления по току ? и коэффициент инжекции эмиттера ?) были максимально близки к единице (упомянутые параметры являются стандартными при описании биполярных транзисторов). Из этих требований сразу вытекает, что степень легирования эмиттера должна быть намного выше, чем базы. При этом, однако, следует учитывать, что очень высокая степень легирования полупроводника уменьшает в нем ширину запрещенной зоны, например, при степени легирования 1020 см-3 ширина запрещенной зоны уменьшается на 14%, что приводит к уменьшению коэффициента инжекции носителей из области эмиттера в область базы. Поэтому почти сразу после изобретения биполярных транзисторов с однородными переходами Шокли предложил изготовлять эмиттер транзистора на основе полупроводников с более широкой запрещенной зоной, что должно было уменьшить число носителей, инжектируемых из базовой области в область эмиттера, и тем самым повысить общий коэффициент инжекции эмиттера. Позднее, в 70-х годах началось коммерческое производство биполярных транзисторов на гетеропереходах (НВР).

На рис. 3, а показана разница, возникающая в зонной структуре npn-транзисторов с гетеро- и гомопереходами. Следует особо отметить, что в последнем случае (рис.3, б) ширина запрещенной зоны эмиттера превышает ширину зоны базы, вследствие чего барьер для инжекции электронов из эмиттера в базу (еVn) оказывается ниже соответствующего значения для дырок (eVp, что и проявляется в значительном повышении коэффициента ?. Даже небольшое изменение высоты барьера может очень сильно влиять на процесс инжекции, который описывается квазиэкспоненциальной зависимостью от высоты барьера.

Рис. 3. Зонная структура при поляризации в активной зоне (а) транзистора на гомопереходе и (б) гетеропереходного биполярного транзистора (НВТ)

Действительно, коэффициент ? пропорционален отношению концентрации легирующей примеси в эмиттере и базе, а также члену, exp(?Eg/kT)где ?Eg -- разность между большей шириной запрещенной зоны в эмиттере и меньшей -- в базы. При комнатных температурах (когда kТ ~ 0,026 эВ) небольшая разница в значениях ?Eg позволяет значительно изменить величину коэффициента ?. Сказанное позволяет считать, что гетеропереходные биполярные транзисторы предоставляют богатые возможности для создания транзисторов с высокой степенью легирования базы, малым сопротивлением базы и малым временем пролета электронов через базовую область. Кроме того, можно даже уменьшать степень легирования базы, вследствие чего должна уменьшаться паразитная емкость, связанная с переходом эмиттер -- база. Одновременное уменьшение сопротивления базы и емкости перехода эмиттер--база очень важно для повышения высокочастотных рабочих характеристик приборов на основе описываемых гетеропереходных биполярных транзисторов.

Другой важной особенностью гетеропереходов является возможность создания гетеропереходных биполярных транзисторов с базой переменного состава, в которых ширина запрещенной зоны постепенно уменьшается от эмиттера к коллектору (рис.4 , а). В такой системе создается внутреннее электрическое поле, позволяющее ускорять электроны при прохождении базовой области и тем самым дополнительно повышать быстродействие транзисторов. В предельном случае, когда область коллектора такого транзистора также изготовлена из полупроводника с широкой запрещенной зоной (как показано на рис.4, б), пробивное напряжение на переходе база -- коллектор может быть значительно увеличено. Кроме того, такие структуры (называемые двойными гетеропереходными биполярными транзисторами, DHBT) позволяют менять местами эмиттер и коллектор, что значительно расширяет возможности конструирования различных интегральных схем.

Гетеропереходные биполярные транзисторы (НВТ) обычно создаются на основе полупроводниковых соединений АшВV, что обусловлено хорошими характеристиками гетеропереходов в структурах AlGaAs --GaAs и высокой подвижностью электронов. Типичные НВТ обычно имеют длину базы около 50 нм и являются высоколегированными (порядка 1019 см-3). Такие транзисторы обычно имеют рабочую частоту около 100 ГГц, что значительно выше соответствующих параметров для кремниевых биполярных транзисторов. Дальнейшее повышение высокочастотных характеристик связано с использованием гетеропереходов в системах InGaAs-- InAIAs и InGaAs-- InP, что позволяет получать рабочие частоты до 200 ГГц. Очень ценной особенностью НВТ на основе полупроводников класса является то, что они легко интегрируются в одну схему, включающую как электронные, так и оптоэлектронные приборы. На этой основе уже началось производство так называемых оптоэлектронных интегральных схем (OEIC), включающих в себя полупроводниковые лазеры, что представлялось невозможным в рамках привычных, кремниевых технологий.

Некоторые исследовательские проекты нацелены на создание гетеропереходных биполярных транзисторов на основе кремниевой технологии, что позволит использовать в них кремниевые полупроводниковые соединений с широкой запрещенной зоной. Одним из таких соединения является карбид кремния SiC (для которого ширина запрещенной зоны изменяется от 2,3 эВ для кубической модификации до более чем 3 эВ для гексагональных модификаций), а другим, весьма интересным для проектировщиков веществом выступает аморфный гидрогенизированный кремний (ширина зоны -- 1,6 эВ). Техническая проблема при использовании этих материалов связана с высоким сопротивлением эмиттера, обусловленным либо свойствами самих материалов, либо металлическими контактами. По-видимому, наиболее перспективными кремниевыми материалами для получения НВТ являются сплавы на основе SiGe, в которых гетеропереходы могут быть сформированы вследствие того, что ширина запрещенной зоной в кремнии равна 1,12 эВ, а в германии -- 0,66 эВ. Приборы с гетероструктурами Si --SiGe были созданы лишь в 1998 г. (т. е. значительно позднее приборов на GaAs и других соединениях класса AIIIBV), что легко объясняется недостаточным развитием методов эпитаксиального роста SiGe. Для изготовления НВТ на основе Si или SiGe необходимо, чтобы в создаваемой структуре сразу после кремниевой области эмиттера располагалась область базы SiGe, в которой ширина запрещенной зоны намного меньше, чем в Si, поскольку именно такая разница в ширине запрещенной зоны позволяет создавать в области базы относительно высокую концентрацию легирующих примесей, что и обеспечивает высокую рабочую частоту структуры, сравнимую с частотой приборов на основе соединений AIIIBV.

Частота отсечки промышленно выпускаемых гетеропереходных биполярных транзисторов в настоящее время превышает 100 ГГц, а в опытных образцах -- даже 400 ГГц. Такие высокие значения частоты отсечки частично связаны с использованием структур со сжимающими механическими напряжениями, что позволяет менять энергетическую структуру в напряженных слоях, в результате чего происходит уменьшение эффективной массы носителей. Повышение подвижности носителей при этом может достигать 60%.

Конечным результатом описанных приемов стало создание базовых областей с плавным изменением состава х в соединениях типа GexSi1-x. Наклон энергетической зоны, возникающий вследствие изменений ширины запрещенной зоны вдоль базовой области, обеспечивает очень высокие значения (вплоть до ~10 кВ/см) встроенного электрического поля, что и позволяет резко уменьшить время прохождения электронами базовой зоны. Такие гетеропереходные биполярные транзисторы (НВТ), конечно, потребляют и рассеивают гораздо больше энергии, чем полевые МОП-транзисторы, однако позволяют работать при гораздо более высоких частотах и при меньшем уровне шумов. Эти преимущества и позволяют рассматривать гетеропереходные биполярные транзисторы на основе SiGe в качестве весьма перспективных приборов.

Рис. 4 (а) Гетеропереходный биполярный транзистор (HBT) с базой переменной ширины запрещенной зоны; (б) двойной гетеропереходный биполярный транзистор (DHBT) с широкой запрещенной зоной полупроводника в области эмиттера и коллектора

3. Резонансный туннельный эффект

В гетеропереходах и квантовых ямах отклик электронов на приложенное электрическое поле, направленное параллельно поверхности раздела, соответствует очень высокой подвижности. Рассмотрим отклик электронов на электрические поля, направленные перпендикулярно потенциальным барьерам на поверхностях раздела. В этом случае электроны могут, при соблюдении определенных условий, просто туннелировать через потенциальные барьеры, осуществляя так называемый перпендикулярный транспорт. Туннельные токи через гетеропереходы могут приводить к формированию областей с отрицательным дифференциальным сопротивлением (NDR) на вольт-амперной характеристике, для которых величина протекающего тока уменьшается с ростом прикладываемого напряжения. Этот эффект впервые был обнаружен Лео Эсаки еще в 1957 г. при изучении туннельных диодов с р-п переходами. В 1970 г. он (вместе с Тцу) предположил, что такой же эффект может наблюдаться в токах, протекающих через квантовые ямы, однако лишь к середине 1980-х г. развитие методов осаждения позволило вырастить структуры с гетеропереходами и квантовыми ямами, на основе которых удалось создать реальные устройства, в которых используется обсуждаемый эффект.

Действие электронных устройств на основе эффекта отрицательного дифференциального сопротивления (NDR) квантовых ям связано с так называемым эффектом резонансного туннелирования (RTE), наблюдаемым при прохождении электрического тока через структуру из двух тонких барьеров, между которыми располагается квантовая яма. Вольт-амперная характеристика (зависимость I -- V) этих устройств похожа на характеристики туннельных диодов Эсаки. На рис.5, а схематически представлена зона проводимости для двойного гетероперехода с квантовой ямой между переходами. Предполагается, что ширина квантовой ямы настолько мала (5--10 нм), что яма может содержать лишь один электронный уровень с энергией Et (резонансный уровень). Область ямы состоит из слаболегированного GaAs, окруженного слоями AlGaAs с большей шириной запрещенной зоны. Внешние слои состоят из сильнолегированного GaAs n-типа (n+ GaAs), который обеспечивает электрические контакты. Уровень Ферми для п+ GaAs располагается в зоне проводимости, поскольку этот материал может рассматриваться как вырожденный полупроводник

Рис.5. Схематическое представление зоны проводимости резонансного туннельного диода: а -- в отсутствие внешнего напряжения; 6 -- г -- при повышении приложенного напряжения; д -- вольт-амперная характеристика системы

Рассмотрим поведение описываемой системы при повышении приложенного электрического напряжения V, начиная с напряжения 0В. Можно ожидать, что при небольшом приложенном напряжении электроны будут туннелировать из зоны проводимости п+ GaAs через потенциальный барьер, в результате чего увеличение напряжения должно приводить к возрастанию тока, что и демонстрирует участок 1 --2 в области малых напряжений на вольт-амперной характеристике (рис.5, д). При дальнейшем росте напряжения до значения2E1/е энергия электронов в п+ GaAs в окрестности уровня Ферми совпадает с резонансным уровнем E1 электронов внутри квантовой ямы, как показано на рис.5, б).

Такое совпадение соответствует резонансу, при котором коэффициент квантовой проницаемости барьера резко возрастает. Резонанс объясняется тем, что при этих условиях волновая функция электрона в яме когерентно отражается между двумя барьерами (этот эффект аналогичен оптическому отражению в резонаторах Фабри -- Перо). При этом электронная волна, попадающая в структуру слева возбуждает резонансный уровень электронов в яме, повышая тем самым коэффициент прохождения электронов (а следовательно, и величину тока) через потенциальный барьер, что соответствует области точки 2 на вольтамперной характеристике рис. 5, д. Возникающую при этом ситуацию можно сравнить с впрыскиванием электронов слева в квантовую яму и их дальнейшим освобождением через второй барьер.

При дальнейшем повышении напряжения (рис. 5, в) резонансный уровень энергии в яме расположен ниже уровня Ферми в катоде, и ток начинает уменьшается (область 3, рис.5, д ), в результате чего и возникает эффект отрицательного дифференциального сопротивления (NDR), соответствующий участку на вольт-амперной характеристики рис. 9.5, д в промежутке между точками 2 и 3. Затем, при дальнейшем повышении напряжения, ток через структуру начинает возрастать благодаря термоионной эмиссии через барьер (область 4 на рис.5, г и промежуток между точками 3 и 4 на характеристике).

Именно на этом эффекте основано действие многих промышленно выпускаемых диодов с резонансным туннелированием (RTD), широко применяемых в микроволной технике. Основной характеристикой, используемой для оценки рабочих параметров, выступает отношение токов пикового тока к минимальному току (PVCR) на вольт-амперной характеристике, т. е. отношение максимального тока (точка 2) к минимальному току на впадине (точка 3). Для обычных структур AlGaAs--GaAs при комнатных температурах это отношение составляет около 5, однако в структурах из напряженных слоев InAs, окруженных барьерами из материала AlAs, работающих при температуре жидкого азота, это отношение может быть доведено до 10.

Диод с резонансным туннелированием (RTD) можно представить в виде отрицательного сопротивления, соединенного с параллельной емкостью диода С и последовательным сопротивлением Rs (так же, как и в случае обычных диодов). Эта схема позволяет довольно легко продемонстрировать, что максимум рабочей частоты повышается при уменьшении С. Диод с резонансным туннелированием обычно изготовляется из низколегированных полупроводников, в результате чего возникает достаточно широкая область пространственного заряда между барьерами и областью коллектора, которой соответствует малая эквивалентная емкость. Вследствие этого рабочие частоты RTD и могут достигать нескольких терагерц (ТГц), что значительно выше рабочих частот туннельных диодов Эсаки (порядка 100 ГГц, с временем отклика до 10-13 с). Низкие значения отрицательного дифференциального сопротивления, т. е. очень резкий спад после максимума на вольт-амперной характеристике, позволяет обеспечивать высокую частоту работы устройства, вследствие чего RTD являются единственными электронными приборами, способными функционировать на частотах порядка 1 ТГц, т. е. являются приборами с минимальным временем пролета электронов.

Вообще говоря, передаваемая от транзисторов RTD на внешнюю нагрузку мощность, достаточно мала, и их выходной импеданс также достаточно мал, вследствие чего такие транзисторы очень трудно согласовать в схемах с волноводами или антеннами. Выходной сигнал таких транзисторов обычно составляет лишь несколько милливатт, поскольку их выходное напряжение обычно меньше 0,3 В, что обусловлено значениями высоты барьеров и энергетических уровней в квантовых ямах. В настоящее время диоды с резонансным туннелированием очень часто используются для демонстрации различных возможностей их применения в разнообразных устройствах, включая статические запоминающие устройства с произвольным доступом (статические ОЗУ), генераторы импульсов, многозначные запоминающие устройства, многозначные и переключающиеся логические устройства, аналогово-цифровые преобразователи, осцилляторы, сдвиговые регистры, усилители с низким уровнем шумов, логические схемы типа MOBILE или нечеткой логики, умножители частоты, нейронные сети и т. п. В частности, особый интерес создателей различных логических схем привлекают устройства со значениями коэффициента PVCR (отношение максимального тока к току в долине) порядка 3 или выше, особенно в сочетании с высокими значениями плотности пикового тока Jp.

Структуры со значениями PVCR порядка 3 и величиной Jp около нескольких А/м-2 представляются почти идеальными для создания многих типов запоминающих устройств, а высокие значения Jp и коэффициенты PVCR ~ 2 очень удобны для создания новых типов высокочастотных осцилляторов. В табл. 1 приводятся характерные значения параметров устройств такого вида, создаваемых на основе существующих полупроводниковых систем.

Таблица 1.

Материал

InGaAs

InAs

Si/SiGe

GaAs

Si (диод Эсаки)

J, кА/см-2

460

370

282

250

151

PVCR

4

3,2

2,4

1,8

2,0

?I?V

5,4

9,4

43,0

4,0

1,1

Rd (?)

1,5

14,0

12,5

31,8

79,5

Площадь, мкм2

16

1

25

5

2,2

В таблице приведены значения плотности пикового тока Jp, коэффициента PVCR (отношение максимального тока к току в долине); предельная мощность устройства, т, е. максимум произведения ?I?V в области отрицательного дифференциального сопротивления NRD (в предположении 100%-й эффективности) и значение отрицательного сопротивления диода RD в области NRD.

Список использованной литературы.

1. Sze S.M. High Speed Devices (Wiley New York) 1991.

2. Дж. Мартинес-Дуарт, Р.Дж. Мартин-Палма, Ф. Агулло-Руеда «Нанотехнологии для микро- и оптоэлектроники» Техносфера. М. 2007.

Размещено на Allbest.ru


Подобные документы

  • Типы биполярных транзисторов и их диодные схемы замещения. Кремниевые и германиевые транзисторы. Физические явления в транзисторах. Схемы включения и статические параметры. Влияние температуры на статистические характеристики, динамические параметры.

    реферат [116,3 K], добавлен 05.08.2009

  • Устройство плоскостного биполярного транзистора. Концентрация основных носителей заряда. Схемы включения биполярных транзисторов. Статические характеристики биполярных транзисторов. Простейший усилительный каскад. Режимы работы и область применения.

    лекция [529,8 K], добавлен 19.11.2008

  • Биполярные транзисторы с изолированным затвором (РТ) новой технологии (IGBT) против полевых МОП транзисторов. Улучшенные динамические характеристики. Рабочие частоты и токи. Положительный температурный коэффициент. Потери проводимости и переключения.

    статья [176,9 K], добавлен 27.09.2009

  • История создания полевых транзисторов. Устройство полевого транзистора с управляющим p-n переходом. Принцип действия МДП-структур специального назначения. Схемы включения полевых транзисторов, их применение в радиоэлектронике, перспективы развития.

    реферат [1,3 M], добавлен 30.05.2014

  • Конструкции полевых транзисторов с управляющим р-п переходом. Стоко-затворная и стоковая (выходная) характеристики, параметры и принцип действия транзисторов. Структура транзисторов с изолированным затвором. Полупроводниковые приборы с зарядовой связью.

    реферат [822,3 K], добавлен 21.08.2015

  • Биполярные и полевые СВЧ-транзисторы. Баллистические и аналоговые транзисторы. Сравнительная таблица основных свойств полупроводникового материала 4H-SiC с Si и GaAs. Алмаз как материал для СВЧ-приборов. Приборы на основе квантово-размерных эффектов.

    курсовая работа [2,9 M], добавлен 22.08.2015

  • Сокращение времени переноса носителей через базу. Баллистические и аналоговые транзисторы. Горбообразные барьеры эмиттера и коллектора. Транзисторы с металлической базой. Приборы на квантово-размерных эффектах. Инерционность процесса туннелирования.

    реферат [865,2 K], добавлен 21.08.2015

  • История открытия, классификация транзисторов по структуре (биполярные, полевые, однопереходные и криогенные), мощности, исполнению, материалу (пластик, полимеры). Особенности металлических и полимерных транзисторов и их сравнительная характеристика.

    презентация [592,4 K], добавлен 06.03.2015

  • Создание полупроводниковых приборов для силовой электроники. Транзисторы с изолированным затвором. Схемы включения полевых транзисторов. Силовые запираемые тиристоры. Устройство полевого транзистора с управляющим p-n переходом. Назначение защитной цепи.

    реферат [280,5 K], добавлен 03.02.2011

  • Устройство и принцип действия полевого транзистора. Статические характеристики. Полевые транзисторы с изолированным затвором. Схемы включения полевых транзисторов. Простейший усилительный каскад. Расчет электрических цепей с полевыми транзисторами.

    лекция [682,2 K], добавлен 19.11.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.