Оптимальный прием сигнала в шумах

Метод максимального правдоподобия. Определение точки начала импульса. Нахождение переданного сигнала. Методы оптимального приема сигналов. Демодуляторы с различными правилами решения. Различия между реализациями сигналов. Оценка качества приема.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 20.11.2012
Размер файла 133,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Задание № 14

Необходимо с помощью метода максимального правдоподобия отыскать на участке принятого сигнала длиной 10 мс точку начала импульса. Частота дискретизации сигнала - 1 кГц. Шум распределён по закону Релея с у = 1 мВ; сигнал имеет нормальное распределение с у = 1 мВ, m изменяется от 1 до 5,5 мВ с шагом 0,5 мВ на отсчёт.

Рассчитать функцию правдоподобия. Создать алгоритм поиска точки (блок-схему алгоритма).

Введение

Когда сигнал S(t) передаётся по каналу связи на него воздействуют различные шумы n(t). Это значит, что принятый сигнал Z(t) отличается от переданного сигнала S(t). Функция приемника заключается в нахождении переданного сигнала S(t) по принятому сигналу Z(t)=S(t)+n(t). Для этого были найдены методы оптимального приема сигналов. Они позволяют уменьшить вероятность ошибки при принятии решения.

Теоретическая часть

Допустим, что на вход поступает сигнал z(t) = s(t, bi)+n(t), где s(t, bi) -- сигнал, соответствующий символу bi ; п(t) -- аддитивная помеха. На выходе демодулятора возникает дискретный сиuнал, т. е. последовательность кодовых символов.

Обычно некоторый отрезок (элемент) непрерывного сигнала преобразуется модемом в один кодовый символ (поэлементный прием). Если бы этот кодовый символ всегда совпадал с передаваемым (поступившим на вход модулятора), то связь была бы безошибочной. Но, как известно, помехи приводят к невозможности с абсолютной достоверностью восстановить по принятому сигналу переданный кодовый символ.

Каждый демодулятор описывается законом, по которому поступивший на его вход непрерывный сигнал превращается в кодовый символ. Этот закон называется правилом решения, а реализующая его схема -- решающей. Демодуляторы с различными правилами решения будут выдавать, вообще говоря, различные решения, из которых одни верные, а другие -- ошибочные.

В любом демодуляторе дискретных сообщений перед непосредственным принятием решения приходящий сигнал подвергается той или иной обработке, целью которой является наилучшее использование различия между реализациями сигналов, соответствующих разным символам, а также отличия сигналов от помех. Всякая линейная обработка сигнала описывается операцией интегрирования с весом ц(t,ф) в течение тактового интервала (0, Т):

Таким образом, на выходе устройства обработки существуют сигнальная и шумовая составляющие.

На ранних этапах развития техники связи способы обработки сигналов выбирались разработчиками аппаратуры интуитивно, исходя из общих идей о путях выделения сигнала из помехи и различения передаваемых символов. Выбором различных видов реализаций сигналов s(t, bi) и способов обработки в ряде случаев удавалось повысить помехоустойчивость системы передачи дискретных сообщений, т. е. увеличить верность оценки переданного символа bi при наличии помех.

Современная статистическая теория связи позволяет отыскать наилучшую операцию обработки входного сигнала z(t), обеспечивающую максимальное качество оценки . Будем полагать, что свойства источника сообщения и кодера известны. Кроме того, известен модулятор, т. е. задано, какая реализация элемента сигнала соответствует тому или иному кодовому символу, а также задана математическая модель непрерывного канала. Требуется определить, каков должен быть демодулятор (правило решения), чтобы обеспечить оптимальное (т. е. наилучшее из возможных при заданных сигналах на передаче) качество приема.

Такая задача была впервые поставлена и решена (для гауссовского канала) в 1946 г. выдающимся советским ученым В. А. Котельниковом. В этой постановке качество оценивалось вероятностью правильного приема символа. Максимум этой вероятности при заданном виде модуляции В. А. Котельников назвал потенциальной помехоустойчивостыо, а демодулятор, обеспечивающий этот максимум, -- идеальным приемником. Из этого определения следует; что ни в одном реальном демодуляторе вероятность правильного приема символа не может быть больше, чем в идеальном приемнике.

На первый взгляд принцип оценки качества приема вероятностью правильного приема символа кажется вполне естественным и даже единственно возможным. Ниже будет показано, что это не всегда так и что существуют и другие критерии качества, применимые в тех или иных частных случаях.

Ознакомимся подробнее со статистическим подходом к задаче приема дискретных сообщений на фоне шумов. Пусть при передаче дискретных сообщений, закодированных кодом с основанием т используются реализации сигнала иi(t), 0<t<Т, соответствующие кодовым символам bi (i=0, 1, 2, 3,..., т--1)1. В течение тактового интервала 0<t<T на вход приемного устройства поступает колебание z(t), которое вследствие искажений и помех в канале не совпадает в точности ни с одним из сигналов иi(t). Следовательно, в этом случае приемное устройство должно выбрать одну из т возможных взаимоисключающих (альтернативных) гипотез: передавался кодовый символ b0, т. е. сигнал и0(t); передавался кодовый символ b1, т. е. сигнал и1(t); передавался кодовый символ bm-1 , т е. сигнал иm-1(t).

Для двоичной системы (т=2) приемное устройство выбирает одну из двух альтернативных гипотез о передаче символа 1 или 0.

Совокупность всех возможных реализаций z(t) можно интерпретировать точками в пространстве Z принимаемых финитных сигналов. Обычно оно является бесконечномерным пространством Гильберта или, с некоторыми (приемлемыми для практики) оговорками, многомерным пространством Евклида. Простоты ради будем графически изображать реализации принимаемых сигналов si(t) и помехи n(t) длительностью Т точками на плоскости или соответствующими векторами, откладываемыми от начала координат 0. Если правило решения выбрано, то это означает, что каждой точке пространства принимаемых колебаний (концу вектора) z = s + n приписывается одна из m гипотез, т. е. определенный передаваемый кодовый символ bi.Пространство принимаемых сигналов окажется при этом разбитым на m непересекающихся областей, каждая из которых соответствует принятию определенной гипотезы. В такой трактовке различные приемные устройства отличаются друг от друга способом разбиения пространства сигналов на области , т. е. правилом принятия решения. Возможное разбиение схематически показано на рис. 1.

В двоичной системе пространство z разбивают на две непересекающиеся области и . Пусть на интервале 0--Т принимается колебание z(t) = sj(t)+n(t),

где sj(t) - полезный сигнал в месте приема, прошедший канал связи, а n(t) -- реализация аддитивной помехи.

Если помехи отcутствуют, возможные значения z(t) изображаются точками sj (j = 0, 1, 2, ..., m--1). При наличии помехи и передаче сигнала с номером j точка принимаемого колебания z отклоняется от точки sj.

На рис. 1 это показано для сигналов S1 и Sk. Обычно область содержит точку sj. В тех случаях, когда помеха не выводит точку z за пределы области , решение оказывается верным.

В противном случае возникает ошибка. Очевидно, изменяя границы между областями, можно влиять на вероятность ошибочного приема отдельных передаваемых символов. Например, если в разбиении, показанном на рис. 1, расширить область за счет области , то уменьшится вероятность ошибочного приема символа bk вместо передаваемого символа bj. Однако в этом случае возрастает вероятность ошибочного приема , при передаваемом bk. Очевидно, всегда существует такое расположение областей, которое в определенном смысле лучше всякого другого.

Если задан критерий качества, то наилучшее разбиение пространства принимаемых сигналов (оптимальная решающая схема приемного устройства) достигается методами теории статистических решений.

сигнал импульс демодулятор качество

Практическая часть

Основная формула - функция правдоподобия:

W (Hi) =wсшwш

W(H1) = wш = =

W(H2) = wсш1wш =

=

W(H3) = wсш2wш =

= =

W(H4) = wсш3wш =

= =

W(H5) = wсш4wш =

= =

W(H6) = wсш5wш

= =

=

W(H7) = wсш6wш

= =

=

W(H8) = wсш7wш =

= =

W(H9) = wсш8wш = =

=

W(H10) = wсш9wш =

= =

W(H11) = wсш10 = =

Блок-схема алгоритма

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Заключение

Таким образом, мы построили алгоритм принятия решения, а также определили зоны принятия решений для метода максимального правдоподобия.

Список использованной литературы

Зюко А.Г. и др. Теория передачи сигналов. -М.: Радио и связь, 1986.

Кловский Д.Д., Шилкин В.А. Теория электрической связи. - М.: Радио и связь, 1990.

Левин Б.Р. Теоретические основы статистической радиотехники Т2. -М.: Советское Радио, 1975.

Вентцель Е.С. Теория вероятностей. -М.: Наука, 1969.

Седов С.С. Курс лекций. Оптимальный прием сигнала.

Размещено на Allbest.ru


Подобные документы

  • Основные положения теории оптимального приема сигналов, теорема Байеса. Оптимальный когерентный и некогерентный приемы дискретных сигналов и их помехоустойчивость. Оптимальный и квазиоптимальный прием непрерывных сигналов и его помехоустойчивость.

    реферат [104,3 K], добавлен 13.11.2010

  • Рассмотрение основных этапов в решении задачи оптимизации приема сигнала. Изучение методов фильтрации и оптимизации решений. Вероятностный подход к оценке приёма сигнала; определение вероятности ошибок распознавания. Статические критерии распознавания.

    презентация [3,0 M], добавлен 28.01.2015

  • Анализ основных положений теории сигналов, оптимального приема и модуляции сигналов. Обзор способов повышения верности передаваемой информации. Расчёт интервала дискретизации сигнала и разрядности кода. Согласование источника информации с каналом связи.

    курсовая работа [217,1 K], добавлен 07.02.2013

  • Принципы организации, работы и эксплуатации радиотехнических систем. Потенциальная помехоустойчивость, реализуемая оптимальными демодуляторами. Вероятности ошибочного приема. Классы излучения сигналов. Обнаружение сигналов в радиотехнических системах.

    курсовая работа [164,2 K], добавлен 22.03.2016

  • Расчёт энергетических характеристик сигналов и информационных характеристик канала. Определение кодовой последовательности. Характеристики модулированного сигнала. Расчет вероятности ошибки оптимального демодулятора. Граничные частоты спектров сигналов.

    курсовая работа [520,4 K], добавлен 07.02.2013

  • Принципы расчета и построения систем беспроводной связи. Особенности распространения и затухания сигналов в системах радиосвязи с радиальной структурой. Определение максимального расстояния уверенного приема и посредственного, неуверенного приема.

    курсовая работа [255,8 K], добавлен 08.10.2012

  • Экспериментальное исследование принципов формирования АИМ – сигнала и его спектра. Методика и этапы восстановления непрерывного сигнала из последовательности его дискретных отсчетов в пункте приема, используемые для этого главные приборы и инструменты.

    лабораторная работа [87,1 K], добавлен 21.12.2010

  • Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.

    дипломная работа [3,3 M], добавлен 30.03.2011

  • Порядок и этапы формирования и приема радиосигналов с ОФМн, расчет необходимых для этого параметров и критериев. Составление принципиальной схемы передачи сигнала, и факторы, оказывающие влияние на его интенсивность. График работы системы связи с ОФМн.

    презентация [992,8 K], добавлен 14.09.2010

  • Исследование помехоустойчивости методов разнесенного приема сигналов в декаметровом канале связи, сравнение показателей качества этих методов. Метод комбинированной обработки цифровых сигналов при разнесенном приеме. Интерференция и методы борьбы с ней.

    диссертация [5,2 M], добавлен 11.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.