Передача аналогового сообщения по цифровой линии связи
Принцип кодирования аналогового сообщения, основанный на счетно-импульсном методе, принцип весового декодирования и демодуляции. Использование избыточного кодирования для повышения помехоустойчивости системы связи, влияние помех на качество передачи.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 17.07.2010 |
Размер файла | 134,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
8
Министерство общего и профессионального образования
Российской федерации
Уральский Государственный Технический Университет
Кафедра РТС
Курсовая работа по теме:
“Передача аналогового сообщения по цифровой линии связи"
по курсу "Основы радиотехнических систем"
г. Екатеринбург, 2000г.
Работа 1
Цель работы
В данной работе изучается:
принцип кодирования аналогового сообщения, основанный на счётно-импульсном методе;
принцип весового декодирования и демодуляции;
использование избыточного кодирования для повышения помехоустойчивости системы связи;
влияние помехи в линии связи на качество передачи сообщения.
Расчётное задание
1. Необходимо рассчитать зависимость кв(n) при передаче гармонического сообщения, а также результирующую ошибку при вероятности ошибки в канале связи pош=10-25*10-1 для 5-разрядного кода.
;
kпx - пик-фактор сообщения;
Nкв - число уровней квантования;
Так как сообщение представляет собой синусоиду, то пик-фактор сообщения равен , поэтому получим:
n |
5 |
4 |
3 |
2 |
1 |
|
кв(n) |
0.0255 |
0.0510 |
0.1021 |
0.2041 |
0.4082 |
pош |
10-2 |
4*10-2 |
7*10-2 |
10-1 |
4*10-1 |
5*10-1 |
|
общ |
0.1032 |
0.2016 |
0.2658 |
0.3173 |
0.6330 |
0.7076 |
2. Предложить алгоритм выделения из экспериментальных зависимостей величин отдельных составляющих искажений и оценки вероятности ошибки в эксперименте.
Относительная среднеквадратическая ошибка (ОСКО) передачи сообщения определяется как:
для случая без действия помех 2 = 2кв + 2м-д
для случая с помехами в линии связи 2 = 2кв + 2ш + 2м-д
Величину относительной среднеквадратической ошибки модуляционно-демодуляционных искажений м-д найдём из соотношения:
м-д = (2 - 2кв)1/2,
где 2кв - рассчитанное значение;
2 - ОСКО, полученная для случая без коррекции ошибок.
Ошибку, обусловленную помехами в линии связи, ш найдём из выражения:
ш = (2 - 2кв - 2м-д)1/2,
здесь 2 - ОСКО, полученная для случая с коррекции ошибок.
Вероятность ошибки при приёме отдельного элемента цифровой последовательности при действии помех в линии связи на сигнал найдём из следующих соотношений. Средняя мощность ошибки сообщения Pош на входе декодера равна:
Pош pошX2m/3;
Px = X2m/2;
2 = Pош/ Px = 2кв + 2ш + 2м-д.
Итого, имеем:
pош = 1,52,
где 2 - ОСКО, полученная для случая без коррекции ошибок.
Описание лабораторной установки
Лабораторная установка состоит из преобразователя аналог-код типа Ф706; линии связи, обеспечивающей параллельную передачу 5-разрядного кода, сигналов синхронизации и контрольного разряда, а также формирование помех; преобразователя код-аналог типа Ф706; осциллографа С1-20, измерителя нелинейных искажений типа ИНИ-12.
В лабораторной установке имеются следующие возможности изменения параметров и режимов, позволяющие оценить их влияние на качество передачи сообщения - измерить величину искажений:
ручной набор выходного напряжения датчика сообщения;
передача гармонического сигнала с частотой 50 Гц;
изменение частоты дискретизации сообщения 200, 500, 1000Гц («Частота запуска»);
изменение шага квантования - последовательное отключение разрядов в принятой кодовой комбинации (на входе детектора);
сравнение качества передачи сообщения избыточным кодом и безызбыточным кодом при изменении вероятности ошибки в линии связи.
Экспериментальная часть
В ходе выполнения лабораторной работы мы ознакомились с измерительным оборудованием, назначением регулировок и переключателей на приборах установки для установления необходимого режима исследования; качество передачи контролировалось по осциллографу. Нами были сняты следующие зависимости:
зависимость искажений от величины шага квантования (числа разрядов) kf(n) при постоянной частоте дискретизации 500Гц.
Таблица 1
n |
5 |
4 |
3 |
2 |
1 |
|
Kf, % |
7.8 |
11 |
14 |
23 |
32 |
зависимость искажений от частоты дискретизации при постоянном числе разрядов n=5.
Таблица 2
fд, Гц |
1000 |
500 |
100 |
10 |
|
Kf, % |
4 |
7.8 |
23 |
>90 |
зависимость искажений от вероятности ошибки в линии связи без коррекции и с коррекцией ошибок при n=5 и Fд=500 Гц (kf(pощ)).
Таблица 3
pош |
32-1 |
16-1 |
8-1 |
4-1 |
2-1 |
|
Kf, % |
11 |
16 |
22 |
29 |
40 |
|
Kfкор, % |
8.6 |
10 |
15 |
18 |
22 |
Обработка результатов эксперимента
Найдём ш и вероятность ошибки pош при коэффициенте деления делителя 4, n = 5 и Fд = 500 Гц, используя выведенные ранее соотношения:
м-д = (2 - 2кв)1/2 = ((0.078)2 - (0.0255)2)1/2 0.073
ш = (2 - 2кв - 2м-д)1/2 = ((0.18)2 - (0.0255)2 - (0.073)2)1/2 0.1625
pош = 1,52 = 1,5((0.0255)2+(0.1625)2+(0.073)2) = 4.8610-2
Анализ полученных результатов
В данной лабораторной работе нами изучались: принцип кодирования аналогового сообщения, основанный на счётно-импульсном методе; принцип весового декодирования и демодуляции; использование избыточного кодирования для повышения помехоустойчивости системы связи; влияние помехи в линии связи на качество передачи сообщения.
Из полученных результатов можно сделать следующие выводы:
В соответствии с теорией при изменении величины шага квантования изменяется и величина искажений, т.е. чем больше шаг квантования (меньше число разрядов), тем выше уровень искажений: 7.8% при n=5 и 32% при n=1. Это происходит потому, что с ростом шага квантования растёт относительная среднеквадратическая ошибка квантования. Можно отметить, что для передачи аналогового сообщения с минимумом искажений нужно вполне определённое число уровней квантования.
Также в соответствие с теорией при изменении величины частоты дискретизации изменяется и величина искажений: их тем больше, чем она меньше (т.к. в этом случае увеличивается ОСКО модуляционно-демодуляционных искажений), причём, существует вполне определённая минимально допустимая (с точки зрения искажений) частота дискретизации. Тем не менее, согласно теореме Котельникова для точной передачи аналогового сообщения вполне достаточно использовать частоту дискретизации, в два раза превышающую верхнюю граничную частоту спектра сообщения; в нашем случае для передачи «сообщения» частотой 50Гц достаточно частоты дискретизации в 100Гц, при этом величина искажений составляет порядка 20%.
Использование коррекции ошибок (контроля чётности) при передаче сообщения уменьшает общую ОСКО.
Таким образом, цель лабораторной работы можно считать достигнутой.
Работа 2
Цель работы: исследовать асинхронную адресную систему связи с импульсно-временным кодированием и проанализировать основные показатели качества данной системы.
Функциональная схема лабораторной установки
Экспериментальная часть
Производилось снятие зависимости числа ложных импульсов на выходе схемы совпадений от интенсивности ХИП. Результаты эксперимента сведены в таблице 1.
Таблица 1
Положение потенциометра |
1 |
2 |
3 |
4 |
5 |
|
Z/с |
758 |
1230 |
2185 |
2565 |
3404 |
|
Zлож (3х-имп. код) за 30с |
1 |
-1 |
632 |
1049 |
1488 |
|
Zлож (3х-имп. код)/с |
0.033 |
-0.033 |
21.07 |
34.97 |
49.6 |
|
Zлож (2х-имп. код) за 30с |
-1 |
182 |
1072 |
2553 |
3725 |
|
Zлож (2х-имп. код)/с |
-0.033 |
6.07 |
35.73 |
85.1 |
124.17 |
|
2 (3х-имп. код) |
2.7*10-4 |
2.7*10-4 |
0.171 |
0.283 |
0.402 |
|
2 (2х-имп. код) |
2.7*10-4 |
0.049 |
0.289 |
0.689 |
1.006 |
Расчётная часть
8
Ниже приведён расчёт относительной величины искажений в спектре ВИМ.
8
Результаты расчётов также сведены в таблице 1. По полученным в расчётах результатам и экспериментальным данным построены соответствующие зависимости: интенсивности ложных импульсов и относительной величины искажений от интенсивности потока (соответственно рис.1 и рис.2 для 2х и 3х-импульсного кода).
Также были сняты осциллограммы в точках 5, 6 и 7 (см. функциональную схему), они приведены ниже, соответственно на рис.3-рис.5.
8
Выводы
В данной лабораторной работе была исследована зависимость числа ложных импульсов от интенсивности хаотической импульсной помехи ХИП, то есть, сколько образуется ложных адресов при разном количестве абонентов и разной длине кода (3-х и 2-х импульсная система кодирования). Оказалось, что чем больше абонентов, тем больше ложных адресов, что удовлетворяет теоретическим сведениям, а трёхимпульсный код лучше двух-импульсного. Также было рассчитано число ожидаемых ложных адресов (измерения проводились в течение 30 секунд), результаты сведены в таблице 2.
Таблица 2.
Положение потенциометра |
1 |
2 |
3 |
4 |
5 |
|
Z |
758 |
1230 |
2185 |
2565 |
3404 |
|
3-х имп. за 30с |
0.98 |
4.187 |
23.471 |
37.97 |
88.746 |
|
2-х имп. за 30с |
172.369 |
453.87 |
1432 |
1974 |
3476 |
Видно, что теоретическая интенсивность в большинстве своём получилась меньше, чем было получено в эксперименте. Это объясняется тем, что в эксперименте адрес считается ложным, если произошло хотя бы частичное наложение импульсов, тогда как в теории мы приняли считать адрес ложным, если произошло полное совпадение импульсов. Поэтому надо стремиться к тому, чтобы импульсы не перекрывались, этого можно достигнуть, максимально уменьшая длительность импульсов.
Контрольные вопросы
Вопрос № 1: объяснить принцип частотно-временного кодирования и сформулировать условия, при которых адреса ЧВК ортогональны.
Ответ: для работы многоканальных адресных систем передачи информации используется принцип разделения каналов абонентов по структуре сигнала-адреса, причем передаваемая информация заключена в изменении либо амплитуды, либо временного положения адреса. В данном случае адрес используется в виде частотно-временного кода (ЧВК). ЧВК задается частотно-временной матрицей.
Общее число адресов, возможное при ЧВК, определяется так:
Адрес выглядит как пачка импульсов с заполнением поднесущими частотами, код образует комбинация поднесущих. Импульсная последовательность с различным частотным заполнением переносится на несущую частоту передатчика. Несколько передатчиков могут использовать одну несущую. Приемник разделяет поднесущие частоты, детектирует их и формирует импульсы отдельных частотных каналов. Код ЧВК широкополосный, сетка частот выбирается также, как и для ЧРК.
Условия ортогональности: взаимно-корреляционная функция 0
Ширина полосы радиолинии выбирается исходя из заданного качества разделения каналов.
Вопрос: Какие дополнительные искажения в передачу сообщения вносятся дискретной линией задержки?
Ответ: В передачу сообщения вносятся дополнительные искажения кодирующей линией задержки, т.к. она не идеальна: в лабораторной установке используется её дискретный вариант, реализованный на регистрах сдвига. Для получения необходимого разноса по времени применены 2 четырёхразрядных регистра, соединённых последовательно; очевидно, что на передачу сообщения оказывает влияние быстродействие применяемых регистров, так недостаточно быстродействующие ИМС вызывают, например, затягивания фронтов импульсов и т.д. Лучшие показатели по быстродействию имеют аналоговые линии задержки с необходимыми отводами, их применение позволило бы существенно снизить искажения, обусловленные влиянием линии задержки.
Подобные документы
Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.
курсовая работа [1,1 M], добавлен 03.05.2015Принципы построения систем электросвязи и расчёт их параметров. Анализ статических характеристик и параметров передаваемого сообщения, аналогово-цифрового и цифро-аналогового преобразований сообщения, узкополосного непрерывного гауссовского канала связи.
курсовая работа [1,3 M], добавлен 14.12.2012Методы компрессии цифровых аудиоданных, кодирования речевых сообщений, алгоритмы кодирования изображений. Стандарты в области компьютерной видеоконференцсвязи. Сжатие с потерями и без потерь. Определение полосы частот для заданного качества сообщения.
презентация [876,4 K], добавлен 16.03.2014Назначение системы связи - передача сообщения из одной точки в другую через канал связи. Формирование сигнала. Аналого-цифровой и цифро-аналоговый преобразователь. Строение модема. Воздействие шумов и помех. Сравнение входного и выходного сигналов.
курсовая работа [1,3 M], добавлен 21.01.2009Понятие и сущность кодирования информации, его применение. Проектирование цифрового устройства для передачи сообщения через канал связи, разработка задающего генератора, делителя частоты и преобразователя кода. Функциональная схема управления автомата.
курсовая работа [956,5 K], добавлен 12.02.2013Общее понятие и классификация сигналов. Цифровая обработка сигналов и виды цифровых фильтров. Сравнение аналогового и цифрового фильтров. Передача сигнала по каналу связи. Процесс преобразования аналогового сигнала в цифровой для передачи по каналу.
контрольная работа [24,6 K], добавлен 19.04.2016Характеристика кодирования как средства защиты и повышения достоверности передачи информации по каналу связи. Частотный диапазон Bluetooth и способ кодирования пакета в цифровых системах связи. Классификация кодов, их параметры и оптимальные значения.
презентация [146,0 K], добавлен 22.10.2014Расчет информационных параметров сообщения. Статистическое кодирование буквенного сообщения по Хаффману. Произведение помехоустойчивого кодирования циклическим кодом двоичного сообщения. Модуляция и демодуляция сигналов. Подсчет вероятности ошибки.
курсовая работа [689,2 K], добавлен 20.11.2021Структурная схема цифровых систем передачи и оборудования ввода-вывода сигнала. Методы кодирования речи. Характеристика методов аналого-цифрового и цифро-аналогового преобразования. Способы передачи низкоскоростных цифровых сигналов по цифровым каналам.
презентация [692,5 K], добавлен 18.11.2013Расчет характеристик системы передачи сообщений, ее составляющие. Источник сообщения, дискретизатор. Этапы осуществления кодирования. Модуляция гармонического переносчика. Характеристика канала связи. Обработка модулируемого сигнала в демодуляторе.
контрольная работа [424,4 K], добавлен 20.12.2012