Распознавание образов с помощью нейронных сетей в MatLab
Определение и виды искусственных нейронных сетей. Функция активации. Биологический нейрон. Персептрон как инструмент для классификации образов. Классификация объектов с помощью нейронной сети. Нормализация входных сигналов. Алгоритм работы в MatlabR2009b.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 17.03.2016 |
Размер файла | 349,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и применение нейронных сетей, особенности классификации искусственных нейронных сетей по Терехову. Решение задачи классификации римских цифр на основе нейронной сети. Составление блок-схемы алгоритма обучения нейронной сети и анализ ее качества.
дипломная работа [603,9 K], добавлен 14.10.2010Рассмотрение принципов организации Deep Packet Inspection в телекоммуникации. Проведение исследований нейронных сетей. Выбор оптимальной модели для решения задач классификации мультимедийного трафика. Изучение вопросов безопасности жизнедеятельности.
дипломная работа [1,0 M], добавлен 22.06.2015Сравнительный анализ между классическими и квантовыми нейронами. Построение квантовой нейронной сети. Однослойный и многослойный персептроны. Алгоритм обратного распространения "Back Propagation". Робототехника как направление искусственного интеллекта.
магистерская работа [1,7 M], добавлен 26.12.2012Моделирование вихретокового контроля с помощью системы намагничивающих и измерительной катушек. Исследование зависимости информативного сигнала при разных частотах для различных форм дефектов. Расчет информативных признаков. Построение нейронных сетей.
курсовая работа [1,4 M], добавлен 27.10.2010Исследование методов обработки информации в системах технического зрения роботов. Описания искусственных нейронных сетей и их использования при идентификации изображений. Определение порогового уровня изображений, техники обработки визуальной информации.
магистерская работа [2,2 M], добавлен 08.03.2012Классификация телекоммуникационных сетей. Схемы каналов на основе телефонной сети. Разновидности некоммутируемых сетей. Появление глобальных сетей. Проблемы распределенного предприятия. Роль и типы глобальных сетей. Вариант объединения локальных сетей.
презентация [240,1 K], добавлен 20.10.2014Понятие сети и их виды: коммуникационная, информационная, вычислительная. Классификация сетей, способы коммутации. Виды связи и режимы работы сетей передачи сообщений. Унификация и стандартизация протоколов. Эталонная модель взаимосвязи открытых систем.
реферат [24,6 K], добавлен 11.06.2010Монтаж и настройка сетей проводного и беспроводного абонентского доступа. Работы с сетевыми протоколами. Работоспособность оборудования мультисервисных сетей. Принципы модернизации местных коммутируемых сетей. Транспортные сети в городах и селах.
отчет по практике [1,5 M], добавлен 13.01.2015Подходы к выполнению коммутации каналов, пакетов и сообщений. Алгоритм Флойда для выбора кратчайшего пути между всеми узлами сети. Описание интерфейса и работы программы. Проектирование региональных вертикальных и межрегиональной горизонтальной сетей.
курсовая работа [2,7 M], добавлен 19.02.2013Классификация сетей и способы коммутации. Виды связи и режимы работы сетей передачи сообщений. Унификация и стандартизация протоколов. Эталонная модель взаимосвязи открытых систем. Особенность подготовки данных. Взаимодействие информационных систем.
реферат [18,9 K], добавлен 15.09.2014