Судовой двигатель внутреннего сгорания L21/31

Общая характеристика судовых двигателей внутреннего сгорания, описание конструкции и технические данные двигателя L21/31. Расчет рабочего цикла и процесса газообмена, особенности системы наддува. Детальное изучение топливной аппаратуры судовых двигателей.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 26.03.2011
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Форсунка обеспечивает циркуляцию нагретого топлива при неработающем двигателе (во время подготовки к пуску и при вынужденных остановках в море), а также в период между смежными впрысками, когда ролик толкателя плунжера обкатывает цилиндрическую часть шайбы.

При стоянке двигателя, когда ТНВД находится в положении нулевой подачи (полости наполнения и нагнетания соединены), топливоподкачивающий насос при давлении 0,6 МПа подает топливо в нагнетательный топливопровод и канал 14 форсунки. 'Гак как пружина 16 запорного клапана 17 имеет затяг 1 МПа, то клапан не поднимается, и топливо проходит через небольшое отверстие 18 в стакан иглы и далее вверх на слив. Таким образом, при стоянке любой продолжительности вся система нагнетания будет заполнена топливом рабочей вязкости. Это исключительно важно для надежной работы топливной аппаратуры.

При работе двигателя в период активного хода плунжера давление нагнетания практически мгновенно поднимает запорный клапан 17, и перепускное отверстие 18 перекрывается. Топливо проходит к дифференциальной площадке иглы 7 и поднимает иглу.

В конце активного хода плунжера вся система нагнетания быстро разгружается через рабочую полость насоса, так как нагнетательного клапана в нем нет. Когда давление топлива падает ниже давления затяга Рап. пружина 2 сажает иглу 7, а при давлении ниже 1 МПа пружина 16 опускает на место запорный клапан 17. Ролик толкателя плунжера на длительное время выходит на верх шайбы, и система нагнетания вновь прокачивается топливом до следующего активного хода плунжера.

В рассмотренной особенности новой форсунки большое достоинство топливной аппаратуры, так как в любых условиях эксплуатации она постоянно находится в рабочем температурном режиме, что чрезвычайно важно для гарантии надежности.

Практика показала, что во время вынужденных остановок судов в море, при длительных стоянках в готовности, а также при продолжительных режимах малых ходов и маневров тяжелое топливо остывает по всей линии нагнетания, вязкость его повышается. В таких случаях после пуска двигателя или при резких набросах нагрузки давление впрыскивания может сильно возрасти, а гидравлические усилия в линии нагнетания достичь опасного уровня. В результате возможны образование трещин в корпусах ТНВД и стенках нагнетательных топливопроводов, прорыв мест соединений их с насосом и форсункой (особенно когда эти места резьбовые).

Для топливной аппаратуры с охлаждаемыми форсунками существует несколько решений, направленных на поддержание температурного режима системы нагнетания в упомянутых условиях: отключение охлаждения форсунок, подача пара в каналы охлаждения, установка вдоль всего (или части) нагнетательного топливопровода паровых «спутников» и т.д. Однако все эти решения по эффективности действия значительно уступают форсунке с симметричным температурным полем.

Положительным фактором в пользу неохлаждаемых форсунок является и то, что исключается необходимость применять специальную систему охлаждения (два насоса, цистерна, трубопроводы, контрольно-измерительные приборы и приборы автоматики).

Есть, однако, и недостатки. Конструкция форсунки сложная, многодетальная. Одних мест притирки - девять, причем для притирки требуются специальные оправки. В топливной аппаратуре фактически отсутствует нагнетательный клапан, так как запорный клапан 17 его функций не выполняет: в случае зависания иглы форсунки топливо из системы нагнетания выталкивается давлением газов в цилиндре вскоре после окончания активного хода плунжера. Опыт показывает, что цилиндр при этом самовыключается.

6.4.5. а). Проверка форсунок

Техническое состояние форсунок определяет надёжность и экономичность работы двигателя. Снижение плотности и неудовлетворительное распыливание приводят к неполному сгоранию топлива и дымлению на выхлопе, сгорание переходит на линию расширения, что вызывает перегрев цилиндро-поршневой группы и пригорание выхлопных клапанов. Следствием попадания струй плохо распыленного топлива на головки поршней является и прогорание.

Срок службы распылителей форсунок современных двигателей обычно лежит в пределах 5-10 тысяч часов, по истечению этого времени, как правило, требуется их замена или ремонт. Рекомендуется в пределах этого срока через 2-4 тысячи часов осуществлять периодические проверки состояния форсунок, включающие:

· Оценку состояния сопловых отверстий на отсутствие в них коксовых отложений и износ (измерение диаметра);

· Проверку на плотность и отсутствие подтеканий;

· Проверку и регулирование давления открывания иглы;

· Проверку, и если возможно, регулирование величины его хода.

Перечисленные проверки и необходимые регулировки производятся в приспособленном для этого помещении и с использованием специального опрессовочного стенда.

Проверяют плотность цилиндрических поверхностей иглы с направляющей и плотность седла иглы (конического или плоского). Грубая оценка износа уплотняющих поверхностей иглы и направляющей производится по интенсивности утечек топлива через отверстие, к которому присоединена сливная трубка.

Герметичность цилиндрической уплотняющей поверхности и плотность посадки иглы проверяют на прессе, схема которого приведена на рис. 6.4.6.. Топливо из бака 4 поступает к одноплунжерному насосу 3, приводимому в действие рукояткой 2. Форсунка укреплена в штативе 5. Впрыск топлива осуществляется в бак 6. Давление, развиваемое насосом, контролируется манометром 1.

Испытание плотности пары игла - направляющая подобно испытанию плунжерной пары. Но иглу следует нагрузить затяжной пружиной несколько больше, чтобы р1 превысило рекомендуемое давление впрыска для этого типа форсунки на 10-15 МПа. При перепаде давлений Др = p1 ? p2 (2-5 МПа) нормальная плотность пары, т. е. время падения давления, соответствует 7-30 с.

Плотность комплекта форсунок для дизеля указывают в правилах технической эксплуатации. Разница в

Рис. 6.4.6. показателе плотности не должна превышать ± 25 % его средней величины.

Испытания форсунки в сборе на прессе позволяют визуально оценить качество распыливания и плотность посадки иглы. Форсунку закрепляют в штативе, присоединяют трубку и прокачиванием удаляют воздух. Далее, прокачивая форсунку и регулируя натяжение пружины, устанавливают рекомендуемое давление распыливания. Перед контрольным впрыском тщательно обтирают кончик сопла. Затем медленно нажимают на рукоятку пресса, наблюдая за манометром и за кончиком сопла: сопло должно быть сухим до момента подъема иглы, при котором манометр покажет давление распыливания. После впрыска вновь вытирают кончик сопла: в посследующий момент, если игла садится плотно, сопло должно быть сухим. При обнаружении подтекания иглу в первую очередь необходимо промыть, а затем, если подтекание продолжается, притереть к уплотняющей поверхности.

6.4.5. б). Проверка и регулировка топливной форсунки

Проверять работу форсунки можно при помощи топливного насоса, установленного на двигателе; или лучше на специальном стенде (Рис. 6.4.7.).

Передвигая рычаг 1, действуют на плунжер насоса 2. Последний забирает топливо из бака 3 и, прокачивая его через тройник 4 и трубопровод 5, подает в форсунку 6. Перед проверкой открывают кран 7 и, передвигая рычаг, удаляют воздух из системы.

Форсунку, подлежащую осмотру и регулировке, разбирают на чистом и хорошо освещенном месте, промывают керосином или чистым топливом, обдувают сжатым воздухом и снова собирают. У форсунок, которые имеют регулируемый подъем иглы, регулировочный винт завертывают до упора, а затем отвертывают на часть оборота, обеспечивающую необходимый подъем иглы. Последнее указывается в инструкции по эксплуатации двигателя.

Чтобы не смешать детали разных форсунок, рекомендуется разбирать и собирать их поочередно. При проверке надо

Рис. 6.4.7 соблюдать осторожность, так как попадание струи топлива на кожу рук вызывает долго незаживающую рану. Обтирать детали форсунки можно только салфетками из бязи или батиста.

Проверка отсутствия засорения отверстий в соплах. Форсунку закрепляют на стенде, удаляют из системы воздух, краном 7 (см. рис. 6.4.7) выключают манометр 8, под форсунку кладут бумагу и резко впрыскивают топливо. Если на бумаге прорванных мест или следов от струй топлива будет меньше, чем отверстий в распылителе, это означает, что часть отверстий засорена.

Для прочистки отверстий форсунку разбирают, промывают в керосине, нагар с наружных поверхностей снимают при помощи деревянного скребка, отверстия прочищают стальной проволокой (диаметр которой должен быть меньше диаметра сопловых, отверстий на 0,05-0,1 мм) и только затем собирают форсунку.

Прочищать отверстия без разборки форсунки не разрешается, так как в этом случае грязь останется внутри форсунки.

Если диаметры отверстий сопла увеличились на 10-12% па сравнению с номинальным размером или отличаются друг от друга на ±5%, то сопла заменяют.

Проверка плотности пары игла - направляющая втулка. Плотность посадки иглы в ее направляющей проверяют следующим образом:

· пружину форсунки затягивают таким образом, чтобы давление открытия иглы соответствовало указанному в инструкции по эксплуатации двигателя или в его паспорте;

· создают давление в форсунке, несколько превышающее оговоренное инструкцией, и по секундомеру определяют время падения давления на 50 кгс/см2 от установленного;

· время, за которое давление упадет на 50 кгс/см2, указывается в инструкции по эксплуатации двигателя и должно быть не меньше 15 сек для новых распылителей и 5 сек для распылителей, бывших в употреблении.

При уменьшении плотности пары значительно увеличиваются протечки топлива через зазор во время работы двигателя. Нормальным (для новой форсунки) считается протечка топлива 1-4% количества топлива, поданного в цилиндр. Количество топлива, сливаемого из разных форсунок за одно и то же время, не должно различаться более чем на 50%.

При необходимости пару игла -- направляющая заменяют запасной. Переставлять иглы в направляющих втулках не рекомендуется, так как эти детали очень точно (прецизионно) пригнаны друг к другу. При наклоне направляющей на 45° игла должна выходить из нее на 1/3 длины направляющей части под действием собственного веса при любом повороте вокруг своей оси.

Проверка и регулировка давления подъема иглы форсунки. Для проверки рабочего давления открытия иглы форсунки устанавливают на стенде (см. рис. 6.4.7) и насосом 2 создают давление топлива, контролируемое по манометру 9. Величина давления указывается в инструкции по эксплуатации двигателя и регулируется изменением силы натяжения пружины форсунки.

Отклонение величины давления открытия иглы форсунки от нормы допускается в пределах ±(5?10) кгс/см2.

Проверка подтекания форсунки. Плотность притирки уплотняющего конуса (или торца) иглы проверяют медленным повышением давления топлива в форсунке, плавно передвигая для этого рычаг 1 (см. рис. 6.4.7). При давлении на 5 - 10 кгс/см2 меньше давления впрыска конец распылителя должен быть сухим.

Если форсунка подтекает, то слегка притирают иглу к ее седлу при помощи тонкой пасты ГОИ, разведенной на керосине. При притирке следят за тем, чтобы паста не попадала в зазор между иглой и ее направляющей. После притирки детали тщательно промывают в керосине или чистом топливе, обдувают воздухом и снова проверяют на отсутствие подтекания.

Проверка качества распыливания топлива. Во время подачи топлива форсунка должна давать резкий и четкий дробный впрыск с характерным резким звуком. Для удобства наблюдения за качеством распиливания рекомендуется направить форсунку на лист чистой бумаги. Следы топлива на бумаге должны быть одинаковой густоты и расположены на равном расстоянии от центра. Если форсунка не дает равномерного по окружности распыливания, ее разбирают, отверстия сопла прочищают тонкой мягкой проволокой.

При большой разработке сопловых отверстий увеличивается их суммарное сечение и нарушается правильная форма сверления, что вызывает снижение скорости выхода топлива из форсунки и, следовательно, ухудшает качество распыла. В этом случае обычно сопло заменяют запасным.

6.4.6 Подготовка к притирке распылителя

Операцию по притирке приходится производить при каждой плановой ревизии форсунок и тем более при наличии отказов. Используемые при этом приемы и продолжительность операций зависят от состояния зоны уплотнения. В любом случае форсунка разбирается, детали очищают, промывают чистым дизельным топливом, а осушают сжатым воздухом.

Если на игле имеются лаковые отложения, то их необходимо предварительно удалить соответствующими препаратами типа “Sicloe”. До начала операций по притирке необходимо выяснить состояние и местоположение уплотняющего пояска на игле. Для этого на конус иглы в месте несколько выше зоны конца седла тонко заточенной спичкой или иголкой нанести 3-4 капельки притирочной пасты (рис. 6.4.8). Вставить иглу в корпус распылителя и легкими вращательными движениями (без ударов и сильных нажимов) притирать иглу 15-30 секунд. Извлечь иглу, удалить притирочную пасту с конуса иглы и седла. Развести на масле притирочную пасту и нанести снова 3-4 капельки, но уже ближе к месту предполагаемого пояска и притирать иглу с легким нажимом 5-10 сек. Снова очистить иглу и седла и приступить к осмотру с более детальным выяснением состояния и местоположения пояска. Прежде чем приступить к притирке необходимо уяснить и в дальнейшем соблюдать несколько основных правил:

· Фирма “Зульцер” рекомендует использовать карборундовые пасты зернистостью не ниже 500 (это на уровне марок 3А, 4А класса “Very fine”). Этому условию соответствует отечественная паста Государственного оптического института (ГОИ) светло-зеленого цвета (тонкая).

· Избегать попадания пасты на цилиндрическую направляющую часть иглы и отверстия при заводке иглы в корпус и обратно, а так же при чистке седла; Наличие там пасты при притирке приведет к увеличению зазора и необходимости забраковать распылитель. При чистке седла соблюдать указания изготовителя, приведенные в инструкции (использовать деревянные палочки с плотно обтянутой тканью и т. п.).

· В процессе притирки не производить сильных нажимов и ударов, что приведет к царапанию и повреждению поверхностей абразивами. Необходимый эффект притирки со снятием долей микрометров происходит за счет окисления поверхности находящейся в пасте олеиновой кислотой. Мелкие абразивы легко снимают окисленные слои даже при легком воздействии без повреждения чистых поверхностей, которые тут снова окисляются. (Этот процесс называется коррозионно-механическим износом и по форме похож на поведение самополирующих красок, покрывающих подводную часть корпуса. Под действием струй воды тонкие слои краски отделяются вместе с прилипшими микроорганизмами, обеспечивая постоянную чистоту и гладкость наружной обшивки).

· Пасту наносить всегда ниже формируемого пояска уплотнения, создавая тем самым повышенный износ нижележащих поверхностей, создавая раскрытие зазора к низу и продвижение контактной зоны вверх к основанию конуса. По мере притирки паста поднимается вверх и распределяясь по увеличивающейся площади, ее плотность и агрессивность уменьшаются, а абразивные частицы измельчаются (рис. 6.4.9). Поэтому чем выше находятся слои, тем меньше скорость износа, что и обеспечивает сохранение клинового зазора.

· Каждый раз наносить пасту малыми дозами, препятствуя тем самым попаданию свежей (агрессивной) пасты на формируемый поясок и вышележащие поверхности. Необходимую агрессивность в зоне притирки обеспечивают частой сменой пасты с удалением отработанной (по 15-30 сек.).

· Нельзя допускать увеличения длительности работы на одной порции пасты до 3-5 минут, (как указано в некоторых рекомендациях). За длительное время нагреваясь паста высыхает, теряет агрессивность и только царапает, а не полирует поверхность. Скорость износа падает, а качество поверхностей ухудшается. По этой же причине нельзя использовать старую, подохшую пасту. Если даже разбавить ее маслом агрессивность восстановить не удастся.

Указанных выше правил следует придерживаться при всех операциях с использованием притирочных паст, чтобы избежать ошибок, ведущих к нерациональной затрате времени и повреждению поверхностей.

Рис. 6.4.8 Рис. 6.4.9

6.4.7 Притирка иглы и седла

После выявления состояния запирающего пояска возможны несколько вариантов дальнейших действий.

Вариант 1.

Уплотняющий поясок занимает правильное положение на переходе конуса в цилиндрическую часть, но его ширина увеличена и нижняя кромка четко не просматривается. Задача притирки сводится к уменьшению ширины пояска у форсунок к МОД до 0,1-0,2 мм с приданием четкого очертания нижней границы (для СОД оптимальная ширина пояска может быть на уровне 0,3-0,5 мм). Для этого притирочную пасту 3-4 точками наносят несколько ниже проявившегося блестящего пояска (рис. 6.4.10). Вставить иглу в корпус и легкими вращательными движениями (2-3 оборота всего)

Рис 6.4.10 равномерно распределить пасту по обрабатываемым поверхностям. Далее провести короткую притирку (15-30 сек.) вращательно ударными движениями. Вытащить иглу и тщательно очистить поверхности.

Нанести снова 3-4 точки уже на самую границу пояска и легкими вращательными движениями (без ударов) провести притирку 5-10 сек. Снова извлечь иглу, очистить ее и седло и осмотреть. Если пара не сильно изношена, то этого бывает достаточно для формирования нужной ширины пояска. Если нет, то операцию повторяют до получения нужного результата. Пара промывается, осушается, собирается.

Примечание. Некоторые специалисты предпочитают окончательную доводочную операцию производить без пасты на масле. При этом происходит выглаживание пояска

без износов- поясок “набивается”.

Вариант 2.

Уплотняющий поясок несколько смещен вниз от основания конуса (рис.6.4.11). На первом этапе задача сводится к смещению пояска вверх в нужную зону для чего пасту наносят ниже кромки пояска и также интервалами 15-30 сек. Производить притирку и замену пасты. Если паста после притирки равномерно распределена по поверхности, то это указывает на отсутствие искажения формы конусов и поясок довольно

Рис.6.4.11 Рис.6.4.12 быстро будет перемещаться вверх к основанию, а окончательную его доводку проводят по варианту 1. Если же игла притиралась многократно, то не исключено, что на конусе под пояском имеется впадина. Такую ситуацию можно отличить по неравномерному распределению пасты после притирочных операций: выступающий поясок будет светлым, а впадина со скопившейся в ней пастой будет выглядеть темной полосой (рис.6.4.12). Ситуация осложняется и потребует большего времени или даже проверки формы седла и его исправления. При достаточной квалификации исполнителя выступ на конусе иглы, на котором находится поясок, можно убрать тонким (мелким) бруском, установив иглу на станок (снять всего 0,01-0,02 мм). После этого притирку повторить.

Вариант 3.

Поясок на игле смещен вниз и притиркой по седлу его не удается исправить. Требуется проверка формы седла в корпусе. Если выяснится нарушение формы седла, то после ее исправления притирку можно повторить по варианту 2.

Проверку и исправление формы седла производят с помощью, притира аналогичного по форме и размерам игл, и отличающегося от нее увеличенным углом конуса (60 градусов 30 минут вместо 60 градусов) и уменьшенным диаметром цилиндрической направляющей части (так, для дизеля RND 68 рекомендуемый диаметр 11,50 мм). В судовых условиях его невозможно изготовить с такой точностью по углу конуса и необходимо сделать заказ на его изготовление. При этом обязательно нужно указать матери: серый чугун СЧ22; СЧ28 (cast iron).

Выбор материала притира мотивирован тем, что он должен быть мягче притираемых поверхностей. (Так для обработки посадочного гнезда под форсунку в стальной цилиндрической крышке притир изготовляют из более мягкого материала бронзы). К тому же серый чугун обладает антизадирными свойствами и не подвержен пластическим деформациям в следствии нулевой пластичности. Поэтому и проверочные плиты делают чугунными. Требование к пониженной твердости по отношению к обрабатываемой поверхности обусловлено тем, что при притирке абразивы способны внедряться в более мягкую поверхность и образуют вместе с нею нечто наподобие абразивного камня. Такая поверхность царапает более твердую, а сама защищена от износа и искажения формы. Как производится обработка седла распылителя чугунным притиром подробно описано в инструкциях к двигателям модификаций RND и RTА фирмы “Зульцер”.

Если причина затрудненной притирки иглы оказалась в изношенности седла, то после исправления его формы операцию можно повторить.

6.5 Основные неисправности форсунки

Неисправности в работе форсунок всегда приводят к ухудшению смесеобразования, в результате чего скорость сгорания топлива уменьшается, догорание происходит на большей части рабочего хода, часть топлива сгорает не полностью - всё это приводит к снижению мощности и экономичности двигателя.

Форсунки должны подвергаться периодическим профилактическим осмотрам через 500-1000 часов работы. Во время осмотров снятые с двигателя форсунки разбирают, очищают от нагара, промывают, устраняют неисправности, собирают, проверяют и регулируют на стенде. Замена форсунок для осмотра и устранения неисправности производятся при обнаружении признаков плохой работы: повышения температуры выпускных газов и появления темного дыма из трубы.

Неисправности и их устранение:

1) Зависание иглы возникает при работе на загрязненном, обводненном или «сухом» топливе, из-за попадания механических частиц в рабочий зазор форсуночной пары или разрушения рабочих поверхностей иглы коррозией. При зависании иглы форсунка начинает работать как открытая, что сопровождается подтеканием топлива и обнаруживается по повышению температуры выпускных газов и появлению дымного выхлопа. Форсунку заменяют запасной. Зависшую иглу удаляют за хвостовик или выпрессовывают на специальном устройстве. После слабых «захватов» иглу достаточно промыть и расходить на масле. После задиров распылитель заменяют.

2) Закупорка сопловых отверстий приводит к повышению давления, создаваемого ТНВД, в результате этого может произойти разрыв форсуночного трубопровода, отрыв сопла или поломка плунжера ТНВД. Обнаруживается по резко ощутимым гидравлическим ударам в форсуночной трубе. Возникает в результате подтекания форсунки, при котором топливо вытекает не распыливаясь и сгорает около сопла, а так же при работе на плохо очищенном топливе. После разборки отверстия прочищают специальной стальной иглой диаметром меньше диаметра сопла на 0,1 мм, а затем сопло и распылитель промывают чистым топливом и обдувают сжатым воздухом.

3) Износ сопловых отверстий приводит к изменению формы и дальнобойности факела. Обнаруживается по появлению дымного выхлопа и повышению температуры выпускных газов. На стенде размеры отверстий после их очистки проверяют с помощью предельных калибров. Если отверстия имеют овал или их диаметры увеличились больше чем на 10%, то сопло или весь распылитель заменяют.

4) Поломка пружины происходит от плохого качества материала, неправильной термической обработки или при неправильной сборке, при которой возникает перекос пружины. При поломке происходит зависание иглы и подтекание форсунки. Во время осмотра пружину заменяют.

Обгорание соплового наконечника приводит к разрушению конца сопла. Возникает при значительном подтекании форсунки, когда интенсивное горение происходит в непосредственной близости от сопла, вызывая эрозионное разрушение концевой части распылителя; вследствие химической коррозии от действия серной кислоты, которая появляется на конце сопла при излишнем охлаждении форсунки, когда температура её наружной поверхности снижается ниже «точки росы», что бывает при продолжительной работе двигателя на малых нагрузках и на маневрах. Такой распылитель заменяют.

6.6 Проверка и регулировка угла опережения подачи топлива

Своевременность сгорания топлива обуславливается углом опережения подачи топлива. От его величины зависят продолжительность периода задержки самовоспламенения, скорость нарастания давления и расположение линии сгорания относительно В.М.Т. При смещении сгорания топлива на начало процесса расширения уменьшается давление в конце горения, повышается температура отходящих газов и возрастают потери теплоты, что приводит к увеличению удельного расхода топлива. Кроме того, будут происходить перегрев поршня и повышение температурных напряжений цилиндра. Давление в конце горения Pz по отдельным цилиндрам не должно отклоняться от значений, указанных в формуляре дизеля, более чем на ± 5 %. Для повышения Pz угол опережения подачи топлива увеличивают, для снижения - уменьшают. Величина угла опережения подачи топлива указана в формуляре двигателя.

При определении угла опережения подачи топлива односекционным топливным насосом выполняют следующие действия:

1. Отсоединяют топливную трубку от насоса.

2. Устанавливают на штуцер топливного насоса моментоскоп.

3. Ставят рейку топливного насоса на полную подачу топлива.

4. Прокачивают топливный насос вручную до полного удаления воздуха из трубопровода насоса и моментоскопа.

5. Сжимая резиновую трубку, выдавливают из стеклянной трубки топливо до половины её длины.

6. Медленно проворачивают коленчатый вал дизеля до начала движения мениска топлива в стеклянной трубке; этот момент будет соответствовать началу подачи топлива.

7. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т. Если маховик не разбит на градусы, измеряют длину дуги маховика от метки В.М.Т. данного цилиндра до неподвижной стрелки-указателя на блоке, а затем подсчитывают угол по формуле

где l - длина дуги от метки в.м.т. до стрелки-указателя, мм;

L - длина окружности маховика, мм.

При отсутствии моментоскопа угол опережения подачи топлива можно проверить следующим образом:

1. Отсоединяют топливную трубку от насоса.

2. Вынимают из насоса нагнетательный клапан с пружиной, устанавливают на место штуцер или крышку насоса.

3. Подают топливо из расходной цистерны к насосу.

4. Спускают воздух из топливного трубопровода и насоса, после чего прикрывают отверстие в штуцере пальцем.

5. Медленно проворачивают коленчатый вал дизеля до прекращения вытекания топлива через штуцер.

6. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т.

Для большей точности рекомендуется определять угол подачи топлива два раза. Если измеряемый угол опережения подачи топлива отличается больше чем на 1-1,5 % от указанного в формуляре дизеля, его регулируют поворотом шайбы топливного насоса на распределительном валу.

При этом выполняют следующие действия:

1. Отмечают рисками положение кулачковой шайбы относительно фланца втулки

2. Отвёртывают стяжные болты или гайку крепления и выводят кулачковую шайбу из зацепления с зубцами втулки.

3. Поворачивают шайбу на нужную величину и вводят в зацепление с зубцами втулки. Для увеличения угла опережения кулачковая шайба смещается по направлению вращения распределительного вала, а для уменьшения - против направления его вращения. Изменение положения кулачковой шайбы на 2 мм (один зубец) вызывает изменение угла опережения подачи топлива на 3 - 5 ° и максимального давления цикла на 0,4-0,6 МПа (4-6 кгс/см2).

При определении угла опережения подачи топлива многоплунжерным насосом выполняют следующие действия:

1. Отсоединяют топливную трубку от первой секции насоса.

2. Устанавливают на штуцер первой секции топливного насоса моментоскоп.

3. Ставят рейку топливного насоса на полную подачу топлива.

4. Прокачивают топливный насос вручную до полного удаления воздуха из трубопровода насоса и моментоскопа.

5. Сжимая резиновую трубку, выдавливают из стеклянной трубки топливо до половины её длины.

6. Медленно проворачивают коленчатый вал дизеля до начала движения мениска топлива в стеклянной трубке; этот момент будет соответствовать началу подачи топлива.

7. Измеряют угол, на который кривошип проверяемого цилиндра не дошёл до В.М.Т. Если маховик не разбит на градусы, измеряют длину дуги маховика от метки в.м.т. данного цилиндра до неподвижной стрелки-указателя на блоке, а затем подсчитывают угол по той же формуле, что и для односекционного насоса.

При отсутствии моментоскопа угол опережения подачи топлива можно проверить тем же образом, который был представлен ранее.

Для большей точности рекомендуется определять угол подачи топлива два раза. Если измеряемый угол опережения подачи топлива отличается больше чем на 1-1,5 % от указанного в формуляре дизеля, его регулируют поворотом на определённый угол топливораспределительного вала.

При этом выполняют следующие действия:

1. Отвёртывают стяжные болты, проходящие через овальные отверстия ведущего фланца.

2. Поворачивают ведомый фланец относительно привода на несколько делений по направлению вращения распределительного вала или наоборот. Совпадение риски на ведущем фланце с центральной риской на ведомом фланце соответствует заданному углу опережения подачи, установленному заводом-изготовителем. При повороте фланца на одно деление угол опережения изменяется на указанное в формуляре значение (напр. для двигателя 3 Д 6 - на 6° ).

3. Зажимают стяжные болты.

В отдельных случаях, для насосов с большим износом плунжерных пар, угол опережения подачи топлива проверяют по началу впрыска топлива форсункой, работающей в паре с проверяемым насосом. При такой проверке углы опережения подачи топлива получаются на 20-25 % меньше указанных в формуляре дизеля.

6.7 Процесс топливоподачи

Основные понятия и параметры процесса топливоподачи

1. Цикловая подача - подача топлива за один рабочий цикл

gц = (ge Ne m / 60 n i) г/цикл,

где: m - коэффициент тактности, для 2-х т. дв. =1; для 4-х т. дв. =2;

n - об/мин; i - число цилиндров.

2. Фазы подачи - цнпн, цкн, цкпф, цнпф - фазы начала и конца подачи по насосу и по форсунке.

цнпф = цф.о. или угол опережения впрыска топлива,

цп = цнпф + цкпф - продолжительность подачи топлива.

3. Pн, Pф, Pн. макс, Pф.макс, Pф.о., Pф.з., Pост. - давления топлива в насосе, форсунке, максимальные, открытия иглы, закрытия иглы, остаточное в топливопроводе между впрысками.

Остановимся более подробно на величине цикловой подачи.

В свою очередь,

gц = (Fпл ha ст зпод) 10-3 г/цикл;

Fпл = рd2 / 4- площадь плунжера м3; ha - активный ход плунжера м, ст - плотность топлива кг/м3.

Коэффициент подачи топливного насоса зпод - , представляющий собой отношение действительно поданной порции топлива gц к теоретически возможной и равной объему, описываемому плунжером на протяжении его активного хода, умноженному на плотность. Коэффициент подачи величина переменная и зависит от большого числа факторов, к числу которых относятся геометрические и конструктивные соотношения в ТНВД, сжимаемость топлива и явления дросселирования в периоды наполнения и отсечки и, конечно, утечки в системе насос-форсунка. По опытным данным зпод = 0,75-1,1, на него существенное влияние оказывают число оборотов и величина цикловой подачи (рис. 6.7.1.). Увеличение gц (ha) приводит к росту коэффициента подачи. Важная особенность изменения зпод заключается в том, что при снижении оборотов от номинальных до ? 75% nном и сохранении положения топливной рейки неизменным, он увеличивается (на 10-15%) и лишь затем падает. Это увеличение влечет за собой рост цикловой подачи и, соответственно, - среднего эффективного давления

Pe = k gц зе,

и развиваемого двигателем крутящего момента Мкр, что благоприятно сказывается на тяговых свойствах двигателя и устойчивости режима малых оборотов.

Пример - главный двигатель буксирующего судна. С увеличением силы тяги на гаке обороты двигателя будут падать и, если крутящий момент не будет увеличиваться, то обороты и тяговое усилие будут продолжать снижаться. Если же при снижении оборотов, цикловая подача за счет роста коэффициента подачи растут, то, соответственно, увеличиваются момент и сила тяги.

Рис. 6.7.1. Кривые изменения коэффициента подачи в функции оборотов и величины цикловой подачи (ha).

Развитие процесса топливоподачи

О том, как развивается процесс топливоподачи, можно проследить по приведенным на рис. 6.7.2. кривым: а) давлений топлива у форсунки, б) хода иглы форсунки при ее открытии, в) интегрального распределения подачи за один впрыск по углу п.к.в. (закона подачи).

Давление топлива в топливопроводе и в форсунке поднимается до значения Рфо, при котором игла форсунки поднимается и, в связи с истечением топлива под нее, в этот момент обычно отмечается небольшой местный провал давления. Однако этот провал быстро компенсируется в связи с тем, что плунжер продолжает сжимать топливо, и давление поднимается до максимального значения - Pмакс. Дальнейший рост давления прекращается, так как в насосе начинается отсечка (или плунжер приходит в ВМТ кулачка) и давление падает. По достижении Рфз, при котором пружина сажает иглу на седло, впрыск топлива прекращается.

В форсунке и в топливопроводе при наличии нагнетательного клапана с отсасывающим пояском устанавливается давление, равное остаточному - Рост, сохраняющееся до следующего цикла подачи топлива. При отсутствии разгрузки устанавливается более высокое давление, равное Р ф.з' что провоцирует появление подтекания топлива под иглу.

Рис. 6.7.2. Кривые: а). давление впрыска у форсунки, б). хода иглы форсунки, в). законы подачи топлива в пределах цикла.

В общем случае процесс топливоподачи в системе «ТНВД - форсуночный топливопровод - форсунка» можно условно подразделить на следующие этапы:

1 этап - наполнение полости ТНВД топливом, поступающим от подкачивающего насоса под давлением 0,4-0,5 МПа. Начало - открытие плунжером при его движении вниз впускного окна (клапана).

Окончание - закрытие плунжером впускного окна (клапана) при его движении из крайнего нижнего положения вверх (геометрическое окончание наполнения). Действительное окончание наполнения происходит раньше, так как при подходе верхней кромки плунжера к верхней кромке окна благодаря возникающему в остающейся узкой щели дросселированию начинается сжатие топлива, давление топлива начинает расти и перепуск прекращается. При этом, чем больше обороты двигателя, тем больше сказывается дросселирование и тем раньше (по углу поворота вала) заканчивается наполнение и начинается сжатие топлива. Таким образом, активный ход плунжера несколько увеличивается.

2 этап - сжатие топлива в надплунжерной полости насоса от давления подкачки до давления, при котором открывается нагнетательный клапан насоса Pоткр.н.кл. = Pзатяга.пруж.кл. + Pост.. Здесь уместно отметить, что существенную роль в процессе топливоподачи играет сжимаемость топлива. Коэффициент сжимаемости топлив а = (0,6 - 1,0) 10-6 мЗ/кг. Благодаря сжимаемости плунжер затрачивает часть своего хода на сжатие топлива

Расчетное уравнение -

Fпл Спл dt = a V1 dp (1)

где: Fпл - площадь плунжера, Спл - скорость плунжера, t - время, V1 - объем надплунжерной полости насоса, Р - давление топлива.

3 этап - продолжение сжатия (соответствующего роста давления) топлива в объеме полости насоса V1 и в объеме топливопровода и форсунки V2. Начало - открытие нагнетательного клапана. Окончание - достижение давления открытия иглы Рфо.

Расчетное уравнение -

Fпл Спл dt = a (V1 + V1) dp (2)

4 этап - впрыск топлива в цилиндр с момента открытия иглы и до момента начала отсечки в ТНВД. Начало этапа - момент подъема давления топлива у иглы форсунки до величины давления открытия иглы. Окончание - начало отсечки в ТНВД, соответствующее открытию отсечной кромкой плунжера отсечного отверстия (открытию отсечного клапана в насосе клап. типа) и закрытие нагнетательного клапана.

Расчётное уравнение -

Fпл Спл dt = a (V1 + V2) dp + м fc (2/с)1/2 (Pт - Pц.ср)1/2 dt (3)

Объёмная подача Объём сжимаемого Расход топлива

плунжера топлива через форсунку

где: м - коэффициент истечения сопловых отверстий, fc - суммарное сечение сопловых отверстий, с - плотность топлива, Рт - давление топлива в период впрыска, Pц.ср. - среднее давление в камере сгорания в период впрыска.

5 этап - продолжение истечения (впрыска) топлива из форсунки от момента отсечки в насосе и посадки нагнетательного клапана на седло до момента, когда давление у форсунки упадет до давления посадки иглы на седло (закрытие иглы). Впрыск происходит за счет расширения топлива, оставшегося в топливопроводе и форсунке (в объеме V2).

Расчётное уравнение -

a V2 dp = - м fc (2 (Pт - Pц.ср) / с)1/2 dt (4)

При наличии у нагнетательного клапана разгрузочного пояска давление в топливопроводе и форсунке резко падает до Рост ? Рзакр. иглы и тогда последняя фаза впрыска практически отсутствует. Это хорошо, так как истечение топлива из форсунки при понижающихся давлениях впрыска отрицательно сказывается на распыливании, сокращается длина факела и проникновение капель в богатые кислородом периферийные зоны камеры сгорания, тем самым, приводящее к неполному сгоранию и дымлению на выхлопе.

На рис 6.7.2. в представлена интегральная кривая, показывающая как распределяется цикловая подача топлива по углу поворота коленчатого вала. В частности, на рисунке для примера показано какое количество топлива от всей величины цикловой подачи попадает в цилиндр к моменту прихода поршня в ВМТ.

Список литературы

1. Возницкий И.В., Камкин С.В., Шмелев В.П., Осташенко В.Ф. “Рабочие процессы судовых дизелей” издание 2-е, переработанное и дополненное. Москва «ТРАНСПОРТ» 1990 г.

2. Гаврилов В.С., Камкин С.В., Шмелёв В.П. “Техническая эксплуатация судовых дизельных установок” Москва «ТРАНСПОРТ» 1985 г.

3. Волочков В.А. “Расчет рабочих процессов судовых дизелей” учебное пособие. Москва В/О «Мортехинформреклама» 1987 г.

4. Симаков А.С. Методические указания к расчетно-графической работе на тему: “Расчет рабочего цикла судового двухтактного дизеля”. Санкт-Петербург 2003 г.

5. Возницкий И.В. “Современные судовые среднеоборотные двигатели” издание 3-е, учебное пособие по специальности 2405. Санкт-Петербург 2006 г.

6. Возницкий И.В. “Топливная аппаратура судовых дизелей, конструкция, проверка состояния и регулировка” учебное пособие по специальности 180403.00. Моркнига 2007.

7. Возницкий И.В., Михеев Е.Г. “Судовые дизели и их эксплуатация”. Москва «ТРАНСПОРТ» 1990 г.

Размещено на Allbest.ru


Подобные документы

  • Классификация судовых двигателей внутреннего сгорания, их маркировка. Обобщённый идеальный цикл поршневых двигателей и термодинамический коэффициент различных циклов. Термохимия процесса сгорания. Кинематика и динамика кривошипно-шатунного механизма.

    учебное пособие [2,3 M], добавлен 21.11.2012

  • Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.

    курсовая работа [2,5 M], добавлен 07.03.2008

  • Классификация, особенности конструкции и эксплуатационные свойства двигателей внутреннего сгорания, их обслуживание и ремонт. Принцип работы четырехцилиндровых и одноцилиндровых бензиновых двигателей в современных автомобилях малого и среднего класса.

    курсовая работа [39,9 K], добавлен 28.11.2014

  • Рассматриваются топливные насосы для судовых двигателей внутреннего сгорания. Устройство насосов разных типов, их назначение и принципы действия. Условия применения и эксплуатации топливных насосов в зависимости от их типов и видов судовых двигателей.

    реферат [3,2 M], добавлен 13.10.2008

  • Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.

    презентация [990,4 K], добавлен 18.01.2012

  • Изучение конструкции и принципа действия двигателя внутреннего сгорания и его основных систем. Расчёт рабочего цикла с учётом особенностей потребителя для ряда режимов работы. Разработка рекомендаций для повышения основных характеристик двигателя.

    курсовая работа [7,6 M], добавлен 16.01.2012

  • Техническая характеристика двигателя внутреннего сгорания. Тепловой расчет рабочего цикла и свойства рабочего тела. Процессы выпуска, сжатия, сгорания, расширения и проверка точности выбора температуры остаточных газов, построение индикаторной диаграммы.

    курсовая работа [874,5 K], добавлен 09.09.2011

  • Назначение, конструкция, условия работы, материалы блоков и блок-картеров судовых двигателей внутреннего сгорания. Устройство и принцип изготовления цилиндровых втулок 4-х и 2-х тактных дизелей. Способы посадки цилиндровых втулок в блок цилиндров.

    курсовая работа [721,8 K], добавлен 27.02.2009

  • Применение на автомобилях и тракторах в качестве источника механической энергии двигателей внутреннего сгорания. Тепловой расчёт двигателя как ступень в процессе проектирования и создания двигателя. Выполнение расчета для прототипа двигателя марки MAN.

    курсовая работа [169,7 K], добавлен 10.01.2011

  • Анализ хозяйственной деятельности предприятия. Организация и технология проведения обкатки и испытания двигателей внутреннего сгорания. Расчет производственной программы технического обслуживания. Конструкторская разработка стенда для обкатки двигателей.

    дипломная работа [80,2 K], добавлен 28.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.