Применение водорода в качестве топлива для ДВС. Основные виды дымомеров

История развития водородных автомобилей в России, особенности работы двигателя внутреннего сгорания, оценка перспектив внедрения данных технологий в автомобилестроение. Виды дымомеров и их практическое применение, отличительные признаки и предназначение.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 19.12.2011
Размер файла 498,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Применение водорода в качестве топлива для ДВС

Интерес ученых в области двигателестроения всегда привлекали своеобразные физико-химические свойства водорода, главным достоинством которых для ДВС является экологическая чистота рабочего процесса. Известный научно-технический опыт использования водорода в качестве топлива для ДВС показывает, что водород совместим с существующей базовой конструкцией поршневого ДВС. При этом водород кардинально улучшает экологическую эксплуатационную характеристику и имеет широкую сырьевую базу. Организация рабочего процесса двигателя, работающего на водороде, или с его добавкой к другим топливам имеет особенности и требует разработки новых способов топливоподачи.

Применение водорода в качестве топлива для ДВС рассматривается многими авторами как весьма значимая альтернатива моторным топливам нефтяного происхождения. Причиной этому является все более возрастающая очевидная экологическая, социально-экономическая и техническая значимость проблем использования традиционных моторных топлив. Вследствие сжигания топлив нефтяного происхождения, природного газа, угля, все больше и больше загрязняется атмосфера городов и планеты в целом.

1.1 История развития водородных автомобилей в России

Известно, что в 30-е годы прошлого столетия в Советском Союзе в МВТУ им Н.Э Баумана Сороко-Новицкий В.И., (зав. кафедрой «Легкие двигатели» до 1937 г.) совместно с А.К. Курениным исследовал влияние добавок водорода к бензину на двигателе ЗИС-5. Известны также работы по использованию в качестве топлива водорода, которые проводильсь в нашей стране Ф.Б. Перельманом. Однако практическое применение водорода в качестве моторного топлива началось в 1941 году. В Великую Отечественную войну в блокадном Ленинграде техник-лейтенант Шелищ Б.И. предложили использовать водород, «отработавший» в аэростатах, как моторное топливо для двигателей автомобиля ГАЗ-АА.

Рисунок 1. Пост ПВО Лениградского фронта ВОВ, оборудованный водородной установкой

На рис. 1 на заднем плане виден спущенный на землю водородный аэростат, из которого водород перекачивается в газгольдер, расположенный на переднем плане. Из газгольдера с «отработавшим» водородом газообразное топливо посредством гибкого шланга подается в двигатель внутреннего сгорания автомобиля ГАЗ-АА. Заградительные аэростаты поднимались на высоту до пяти километров и являлись надежным противовоздушным средством обороны города, не позволяя самолетам противника осуществлять прицельное бомбометание. Для опускания аэростатов, частично потерявших свою подъемную силу требовалось большое усилие. Эта операция осуществлялась с использованием механической лебедки, установленной на автомобиль ГАЗ-АА. ДВС вращал лебедку для опускания аэростатов. В условиях острого дефицита бензина были переоборудованы для работы на водороде несколько сотен постов ПВО, на которых использовались автомобили ГАЗ-АА, работающие на водороде.

После воины в семидесятые годы прошлого века Бриса Исааковича неоднократно приглашали на различные научные конферкнции, где в своих выступлениях он подробно рассказывал о тех далеких героических днях. Одно из таких мероприятий - I Всесоюзная школа молодых ученых и специалистов по проблемам водородной энергетики и технологии, организованная по инициативе ЦК ВЛКСМ, Комиссии АН СССР по водородной энергетике, Институтом атомной энергии им И.В. Курчатова и Донецким политехническим институтом, проводилась в сентябре 1979 года за полгода до его смерти. Борис Иссакович свой доклад «Водород вместо бензина» на секции «Технология использования Водорода» сделал 9 сентября.

В семидесятые годы в нескольких научно-исследовательских организациях СССР интенсивно проводились работы по использованию водорода в качестве топлива. Наиболее известны такие организации как Центральный научно-исследовательский автомобильный и автомоторный институт (НАМИ), Институт проблем машиностроения АН УССР (ИПМАШ АН УССР), Сектор механики неоднородных сред АН СССР (СМНС АН СССР), Завод-ВТУЗ при ЗИЛе и др. В частности, в НАМИ под руководством Шатрова Е.В. начиная с 1976 года были проведены научно-исследовательские и опытно-конструкторские работы по созданию водородного микроавтобуса РАФ 22034. Была разработана система питания двигателя позволяющая работать на водороде. Она прошла полный комплекс стендовых и лабораторно-дорожных испытаний.

Первый опытный образец микроавтобуса был построен в НАМИ в период 1976-1979 году (рис. 4). Начиная с 1979 года в НАМИ осуществлялись его лабораторно-дорожные испытания и опытная эксплуатация.

Параллельно работы по созданию автомобилей работающих на водорода велись в ИПМАШ АН УССР и СМНС АН СССР и Заводе Втузе при ЗИЛе. Благодаря активной позиции академика Струминского В.В, руководителя СМНС АН СССР несколько образцов микроавтобусов использовались на ХХII Олимпийских летних играх в Москве в 1980 году.

Как головной институт Министерства автомобильной промышленности СССР НАМИ сотрудничал с указанными выше организациями. Примером такого сотрудничества были совместные исследования с ИПМаш АН УССР, директором которого в те времена работал член-корреспондент АН УССР Подгорный А.Н. В области применения водорода на автомобиле следует обратить внимание на работы руководителей ведущих подразделений института: Варшавского И.Л., Мищенко А.И., Соловья В.В. и многих других.

Широко известны разработки этого института по созданию автомобилей и автопогрузчиков, работающих на БВТК с металлогидридными системами хранения водорода на борту.

Другим примером сотрудничества НАМИ с ведущими НИИ страны была работа по созданию металлогидридных систем хранения водорода на автомобиле. В рамках консорциума по созданию металлогидридных систем хранения сотрудничали три ведущие организации: ИАЭ им И.В. Курчатова, НАМИ и МГУ им М.В. Ломоносова. Инициатива создания такого консорциума принадлежала академику Легасову В.А. Институт атомной энергии им И.В. Курчатова был головным разработчиком металлогидридной системы хранения водорода на борту автомобиля. Руководителем проекта был Чернилин Ю.Ф., активными участниками работ были Удовенко А.Н. и Столяревский А.Я.

Металлогидридные соединения разработал и изготовил в необходимом количестве МГУ им. М.В. Ломоносова. Эта работа велась под руководством Семененко К.Н., заведующего кафедрой химии и физики высоких давлений. 21 ноября 1979 года были зарегистрированы в Государственном реестре изобретений СССР заявки №№263140 и 263141 с приоритетом изобретения 22 июня 1978 года. Авторские свидетельства на сплавы-аккумуляторы водорода А.С. №722018 и №722021 от 21 ноября 1979 г. были одними из первых изобретений в этой области в СССР и в мире.

В изобретениях предлагались новые составы, позволяющие существенно увеличить количество запасаемого водорода. Это достигалось путем модификации состава и количества компонентов в сплавах на основе титана или ванадия. Такие композиции позволили добиться концентрации от 2.5 до 4.0 массовых процентов водорода. Выделение водорода из интерметаллида осуществлялось в интервале температур 250-400°С. Этот результат и по сей день является практически максимальным достижением для сплавов такого типа. В разработке сплавов принимали участие ученые ведущих научных организаций СССР, связанных с разработкой материалов и устройств на базе гидридов интерметаллических сплавов - МГУ им. М.В. Ломоносова (Семененко К.Н., Вербецкий В.Н., Митрохин С.В., Зонтов В.С.); НАМИ (Шатров Е.В., Раменский А.Ю.); ИМаш АН СССР (Варшавский И.Л.); Завода-ВТУЗа при ЗИЛ (Гусаров В.В., Кабалкин В.Н.). В середине восьмидесятых годов испытания металлогидридной системы хранения водорода на борту микроавтобуса РАФ 22034, работающего на БВТК, проводились в Отделе двигателей на газовых и других видах альтернативных топлив НАМИ (зав. отделом Раменский А.Ю.). Активное участие в работе принимали сотрудники отдела: Кузнецов В.М., Голубченко Н.И., Иванов А.И., Козлов Ю.А.

В начале восьмидесятых годов начало зарождаться новое направление в применении водорода в качестве топлива для автомобилей, которое в настоящее время рассматривается как основная тенденция. Это направление связано с созданием автомобилей работающих на топливных элементах. Создание такого автомобиля осуществлялось в НПП «Квант». Под руководством Н.С. Лидоренко. Автомобиль впервые был представлен на международной выставке «Электро-82» в 1982 г. в Москве.

В 1982 микроавтобус РАФ, на борту которого были смонтированы электрохимические генераторы и был установлен электрический привод, демонстрировался заместителю министра автомобильной промышленности Е.А. Башинджагяну. Демонстрировал автомобиль сам Н.С. Лидоренко. Для опытного образца, автомобиль на топливных элементах, имел неплохие ездовые качества, о чем не без удовлетворения отметили все участники просмотра. Планировалось осуществлять эту работу совместно с предриятиями Минавтопрома СССР. Однако в 1984 году Н.С. Лидоренко оставил пост руководителя предприятия, может быть с этим связано то обстоятельство, что эта работа не получила своего продолжения. Создание первого российского водородного автомобиля на топливных элементах, построенного коллективом предприятия более 25 лет могла бы претендовать на историческое событие в нашей стране.

1.2 Особенности ДВС при работе на водороде

автомобилестроение водородный двигатель дымомер

По отношению к бензину водород имеет в 3 раза большую теплотворную способность, в 13-14 раз меньшую энергию воспламенения, и, что существенно для ДВС, более широкие пределы воспламенения топливно-воздушной смеси. Такие свойства водорода делают его чрезвычайно эффективным для применения в ДВС, даже в качестве добавки. В то же время к недостаткам водорода как топлива можно отнести: падение мощности ДВС по сравнению с бензиновым аналогом; «жесткий» процесс сгорания водородовоздушных смесей в области стехиометрического состава, что приводит к детонации на режимах высоких нагрузок. Эта особенность водородного топлива требует изменений конструкции ДВС. Для существующих двигателей необходимо применять водород в композиции с углеводородными топливами, например с бензином. или природным газом.

Например, организацию топливоподачи бензоводородных топливных композиций (БВТК) для существующих автомобилей необходимо осуществлять таким образом, чтобы на режимах холостого хода и частичных нагрузок двигатель работал на топливных композициях с высоким содержанием водорода. По мере возрастания нагрузок концентрация водорода должна снижаться и на режиме полного дросселя подачу водорода необходимо прекратить. Это позволит сохранить мощностные характеристики двигателя на прежнем уровне. На рис. 9 представлены графики изменения экономических и токсических характеристик двигателя с рабочим объемом 2,45 л. и степенью сжатия 8,2 ед. от состава бензоводородовоздушной смеси и концентрации водорода в БВТК.

Регулировочные характеристики двигателя по составу смеси при постоянной мощности Ne=6,2 квт и частоте вращения коленчатого вала n=2400 об/мин дают возможность представить, как меняются показатели двигателя при работе на водороде, БВТК и бензине.

Мощностные и скоростные показатели двигателя для испытаний выбраны таким образом, чтобы они наиболее полно отражали условия эксплуатации автомобиля в городских условиях. Мощность двигателя Ne=6,2 квт и частота вращения коленчатого вала n=2400 об/мин соответствует движению автомобиля, например «ГАЗЕЛЬ» с постоянной скоростью 50-60 км/час по горизонтальной, ровной дороге. Как видно из графиков, по мере увеличения концентрации водорода в БВТК эффективный КПД двигателя возрастает. Максимальное значение КПД при мощности 6,2 квт и частоте вращения коленчатого вала 2400 об/мин достигает на водороде 18,5 процентов. Это в 1,32 раза выше, чем при работе двигателя на этой же нагрузке на бензине. Максимальное значение эффективного КПД двигателя на бензине составляет на этой нагрузке 14 процентов. При этом состав смеси соответствующий максимальному КПД двигателя (эффективный предел обеднения) смещается в сторону бедных смесей. Так при работе на бензине эффективный предел обеднения топливно-воздушной смеси соответствовал коэффициенту избытка воздуха (а) равному 1,1 единицы. При работе на водороде коэффициент избытка воздуха соответствующий эффективному пределу обеднения топливно-воздушной смеси а=2,5. Не менее важным показателем работы автомобильного двигателя внутреннего сгорания на частичных нагрузках является токсичность отработавших газов (ОГ). Исследование регулировочных характеристик двигателя по составу смеси на БВТК с различными концентрациями водорода показали, что по мере обеднения смеси концентрация окиси углерода (СО) в отработавших газах снижалась практически до нуля не зависимо от вида топлива. Увеличение концентрации водорода в БВТК приводит к снижению выброса с отработавшими газами углеводородов СnHm. При работе на водороде концентрация этого компонента на отдельных режимах падала до нуля. При работе на этом виде топлива выброс углеводородов во многом определялся интенсивностью сгорания в камере сгорания ДВС. Образование окислов азота NxOy, как известно, не связано родом топлива. Их концентрация в ОГ определяется температурным режимом горения топливно-воздушной смеси. Возможность работы двигателя на водороде и БВТК в диапазоне бедных составов смесей позволяет снизить максимальную температуру цикла в камере сгорания ДВС. Это существенно уменьшает концентрацию окислов азота. При обеднении топливно-воздушной смеси свыше а=2, концентрация NxOy снижается до нуля. В 2005 году НАВЭ разработан микроавтобус ГАЗЕЛЬ, работающий на БВТК. В декабре 2005 года он был представлен на одном из мероприятий, проводимых в Президиуме Российской академии наук. Презентация микроавтобуса была приурочена к 60 летию президента НАВЭ П.Б. Шелища.

Для оценки надежности бензоводородной аппаратуры и пропаганды перспектив водородной экономики, прежде всего в сфере автомобильного транспорта, НАВЭ провела с 20 по 25 августа 2006 года автопробег водородных автомобилей. Пробег осуществлялся по по маршруту Москва - Н. Новгород - Казань - Нижнекамск - Чебоксары - Москва протяженностью 2300 км. Автопробег был приурочен к Первому всемирному конгрессу «Альтернативная энергетика и экология». В пробеге принимали участие два водородных автомобиля. Второй грузовой многотопливного автомобиля ГАЗ 3302, работал на водороде, сжатом природном газе, БВТК и бензине. Автомобиль был оснащен 4 облегченными стеклопластиковыми баллонами с рабочим давлением 20 мпа. Масса бортовой системы хранения водорода составляет 350 кг. Запас хода автомобиля на БВТК составлял 300 км.

При поддержке Федерального агентства по науке и инновациям НАВЭ при активном участии Московского энергетического института МЭИ (ТУ), Автокомбината №41, Инженерно-технического центра «Водородные технологии и ООО «Славгаз» был создан опытный образец автомобиля ГАЗ 330232 «ГАЗЕЛЬ-ФЕРМЕР» грузоподъемностью 1,5 тонны, работающий на БВТК с электронной системой подачи водорода и бензина. Автомобиль оснащен трехкомпонентным нейтрализатором ОГ. На рис. 11 представлены фотографии автомобиля и коплект электронной аппаратуры для подачи водорода в ДВС.

1.3 Перспективы внедрения водорода на автомобильном транспорте

Наиболее перспективным направлением в области использования водорода для автомобильной техники являются комбинированные энергоустановки на базе электрохимических генераторов с топливными элементами (ТЭ). При этом, необходимым условием является получение водорода из возобновляемых, экологически чистых источников энергии, для производства которых, в свою очередь, должны использоваться экологически чистые материалы и технологии.

К сожалению, в ближайшей перспективе применение таких высокотехнологичных транспортных средств в широком масштабе проблематично. Это связано с несовершенством рядя технологий, применяемых при их производстве, недостаточной отработанностью конструкции электрохимических генераторов, ограниченностью и высокой стоимостью применяемых материалов. Например, удельная стоимость одного кВт мощности ЭХГ на топливных элементах достигает 150-300 тысяч рублей (при курсе российского рубля 30 руб./долл. США). Другим важным элементом сдерживания продвижения на автомобильном рынке водородной техники с топливными элементами является недостаточная отработка конструкции таких АТС в целом. В частности, отсутствуют достоверные данные при испытании автомобиля на топливную экономичность в условиях реальной эксплуатации. Как правило, оценка эффективности работы энергоустановки установки осуществляется на основе вольт-амперной характеристики. Такая оценка эффективности не соответствует принятой в практике двигателестроения оценки эффективного КПД ДВС, при расчете которого учитываются также и все механические потери, связанные с приводом агрегетов двигателя. Нет достоверных данных по топливной экономичности автомобилей в реальных условиях эксплуатации, на величину которых оказывает влияние необходимость обслуживания дополнительных бортовых устройств и систем, устанавливаемых на автомобили как традиционно, так и вязанные с особенностями конcтракции автомобилей на топливных элементах. Нет достоверных данных и по оценке эффективности в условиях отрицательных температур, при которых необходимо осуществлять поддержание температурного режима, обеспечивающего работоспособность как самой энергоустановки и подаваемого топлива, так и подогрев кабины водителя или салона с пассажирами. Для современных автомобилей рабочий режим эксплуатации может достигать -40 оС, это особо надо учитывать в российских условиях эксплуатации.

Как известно, в топливных элементах вода является не только продуктом реакции взаимодействия водорода и кислорода, но и активно участвует в рабочем процессе генерации энергии, смачивая твердополимерные материалы, входящие в конструкцию топливных ячеек. В современной технической литературе отсутствуют данные о надежности и долговечности топливных элементов в условиях низких температур. Очень противоречивые данные публикуются в литературе и по долговечности работы ЭХГ на ТЭ.

В этой связи, вполне закономерным является продвижение рядом ведущих мировых автопроизводителей транспортных средств, работающих на водороде, оснащенных двигателями внутреннего сгорания. В первую очередь, это такие известных компании как BMW и Mazda. Двигатели автомобилей BMW Hydrogen-7 и Mazda 5 Hydrogen RE Hybrid (2008) успешно конвертированы на водород.

С точки зрения надежности конструкции, относительной низкой стоимости одного кВт установленной мощности энергоустановки на базе двигателей внутреннего сгорания работающие на водороде значительно превосходят ЭХГ на ТЭ, однако ДВС имеют, как принято считать, меньший КПД. Кроме того, в отработавших газах двигателя внутреннего сгорания может содержаться некоторое количество токсичные вещества. В качестве основного направления совершенствования автомобильной техники, оснащенной двигателем внутреннего сгорания в ближайшей перспективе следует рассматривать использование комбинированных (гибридных) энергоустановок. Наилучший результат до топливной экономичности и токсичности отработавших газов, по-видимому следует ожидать от применения гибридных установок с последовательной схемой преобразования химической энергии топлива в ДВС в механическую энергию движения автомобиля. При последовательной схеме ДВС автомобиля работает практически на постоянном режиме с максимальной топливной эффективностью, приводя в движение электрогенератор, который подает электрический ток на электромотор привода колес автомобиля и накопитель электроэнергии (аккумулятор). Основной задачей оптимизации при такой схеме является поиск компромисса между топливной экономичностью ДВС и токсичностью ее отработавших газов. Особенность решения задачи заключается в том, что максимальный КПД двигателя достигается на при работе на обедненной топливовоздушной смеси, а максимальное снижение токсичности отработавших газов достигается при стехиометрическом составе, при котором количество топлива, подаваемого в камеру сгорания подается строго в соответствии с количеством воздуха, необходимым для его полного сгорания. Образование окислов азота при этом ограничивается дефицитом свободного кислорода в камере сгорания, а неполнота сгорания топлива нейтрализатором отработавших газов. В современных ДВС датчик для замера концентрации свободного кислорода в ОГ ДВС подает сигнал на электронную систему подачи топлива, которая спроектирована таким образом, чтобы максимально поддерживать стехиометрический состав топливовоздушной смеси в камере сгорания двигателя на всех режимах ДВС. Для гибридных энергоустановок с последовательной схемой, возможно добиться наилучшей эффективности регулирования топливовоздушной смеси из-за отсутствия знакопеременных нагрузок на ДВС. Вместе с тем, с точки зрения топливной экономичности, ДВС стехиометрический состав топливовоздушной смеси не является оптимальным. Максимальный КПД двигателя всегда соответствует смеси обедненной на 10-15 процентов по сравнения с стехиометрической. При этом КПД ДВС при работе на обедненной смеси может быть на 10-15 выше чем при работе на смеси стехиометрического состава. Решение проблемы повышенного выброса вредных веществ, свойственного на этих режимах для ДВС с искровым зажиганием, возможно в результате перевода работы ДВС на водород, бензоводородные топливные композиции (БВТК) или метановодородные топливные композиции (МВТК). Применение водорода в качестве топлива или в качестве добавки к основному топливу может позволить существенно расширить пределы эффективного обеднения топливовоздушной смеси. Это обстоятельство позволяет существенно увеличить КПД ДВС и снизить токсичность отработавших газов.

В отработавших газах двигателей внутреннего сгорания содержится свыше 200 различных углеводородов. Теоретически, в случае сгорания гомогенных смесей (из условий равновесия) углеводородов в отработавших газах ДВС не должно содержаться, однако из-за негомогенности топливовоздушной смеси в камере сгорания ДВС возникают разные начальные условия протекания реакции окисления топлива. Температура в камере сгорания различается по ее объему, что также существенно влияет на полноту сгорания топливовоздушной смеси. В ряде исследований было установлено, что вблизи сравнительно холодных стенок камеры сгорания происходит гашение пламени. Это приводит к ухудшению условий сгорания топливовоздушной смеси в пристеночном слое. В работе Daneshyar H и Watf M произвели фотографирование процесса сгорания бензовоздушной смеси в непосредственной близости от стенки цилиндра двигателя. Фотографирование осуществлялось через кварцевое окно в головке цилиндра двигателя. Это позволило определить толщину зоны гашения в пределах 0,05-0,38 мм. В непосредственной близости от стенок камеры сгорания СН в 2-3 раза возрастает. Авторы делают вывод, что зона гашения является одним из источников выделения углеводородов.

Другим важным источником образования углеводородов является моторное масло, которое попадает в цилиндр двигателя в результате не эффективного удаления со стенок маслосъемными кольцами или через зазоры между стержнями клапанов и их направляющими втулками. Исследования показывают, что расход масла через зазоры между стержнями клапанов и их направляющими втулками в автомобильных бензиновых ДВС достигает 75% общего расхода масла на угар.

При работе ДВС на водороде в топливе не содержится углеродосодержащих веществ. В этой связи подавляющее большинство публикаций содержит сведения о том, что в отработавших газах ДВС не может содержаться углеводородов. Однако это оказалось не так. Безусловно, с увеличение концентрации водорода в БВТК и МВТК концентрация углеводородов существенно снижается, но не исчезает полностью. Во много это может быть связано с несовершенством конструкцией топливной аппаратуры, дозирующей подачу углеводородного топлива. Даже небольшая утечка углеводородов при работе ДВС на сверхбедных смесях может привести к выбросу углеводородов. Такой выброс углеводородов может быть связан с износом цилиндропоршневой группы и как следствием повышенным угаром масла и др. В этой связи при организации процесса сгорания необходимо поддерживать температуру сгорания на таком уровне, при котором имеет место достаточно полно сгорание углеводородных соединений.

В процессе сгорания топлива окислы азота формируются за фронтом пламени в зоне повышенной температуры, вызванной реакцией сгорания топлива. Образование окислов азота, если это не азотосодержащие соединения образуются в результате взаимодействия кислорода и азота воздуха. Общепринятой теорией образования окислов азота является термическая теория. В соответствии с этой теорией выход окислов азота определяется максимальной температурой цикла, концентрацией азота и кислорода в продуктах сгорания и не зависит от химической природы топлива рода топлива (при отсутствии в топливе азота). В отработавших газах ДВС с искровым зажиганием содержание окиси азота составляет 99% от количества всех окислов азота (NOx). После выхода в атмосферу происходит окисление NO до NO2.

При работе ДВС на водороде образование окиси азота имеет некоторые особенности по сравнению с работой двигателя на бензине. Это связано с физико-химическими свойствами водорода. Главными факторами в этом случае являются температура сгорания водородовоздушной и ее пределы воспламенения. Как известно пределы воспламенения водородовоздушной смеси находятся в диапазоне 75% - 4,1%, что соответствует коэффициенту избытка воздуха 0,14 - 9,85, в то время как у изооктана в диапазоне 6,0%-1,18%, что соответствует коэффициенту, избытка воздуха 0,29 - 1,18. Важной особенностью сгорания водорода является повышенная скорость сгорания стехиометрических смесей. На рис. 12 представлен график зависимостей, характеризующих протекание рабочих процессов ДВС при работе на водороде и бензине.

Как следует их графиков, перевод ДВС с бензина на водород приводит в области стехиометрических смесей к резкому возрастанию максимальной температуры цикла. На графике видно, что скорость тепловыделения при работе ДВС на водороде в верхней мертвой точке ДВС в 3-4 раза выше, чем при работе на бензине При этом на индикаторной диаграмме отчетливо видны следы колебания давления, появление которых в конце такта сжатия свойственно «жесткому» сгоранию топливовоздушной смеси. На рис. 13 представлены индикаторные диаграммы, описывающие изменение давления в цилиндре ДВС (ЗМЗ-24Д, Vh=2,4 л. степ. сжатия -8,2). в зависимости от угла поворота коленчатого вала (мощность 6,2 кВт, ч.в.к 2400 об/мин) при работе на бензине и водороде.

При работе ДВС на бензине отчетливо видна неравноменость протекания индикаторных диаграмм от цикла к циклу. При работе на водороде, особенно при стехиометрическом составе, неравномерность отсутствует. При этом угол опережения зажигания был настолько мал, что практически можно считать его равным нулю. Обращает на себя очень резкое нарастание давления за ВМТ, свидетельствующее о повышенной жесткости процесса. На нижнем графике представлены индикакторные диаграммы при работе на водороде при коэффициенте избытка воздуха 1,27. Угол опережения зажигания составлял 10 градусов п.к.в. На некоторых индикакторых диаграммах явно видны следы «жесткой» работы ДВС. Такой характер протекания рабочего процесса ДВС при использовании в качестве топлива водорода способствует повышенному образованию окислов азота. Максимальное значение концентрации окислов азота в ОГ соответствует работе ДВС с коэффициентом избытка воздуха 1,27. Это вполне закономерно, т.к. в топливовоздушной смеси содержится большое количество свободного кислорода и в результате высоких скростей сгорания имеет место высокая температура сгорания топливовоздушного заряда. Вмеасте с тем, при переходе на более бедные смесях скорости тепловыделения снижаются. Снижаются и максимальная температура цикла, а следовательно и концентрация в ОГ окислов азота.

Зависимости изменения выброса токсичных веществ с ОГ ДВС при работе на бензине, бензоводородных композициях и водороде. Как следует из графика наибольшее значение выбросов NOx соответствует работе ДВС на водороде. Вместе с тем по мере обеднения топливовоздушной смеси концентрация NOx снижается достигая практически нулевого значения при коэффициенте избытка воздуха большего 2 единиц. Таким образом перевод автомобильного двигателя на водород позволяет кардинально решить проблему топливной экономичности, токсичности отработавших газов и снижения выброса двуокиси углерода.

Применение водорода в качестве добавки к основному топливу может способствовать решению задачи улучшения топливной экономичности ДВС, снижения выброса токсичных веществ и уменьшения выброса двуокиси углерода, требования по содержанию которой в ОГ ДВС постоянно ужесточаются. Добавка водорода по массе в диапазоне 10-20 процентов может стать для автомобилей с гибридными двигателями оптимальной в самое ближайшее время.

Применение водорода в качестве моторного толива может быть эффективно только лишь при создании специализированных конструкций. В настоящее время ведущие производители автомобильных двигателей работают над созданием таких моторов. В принципе, основные направления по которым необходимо двигатья при создании новой конструкции водородных ДВС известны. К ним относятся:

1. Применение внутреннего смесеобразования позволит улучшить на 20-30 процентов удельные массогабаритные показатели водородного двигателя.

2. Применение сверх бедных водородовоздушных смесей для гибридных энергоустановок даст возможность существенно снизить температуру сгорания в камере сгорания ДВС и создаст предпосылки для повышения степени сжатия ДВС, использования новых материалов, в том числе и для внутренней поверхности камеры сгорания, позволяющих снизить потери тепла в систему охлаждения двигателя.

Все это по мнению специалистов позволит довести эффективный КПД ДВС, работающего на водороде до 42-45 процентв, что вполне сопоставимо с КПД электрохимических генераторов, для которых в настоящее время нет данных по экономической эффективности в условиях реальной эксплуатации автомобилей с учетом привода вспомогательных агрегатов, отоплания салона и др.

Национальная ассоциация водородной энергетики НАВЭ, в тесном сотрудничестве с ОАО «АВЭКС», Московским энергетическим институтом МЭИ (ТУ) и ЗАО Автокомбинат №41 построила первый в России образец водородного грузового автомобиля грузоподъемностью до 2000 кг оснащенного гибридной энергоустановкой, работающей на водороде с двигателем внутреннего сгорания.

Очевидно, что практическое внедрение альтернативных видов энергоносителей, позволяющих решить проблему замещения углеводородных топлив, будет проходить поэтапно. Первым этапом в освоении водорода, может стать практическое использование его на существующих автотранспортных средствах в качестве добавки к бензину и природному газу. Такое использование водорода, уже сегодня может дать не только экономический эффект, но и решить экологические проблемы, особенно в крупных мегаполисах. Расширение рынка автотранспортных услуг с использованием малотоксичных автомобилей, работающих на водородо-содержащих топливных композициях, позволит начать формировать инфраструктуру водородных автотранспортных комплексов, накапливать опыт технического обслуживания таких автомобилей, приведет к развитию сети заправочных станций и даст возможность постепенно перейти к следующему этапу - этапу использования водорода в качестве основного топлива для двигателей внутреннего сгорания, а в последствии для электрохимических генераторов, позволяющих осуществлять превращение химической энергии топлива в энергию привода колес электромобиля.

2. Основные виды дымомеров

2.1 Виды дымомеров и их применение

Дымомер необходим в распоряжении мастерских для предварительной оценки дымности отработавших газов (далее ОГ) без больших затрат времени. Для большинства приборов по измерению дымности ОГ имеются специальные программы по поиску неисправности, включающие постоянные измерения действительных значений дымности ОГ, проводимые при пуске двигателя и на режиме холостого хода. Для определения дымности ОГ при полной нагрузке и максимальной (ограничиваемой регулятором) частоте вращения коленчатого вала регистрируются показания дымомера на режимах свободного ускорения.

Прибор для измерения дымности ОГ оценивает отработавшие газы на просвет, т.е. точно так же, как это определяет своим зрением человек, поэтому этот прибор иногда называют «калиброванным глазом». Непрозрачность ОГ определяется наличием части сажи, несгоревшего топлива, моторного масла и водяного пара (рис. 16).

Рисунок 16. Факторы дымности ОГ и состав твёрдых частиц

Дымомеры выпускаются разными фирмами и работают по принципу определения оптической плотности ОГ и могут быть двух типов:

1) с мерной трубкой

2) полного потока

Приборы используются:

- для измерения дымности ОГ дизелей транспортных средств, находящихся в эксплуатации

- при техническом обслуживании автомобилей

- после ремонта и регулировки элементов, узлов и систем, влияющих на дымность ОГ

- после обкатки новых и капитально отремонтированных автомобилей

- работниками ГАИ (дорожной полиции) при проверке технического состояния транспортных средств на линии (в условиях эксплуатации)

2.2 Дымомеры с мерной трубкой

Дымомер МК-4 (YDA309)

Дымомер МК-4 (YDA309) предназначен для измерения дымности отработавших газов дизельных двигателей, как в режиме свободного ускорения, так и в установившемся режиме (в соответствии с требованиями ГОСТ 213937-75 «Автомобили с дизелями. Дымность отработавших газов»).

Рисунок 16. Дымомер Хартридж МК-4

Преимущество дымомера типа Хартридж - в высокой точности измерений, возможности непрерывно регистрировать дымность. Дымомер прост в эксплуатации и позволяет проводить испытания одному оператору, либо с места водителя, либо находясь рядом с автомобилем. Управление прибором осуществляется с помощью портативного дистанционного пульта управления с жидкокристаллическим монитором. Параметры, выходящие за пределы допустимых значений, автоматически помечаются для оператора.

Основные характеристики:

1. Измерение дымности отработавших газов, как в режиме свободного ускорения, так и в установившихся режимах;

2. 4-х метровый шланг зонда, позволяющий легко проверять грузовики и автомобили с нестандартными выхлопными трубами;

3. Электропитание от бортовой системы автомобиля, 12В или 24В, либо от сети переменного тока с напряжением 24В;

4. Цифровая индикация результатов измерений по коэффициенту ослабления, (%, в единицах дымности Хартриджа), либо по показателю ослабления, К (м-1), с фиксацией пиковых значений;

5. Портативный принтер входит в стандартную комплектацию;

6. Минимальные требования по обслуживанию и простая процедура калибровки.

Основные преимущества:

1. Простота работы, один оператор, дистанционное управление;

2. Позволяет проверять на дымность как грузовые, так и легковые автомобили;

3. Легкость и компактность.

Дымомер Bosch ВЕА 105

Дымомер для определения коэффициента ослабления светового потока в выхлопных газах дизельных автомобилей от 0% до 100%. Также с помощью дымомера RTM 430 можно измерить коэффициент поглощения от 0,5 м-1 до 5,5 м-1. Дымомер может применятся с модулем BEA 050, BEA 460, использоваться для дооснащения мотортестеров FSA 740 и FSA 750. 430

Рисунок 17. Дымомер Bosch ВЕА 105

Дымомер Мета-01МП0.01ЛТК

Измерительный прибор (дымомер) Мета-01МП0.01ЛТК предназначен для измерения дымности отработавших газов автомобилей, а также других транспортных средств и стационарных установок с дизельными двигателями. Микропроцессорная система управления позволяет прибору работать в составе ЛТК-МЕТА, а также распечатывать результаты на принтере.

Рисунок 18. Дымомер Мета-01МП0.01ЛТК

Функции:

- Автоматическое вычисление дымности по результатам измерений в соответствии с методиками ГОСТ Р 52160-2003, ГОСТ 21393/ОСТ 10.0060, ГОСТ 17.2.2.02 для всех типов транспортных средств

- Контроль температуры и давления в оптическом канале

- Автоматическая коррекция нуля и контроль загрязнения оптических элементов

- Работа в составе ЛТК-МЕТА

Достоинства:

- Работа в линии технического контроля по RS 232 с последующей передачей результатов измерений в протоколе на центральный компьютер

- Возможность вывода результатов измерения дымности в выбранном режиме в виде протокола на печатающее устройство

- Оптический датчик снабжен телескопической рукояткой, которая позволяет выполнять измерение дымности с безопасного расстояния для операторов

- Фотометрическая база 0.1 м приведена к базе 0.43, м благодаря этому прибор компактен, имеет малый вес и удобен в обращении.

- Автономное питание

2.3 Дымомеры полного потока

Кроме приборов, работающих по принципу частичного замера потока ОГ, находят применение дымомеры непрерывного действия с поперечным просвечиванием полного потока ОГ.

Полноточные дымомеры можно использовать для измерения дымности ОГ на переходных режимах, так как при этом разница в показаниях дымности по стрелке прибора и истинного значения определяется только инерционностью прибора. При замере дымности такими приборами отсутствует погрешность, связанная с временной задержкой из за продвижения газа по пробоотборной системе от выхлопной трубы транспортного средства до дымомера

Список литературы

1. Раменский А.Ю. Исследование рабочих процессов автомобильного двигателя на бензино-водородных топливных композициях. Кандидатская диссертация. 1982 г., Москва

2. Мищенко А.И., Белогуб А.В., Савицкий В.Д., Талда Г.Б., Шатров Е.В., Кузнецов В.М., Раменский А.Ю. «Применение водорода для вигателей автомобильного транспорта», Атомно-водородная энергетика и технологии. Сборник статей Выпуск 8, - М.:Энергоатомиздат, 1988 г.

3. Экология и природоохранная деятельность на транспорте: Тем. Сборник нормативно-справочных материалов. - М., 1993.

4. Павлова Е.И. Экология транспорта: учебник для вузов/ Е.И. Павлова. - М.: Высшая школа, 2006 - 344 с.

5. http://elibrary.ru

6. http://www.meta-moscow.ru

Размещено на Allbest.ru


Подобные документы

  • Применение на автомобилях и тракторах в качестве источника механической энергии двигателей внутреннего сгорания. Тепловой расчёт двигателя как ступень в процессе проектирования и создания двигателя. Выполнение расчета для прототипа двигателя марки MAN.

    курсовая работа [169,7 K], добавлен 10.01.2011

  • История создания дизельного двигателя. Характеристики дизельного топлива. Расчет эффективности конструкции и работы двигателя внутреннего сгорания. Разработка набора "Система питания дизельного двигателя". Применение набора при изучении курса "Трактор".

    дипломная работа [316,3 K], добавлен 05.12.2008

  • История зарождения автомобилестроения, первые предки современных автомобилей, их внешний вид и свойства. Пружиномобили Вокансона и их практическое применение. Становление отечественного автотранспорта, его первые представители конвейерное производство.

    реферат [16,2 K], добавлен 25.07.2009

  • Модернизация двигателя внутреннего сгорания автомобиля ВАЗ-2103. Особенности конструкции двигателя: тип, степень сжатия, вид и марка топлива. Тепловой расчет, коэффициент теплоиспользования. Расчет механических потерь и эффективных показателей двигателя.

    курсовая работа [452,2 K], добавлен 30.09.2015

  • История создания универсального парового двигателя. Понятие коэффициента полезного действия. Паровая машина Уатта. Принцип работы двухтактного двигателя внутреннего сгорания. Такт сжатия и такт рабочего хода. Рабочие циклы двухтактных двигателей.

    презентация [985,6 K], добавлен 15.12.2014

  • Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.

    презентация [990,4 K], добавлен 18.01.2012

  • Характеристика систем центрального и многоточечного впрыска топлива. Принцип работы плунжерного насоса, применение электромагнитных форсунок. Особенности топливного насоса с электрическим приводом. Причины неисправности систем впрыска топлива Bosch.

    дипломная работа [4,3 M], добавлен 06.02.2012

  • Назначение, устройство и работа газораспределительного механизма автомобиля. Основные неисправности ГРМ. Периодичность, перечень и трудоемкость выполнения работ. Виды технического обслуживания и последовательность ремонта двигателя внутреннего сгорания.

    курсовая работа [553,8 K], добавлен 17.08.2016

  • Леонардо да Винчи и его чертежи автомобиля с пружинным приводом. Создание трехколёсного тягача для передвижения артиллерийских орудий. Появление двигателя внутреннего сгорания. История создания автомобилей Mercedes, BMW, Audi, Volkswagen, Ford и Toyota.

    контрольная работа [34,1 K], добавлен 26.05.2009

  • История вопроса и пути совершенствования методов прямого сжигания твердых топлив в поршневых двигателях внутреннего сгорания. Теоретические аспекты выгорания твердого топлива в рабочем пространстве двигателя при его сжигании объемным и слоевым способом.

    книга [5,5 M], добавлен 17.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.