Двигатели внутреннего сгорания

Двигатель внутреннего сгорания - тепловая машина, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Современные разработки ДВС. Схема работы автомобиля с гибридным двигателем на примере ToyotaPrius.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 14.12.2011
Размер файла 473,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление.

Введение

История создания двигателя внутреннего сгорания

Современные разработки

Водородные ДВС

Цикл Аткинсона

Схема работы автомобиля с гибридным двигателем на примере ToyotaPrius

Заключение

Список литературы

Введение

Двигатель внутреннего сгорания (ДВС) -- это тип двигателя, тепловая машина, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую работу. Несмотря на то, что ДВС являются несовершенным типом тепловых машин (сильный шум, токсичные выбросы, меньший ресурс), благодаря своей автономности (необходимое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы) ДВС нашли очень широкое распространение. Основным недостатком ДВС является то, что он производит высокую мощность только в узком диапазоне оборотов. Поэтому неотъемлемыми атрибутами двигателя внутреннего сгорания являются трансмиссия и стартёр. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Кроме этого ДВС нужны топливная система (для подачи топливной смеси) и выхлопная система (для отвода выхлопных газов).

двигатель внутреннее сгорание автомобиль

История создания двигателя внутреннего сгорания

В настоящее время никого не удивишь использованием двигателя внутреннего сгорания. Миллионы автомобилей, бензогенераторов и других устройств используют в качестве привода ДВС (двигатели внутреннего сгорания). Появление этого типа двигателя в 19 веке обусловлено в первую очередь необходимостью создания эффективного и современного привода для различных промышленных устройств и механизмов. В то время, в основной своей массе, использовался паровой двигатель. Он имел массу недостатков, например, низкий коэффициент полезного действия (т.е. большинство энергии затрачиваемой на производство пара просто пропадало), был достаточно громоздким, требовал квалифицированного обслуживания и большого количества времени на запуск и остановку. Промышленности требовался новый двигатель лишенный этих недостатков. Им стал двигатель внутреннего сгорания.

Еще в 17 веке голландский физик КристианХагенс начал эксперименты с двигателями внутреннего сгорания, а в 1680 году был разработан теоретический двигатель, топливом для которого служил черный порох. Однако до воплощения в жизнь идеи автора так и не дошли.

Первым, кому удалось создать первый в мире действующий двигатель внутреннего сгорания был НисефорНьепс . В 1806 году он с братом представили в Национальный институт (так называлась тогда французская Академия наук) доклад о новой машине, которая «по силе была бы сравнима с паровой, но потребляла бы меньше топлива». Братья назвали ее «пирэолофор». С греческого это можно перевести как «влекомая огненным ветром». Работала она на угольной пыли, а не на бензине или газе. В те времена не было ни газовой, ни нефтеперерабатывающей промышленности.изобретение пирэолофора вызвало большой интерес. Двум комиссарам было поручено разобраться в изобретении. Одним из комиссаров был Лазар Карно. Карно дал положительный отзыв, даже попавший в газеты. Хотя у двигателя был ряд недоработок, многие из них нельзя было устранить на то время из-за отсутствия необходимых технологий: поджиг пыли, например, осуществлялся при атмосферном давлении, распределение горючего вещества внутри камеры было неравномерным, да и прилегание поршня к стенкам цилиндра требовало совершенствования. В те времена поршень паровой машины считался подогнанным к стенкам цилиндра, если между ними с трудом проходила монета.

Братья построили двигатель и оснастили им в 1806 году трехметровую лодку, весом 450 кг. Лодка ходила вверх по речке Соне со скоростью вдвое больше скорости течения.

У Лазара Карно был сын - лейтенант Главного штаба Сади Карно, который в 1824 году издает в 200 экземплярах работу, увековечившую впоследствии его имя. Это «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В этой книжке он заложил основы термодинамики - теории для разработки двигателей внутреннего сгорания. В книге упоминалась машина Ньепсов, которая, возможно, и натолкнула Сади Карно на размышления о двигателях будущего - всех двигателях внутреннего сгорания: и газовых, и карбюраторных, и дизельных. Он также предлагает дальнейшее совершенствование двигателя, начиная от сжатия воздуха в цилиндре и т.д.

Пройдет еще четверть века, прежде чем английский физик Уильям Томсон (лорд Кельвин) и немецкий физик Рудольф Клаузиус возродят идеи Карно и сделают термодинамику наукой. О Ньепсах вообще никто не вспомнит. А следующий двигатель внутреннего сгорания появится лишь в 1858 году у бельгийского инженера Жан ЖосефаЭтьенЛенуара. Двухтактовый электрический карбюраторный двигатель, двигатель с искровым зажиганием, топливом для которого служил каменноугольный газ, станет первым коммерчески успешным двигателем такого рода. Первый двигатель проработал лишь несколько секунд из-за отсутствия системы смазки и системы охлаждения, которые были успешно применены на последующих образцах. В 1863 году Ленуар улучшил конструкцию своего двигателя, использовав вместо газового топлива, керосин. На нем трехколесный прототип современных машин проехал исторические 50 миль.

Двигатель Ленуара не был лишен недостатков, его КПД достигал лишь 5%, он не очень эффективно расходовал топливо и смазочные материалы, слишком сильно нагревался и т.д., но это был первый, после долгих лет забвения, коммерчески успешный проект создания нового двигателя для нужд промышленности. В 1862 году французский ученый Альфонс Беу де Рохас предложил и запатентовал первый в мире четырехцилиндровый двигатель. Но до его создания, а тем более коммерческого производства дело так и не дошло.

1864 год - австрийский инженер Зигфрид Маркус создал первый в мире одноцилиндровый карбюраторный двигатель, работающий от сгорания сырой нефти. Несколько лет спустя этот же ученый сконструировал транспортное средство, передвигающееся со скоростью 10 миль в час.

1873 год - Джордж Брайтон предложил новую конструкцию 2-х цилиндрового карбюраторного керосинового двигателя, в последствие ставшим бензиновым. Это был первая безопасная модель, правда слишком массивная и медленная для коммерческого использования.

1876 год - Николас Отто, спустя 14 лет после теоретического обоснования работы 4-х цилиндрового двигателя Рохасом, создал рабочую модель, известную, как «цикл Отто», цикл с воспламенением от искрового разряда. ДВС Отто имел вертикальный цилиндр, вращаемый вал располагался на боку, с валом была соединена специальная рейка. Вал поднимал поршень, за счет чего образовывалось разрежение, благодаря которому всасывалась топливовоздушная смесь, которая впоследствии воспламенялась. В двигателе не использовалось электрическое зажигание, инженеры не обладали достаточным уровнем знаний в электротехнике, смесь воспламенялась отрытым пламенем через специальное отверстие. После взрыва смеси возрастало давление, под действием которого поршень поднимался (сначала под действием газа, а потом по инерции) и специальный механизм отсоединял рейку от вала, вновь создавалось разрежение, топливо засасывалось в камеру сгорания, и процесс повторялся вновь. КПД этого двигателя превышал 15 %, что было значительно выше, чем КПД любой паровой машины того времени. Удачная конструкция, высокая экономичность, а так же постоянная работа над устройством агрегата (именно Отто в 1877 году запатентовал новый вид двигателя внутреннего сгорания с четырехтактным циклом, который лежит в основе большинства современных ДВС) позволило занять значительную долю рынка приводов для различных устройств и механизмов.

1883 год - французский инженер Эдуард Деламар-Деботвиль конструирует одноцилиндровый четырехтактовый двигатель, топливом в котором служил газ. И хотя до практического воплощения идей дело так и не дошло, по крайней мере, на бумаге Деламар-Деботвиль опередил ГотлибаДаймлераи Карла Бенца.

1885 год - ГотлибДаймлер создал то, что сегодня называют прототипом современного газового двигателя - устройство с вертикально расположенными цилиндрами и карбюратором. Для этих целей Даймлер совместно со своим другом Вильгельмом Майбахом приобрели мастерскую близ города Штутгарт. Двигатель создавался для того, чтобы он мог двигать экипаж, поэтому требования, предъявляемые к нему, были весьма значительными. ДВС должен был быть, компактным, обладать достаточной мощностью и не требовать газогенератора. “Reitwagen” - так назвали первое двухколесное транспортное средство изобретатели. Год спустя миру предстал и первый прототип 4-х колесного авто. Майбах разработал эффективный карбюратор, который обеспечивал эффективное испарение топлива. В то же время венгр Банки запатентовал устройство карбюратора с жиклером. В отличие от предшественников в новом карбюраторе предлагалось не испарять, а распылять топливо, которое испарялось непосредственно в цилиндре двигателя. Так же карбюратор дозирует топливо и воздух и равномерно смешивает их в нужной пропорции.ГотлибДаймлер с самого начала своей инженерной карьеры он был убежден, что паровой двигатель устарел и нуждается в скорейшей замене. Газовые двигатели - вот в чем видел перспективу развития Даймлер. Ему пришлось обстучать множество порогов фирм, которые не хотели рисковать и вкладывать деньги в пока еще неизвестный им продукт. Майбах, первый человек, который понял его, впоследствии стал его другом и партнером. В 1872 году Даймлер совместно с Николасом Отто собирает всех лучших специалистов, с которыми ему приходилось когда-либо работать во главе с Майбахом. Задача была сформулирована следующим образом: создать работоспособный и эффективный газовый двигатель. И уже два года спустя эта задача была выполнена, а производство двигателей поставлено на поток. Два двигателя в день - огромная скорость по тем меркам. Но здесь позиции Даймлера и Отто на дальнейшее развитие фирмы начинают расходиться. Первый считает, что необходимо усовершенствовать конструкцию и провести ряд исследований, второй говорит о необходимости увеличить производство уже сконструированных двигателей. На почве этих противоречий Даймлер покидает компанию, вслед за ним уходит и Майбах.В 1889 году они организуют фирму «DaimlerMotorenGesellschaft», с конвейера которой сходит первый автомобиль. А двенадцать лет спустя Майбах собирает первый автомобиль Мерседес, названный по имени своей дочери, который впоследствии станет легендой.

1886 год - 29 января Карл Бенц запатентовал конструкцию первого в мире трехколесного газового автомобиля с электрическим зажиганием, дифференциалом и водяным охлаждением. Энергия к колесам подводилась при помощи специального шкива и ремня, присоединенным к передаточному валу. В 1891 году им же была построена 4-х колесная машина. Именно Карл Бенц был первым, кому удалось совместить воедино шасси и двигатель.Уже в 1893 году автомобили Бенца становятся первыми в мире дешевыми транспортными средствами массового производства. В 1903 году Фирма «Benz&Company» слилась с фирмой Даймлера, образовав «Daimler-Benz», а позже «Mercedes-Benz», а сам Бенц стал членом наблюдательного совета, пока не умер в 1929 году. 1889 год - Даймлер усовершенствовал свой четырехтактовый двигатель, предложив V-образное расположение цилиндров и использование клапанов, намного увеличивших удельную мощность двигателя на единицу массы.

Таким был путь развития двигателей внутреннего сгорания, принесших в нашу жизнь комфорт и скорость перемещения. Дальнейшее развитие этого направления покажет время, но уже сейчас конструкторы предлагают достаточно интересные альтернативные варианты конструкции ДВС.

Современные разработки

В течение одного года появилось сразу два новых экспериментальных двигателя, способных перевернуть наше представление о ДВС. В то время как показатели экономии топлива и роста КПД на уровне 3-5% считаются автомобильными инженерами очень приличными результатами, авторы новых проектов обещают 25-30%. Причем о таких невероятных возможностях совершенствования существующих сегодня (и серийно выпускаемых) двигателей говорят не дилетанты, а вполне ученые мужи из пользующихся уважением компаний.

Ricardoplc. -- ведущий независимый технологический провайдер и стратегический консультант по вопросам мировой транспортной промышленности. Иными словами, по заказу фирм, производящих всевозможные транспортные средства, включая автомобили, Ricardo разрабатывает узлы, агрегаты и системы, отрабатывает технологии и создает необходимое программное обеспечение. Кроме того, компания занимается самостоятельными исследованиям и разработками, в случае необходимости привлекая другие фирмы (разработчиков и производителей), научно-исследовательские организации и университеты. В сотрудничестве с Denso и рядом других партнеров создан и новый «чудо-мотор».

Двухтактный двигатель эффективнее четырехтактного, но не свободен от ряда «врожденных пороков», прежде всего экологических. Инженерам Ricardo и их партнерам удалось на базе серийного создать концептуальный двигатель, способный плавно переходить из четырехтактного режима работы в двухтактный. Решить сложную техническую задачу помогли достижения автомобильной отрасли, ставшие привычными за последний десяток лет: наддув (турбинный и механический), впрыск топлива, электронное управление рабочим процессом.

Двигатель, названный 2/4 SIGHT, запускается как четырехтактный. Затем, после выхода нагнетателей и прочих «энергопотребителей» на устойчивую работу, переводится на более эффективный двухтактный. Причем переход не приводит к прерыванию крутящего момента и может производиться как на установившихся, так и в переходных режимах. В качестве основы для прототипа был использован один ряд серийного двигателя V6 рабочим объемом 2,1 л. Ожидается, что такой двигатель 2/4 SIGHT при шести цилиндрах по мощности, крутящему моменту и прочим характеристикам будет соответствовать бензиновому мотору V8 рабочим объемом 3-4 литра.

Для отработки фаз газораспределения на испытательном стенде была использована система электрогидравлического привода клапанов (EHV). Система подачи воздуха -- двухступенчатая с промежуточным охлаждением (супернагнетательRotrex + турбонагнетательHoneywell). В первых опытах для упрощения эксперимента воздух подавался из централизованной магистрали. Электронная система управления двигателем -- специальная система Denso для быстрого подбора параметров -- работала с системами впрыска и зажигания того же производителя. Двигатель был собран в техническом центре Ricardo в Шорхеме и установлен для испытаний в лаборатории имени сэра Гарри Риккардо Брайтонского университета.

В ходе тестов были разработаны и усовершенствованы принципы работы систем двигателя, обеспечивающие его устойчивую работу в двух- и четырехтактном режимах. Система управления, разработанная Denso совместно с Ricardo, и гибкое управление клапанами позволили оптимизировать стратегию управления двигателем 2/4 SIGHT, включая режимы переключения. Результаты испытаний обнадежили: удельный крутящий момент в двухтактном режиме оказался экстремально высоким -- 150 Нм при 2500 мин-1. А это открывает путь к радикальному уменьшению габаритов и рабочего объема будущих моторов.

По завершении программы испытаний было проведено компьютерное моделирование рабочего дорожного цикла и разгона при стабильном расходе топлива и полной мощности. Опыт проводился с использованием пакета программного обеспечения MSC «Easy5», позволяющего выполнить детальное моделирование двигателей, коробок передач, приводов, шин и аэродинамических устройств.

Базовым для сравнения был выбран серийный легковой автомобиль массой 1800 кг, продаваемый на европейском рынке с 3,5-литровым бензиновым двигателем V6 без наддува и обычной автоматической коробкой передач к конвертерам крутящего момента. Для уточнения базовых характеристик и проверки методики результаты расчета базового расхода топлива сравнили с опубликованными данными. Разница между показателями модели и реального автомобиля не превысила 1%, что для таких вычислений вполне допустимо. Результаты моделирования показали, что вместо серийной силовой установки рабочим объемом 3,5 литра для достижения таких же разгонных характеристик, включая старт с места, достаточно двигателя V6 2/4 SIGHT рабочим объемом 2,0 литра. Это означает, что экономия топлива по новому европейскому дорожному циклу (NEDC -- NewEuropeanDriveCycle) составит 27%, а выбросы двуокиси углерода (СО2) снизятся с 260 до 190 г на 1 км пробега.

Параллельно с испытаниями в Великобритании инженеры Ricardo в Детройтском технологическом кампусе компании разработали и запатентовали механическую систему переключения, действующую по алгоритмам, отработанным с использованием EHV. Эта разработка не только позволяет использовать принципы работы 2/4 SIGHT на серийных двигателях при минимальной доработке последних, но и существенно удешевляет конструкцию, делая стоимость двигателя 2/4 SIGHT меньшей, чем у других сложных современных бензиновых и дизельных силовых установок. Причем все стандарты на выбросы будут соблюдены «с запасом».

Традиционный цикл двигателя Отто не понравился и конструкторам GeneralMotors. Они посчитали «идеалом» дизель и разработали процесс HCCI (HomogenousChargeCompressionIgnition -- зажигание гомогенного заряда (рабочей смеси) сжатием). Заставить исправный бензиновый двигатель работать в дизельном режиме невозможно. При степени сжатия 11-15 образующегося тепла недостаточно для воспламенения смеси. Опытные автомобилисты знают, что мотор «дизелит» лишь тогда, когда в камере сгорания наличествуют какие-то перегретые объекты: большое количество нагара, электродиоды неправильно подобранной свечи и т.п. Калильное зажигание не имеет ничего общего с дизельным процессом, как и зажигание электрическое, оставаясь принудительным. О самовоспламенении в этом случае речи не идет. При нормальной для дизеля степени сжатия 22 и более бензин в цилиндре не сгорает, а взрывается. Процесс становится слишком «жестким» даже по дизельным меркам. Процесс HCCI предполагает, что до рабочей температуры двигатель разогревается как бензиновый, а необходимую для дизельного цикла теплоту получает, оставляя в цилиндре значительную часть отработавших газов. Для этого выпускной клапан закрывается значительно раньше обычного.

Для получения «гомогенной», то есть хорошо и равномерно перемешанной обедненной топливно-воздушной смеси форсунка (инжектор) располагается по центру камеры сгорания. Управление самовоспламенением осуществляется с учетом сигналов от датчиков давления, расположенных в каждом цилиндре. Процесс HCCI требует быстрой перенастройки фаз газораспределения и двух уровней высоты открытия клапанов.

Самое важное: процесс HCCI может быть осуществлен на серийном двигателе, подвергнутом относительно небольшим переделкам. Изменяется головка блока цилиндров, газораспределительный механизм и программа управления. Осуществление бензинового дизельного воспламенения сулит экономию топлива в пределах 15% при значительном снижении выбросов.

Опытный образец уже изготовлен. Четырехцилиндровый двигатель рабочим объемом 2,2 л установлен на OpelVectra. Для холодного пуска и резких разгонов используется процесс Отто, при равномерном движении воздушно-топливная смесь самовоспламеняется в управляемом режиме. В обоих случаях используется трехступенчатый каталитический нейтрализатор. В отличие от дизельного двигателя, нейтрализации NOx (из-за низкого содержания окислов азота) не требуется. КПД двигателя HCCI приближается к показателям дизеля. Основная проблема, с которой столкнулись испытатели, -- нестабильность внешних условий. Различные погодные условия (температура, атмосферное давление, влажность воздуха) и нестабильное (даже в пределах заводских допусков) качество бензина «сбивают» регулировки, затрудняя получение гомогенной смеси. Обычный бензиновый двигатель менее капризен. Но и HCCI по мере накопления опыта может стать «всеядным»: в конце концов, все дело в полноценном программном обеспечении.

Водородные ДВС

Тезис «водород - топливо будущего» звучит всё чаще. Большинство крупных автопроизводителей проводит опыты с топливными элементами. Такие экспериментальные автомобили в большом количестве мелькают на выставках. Но есть две компании, которые исповедуют иной подход к переводу машин на водородное питание.

«Водородное будущее» автотранспорта эксперты связывают, прежде всего, с топливными элементами. Их притягательность признают все.

Никаких движущихся частей, никаких взрывов. Водород и кислород тихо-мирно соединяются в «ящике с мембраной» (так упрощённо можно представить топливный элемент) и дают водяной пар плюс электричество.

Ford, GeneralMotors, Toyota, Nissan и многие другие компании наперебой щеголяют «топливоэлементными» концепткарами и собираются вот-вот «завалить» всех водородными модификациями некоторых из своих обычных моделей.

Водородные заправки уже появились в нескольких местах в Германии, Японии, США. В Калифорнии строят первые станции по электролизу воды, использующие ток, выработанный солнечными батареями. Аналогичные эксперименты проводят по всему миру. Считается, что лишь водород, выработанный экологически чистым способом (ветер, солнце, вода) действительно обеспечит нам чистую планету. Тем более, что, по подсчётам экспертов, «серийный» водород будет не дороже бензина.

Особенно привлекательным тут выглядит разложение воды при высокой температуре в присутствии катализатора.

О сомнительной экологической чистоте производства солнечных батарей; или проблеме утилизации аккумуляторов автомашин на топливных элементах (фактически - гибридов, так как это электромобили с водородной электростанцией на борту) - инженеры предпочитают говорить во вторую-третью очередь.

Между тем, есть ещё один путь внедрения водорода на автотранспорте - сжигание его в ДВС. Такой подход исповедуют BMW и Mazda. Японские и немецкие инженеры видят в этом свои преимущества.

Прибавку в весе машины даёт лишь водородная топливная система, в то время, как в авто на топливных элементах прирост (топливные элементы, топливная система, электромоторы, преобразователи тока, мощные аккумуляторы) - существенно превышает «экономию» от удаления ДВС и его механической трансмиссии.

Потеря в полезном пространстве также меньше у машины с водородным ДВС (хотя водородный бак и в том, и другом случае съедает часть багажника).

Эту потерю можно было бы вообще свести к нулю, если сделать автомобиль (с ДВС), потребляющий только водород. Но тут-то и проявляется главный козырь японских и германских «раскольников».

BMW и Mazda предлагают сохранить в автомобиле возможность ездить на бензине (по аналогии с распространёнными ныне двухтопливными машинами «бензин/газ»).

Такой подход, по замыслу автостроителей, облегчит постепенный переход автотранспорта только на водородное питание.

Ведь клиент сможет с чистой совестью купить подобную машину уже тогда, когда в регионе, где он живёт, появится хоть одна водородная заправка. И ему не придётся опасаться застрять поодаль от неё с пустым водородным баком.

Меж тем, серийный выпуск и массовые продажи машин на топливных элементах долгое время будут сильно сдерживаться малым числом таких заправочных станций. Да, и стоимость топливных элементов пока велика. Кроме того, перевод на водород обычных ДВС (при соответствующих настройках) не только делает их чистыми, но и повышает термический КПД и улучшает гибкость работы.

Дело в том, что водород обладает намного более широким, по сравнению с бензином, диапазоном пропорций смешивания его с воздухом, при которых ещё возможен поджиг смеси.

И сгорает водород полнее, даже вблизи стенок цилиндра, где в бензиновых двигателях обычно остаётся несгоревшая рабочая смесь.

Итак, решено - «скармливаем» водород двигателю внутреннего сгорания. Физические свойства водорода существенно отличаются от таковых у бензина. Над системами питания немцам и японцам пришлось поломать голову. Но результат того стоил.

Показанные BMW и Mazda водородные автомобили сочетают привычную для владельцев обычных авто высокую динамику с нулевым выхлопом.

А главное - они куда лучше приспособлены к массовому производству, чем «ультраинновационные» машины на топливных элементах.

BMW и Mazda сделали ход конём, предложив постепенный перевод автотранспорта на водород. Если построить машины, способные питаться и водородом, и бензином, говорят японские и немецкие инженеры, то водородная революция получится «бархатной». А значит - более реальной.

Автостроители двух известных фирм преодолели все трудности, связанные с такой гибридизацией. Как и для авто на топливных элементах, которым предрекают скорый рассвет, создателям машин с водородным ДВС нужно было сперва решить, каким способом хранить водород в автомобиле.

Самый перспективный вариант - металл-гидриды - ёмкости со специальными сплавами, которые впитывают водород в свою кристаллическую решётку и отдают его при нагревании.

Так достигается самая высокая безопасность хранения и самая высокая плотность упаковки топлива. Но это и самый хлопотный, и дальний по срокам массовой реализации вариант.

Ближе к серийному производству топливные системы с баками, в которых водород хранится в газообразном виде под высоким давлением (300-350 атмосфер), либо в жидком виде, при сравнительно невысоком давлении, но низкой (253 градуса Цельсия ниже нуля) температуре.

Соответственно, в первом случае нам нужен баллон, рассчитанный на высокое давление, а во втором - мощнейшая теплоизоляция.

Первый вариант более опасен, но зато в таком баке водород может сохраняться долго. Во втором случае безопасность куда выше, но на неделю-другую водородный автомобиль на стоянку не поставишь. Точнее, поставишь, но водород хоть медленно, но будет нагреваться. Давление вырастет, и предохранительный клапан начнёт стравливать дорогое топливо в атмосферу.

Mazda выбрала вариант с баком высокого давления, BMW - с жидким водородом.

Немцы понимают все недостатки своей схемы, но сейчас BMW уже экспериментирует с необычной системой хранения, которую будет ставить на следующие свои водородные машины.

Пока автомобиль эксплуатируется, из окружающей атмосферы вырабатывается жидкий воздух и закачивается в промежуток между стенками водородного бака и внешней теплоизоляцией.

В таком баке водород почти не нагревается, пока испаряется жидкий воздух во внешней «рубашке». С таким устройством, говорят в BMW, водород в бездействующей машине может сохраняться почти без потерь примерно 12 дней.

Следующий важный вопрос - способ подачи топлива в двигатель. Но здесь сначала нужно перейти, собственно, к автомобилям.

BMW уже несколько лет эксплуатирует целый флот из опытных водородных «семёрок». Да, баварцы перевели на водород именно флагманскую модель.

Заметим, первый автомобиль на водороде BMW построила в 1979 году, но лишь в последние несколько лет фирма буквально взорвалась новыми водородными авто.

В рамках программы CleanEnergy в 1999-2001 годах BMW построила несколько двухтопливных (бензин/водород) «семёрок».

Их 4,4-литровые V-образные 8-цилиндровые двигатели развивают на водороде 184 лошадиные силы. На этом топливе (ёмкость в последней версии авто составляет 170 литров) лимузины могут пройти 300 километров, и ещё 650 километров - на бензине (в машине оставлен стандартный бак).

Также компания создала 12-цилиндровый двухтопливный двигатель, а ещё оснастила 4-цилиндровым 1,6-литровым водородным движком экспериментальный MINI Cooper.

Сначала компания развивала впрыск газообразного водорода во впускные трубы (перед клапанами). Потом экспериментировала с непосредственным впрыском газообразного водорода (под большим давлением) непосредственно в цилиндр.

А позже объявила, что, по всей видимости, впрыск жидкого водорода в область перед впускными клапанами, - самый многообещающий вариант. Но окончательный выбор не сделан и изыскания в этой области будут продолжены. У Mazda своя гордость: она приспособила под водород свои знаменитые роторные двигатели Ванкеля.

Впервые такую машину японская компания построила в 1991 году, но это был чистый концепткар от бампера до бампера.

А вот в январе 2004 года разорвалась бомба. Японцы показали водородный (а точнее - двухтопливный) вариант своего знаменитого спорткара RX-8.

Его роторный мотор с собственным, кстати, именем RENESIS, завоевал титул «двигатель 2003 года», впервые в истории обставив на этом международном конкурсе классических поршневых соперников.

И вот теперь RENESIS научили «есть» водород, сохранив и бензиновое питание. При этом японцы подчёркивают преимущество двигателя Ванкеля при такой конверсии.

Перед впускными окнами в корпусе роторного мотора - масса свободного места, где в отличие от тесной головки цилиндра поршневого ДВС легко разместить форсунки. Их две на каждую из двух секций RENESIS.

В двигателе Ванкеля полости всасывания, сжатия, рабочего хода и выхлопа разделены (в то время как в обычном моторе - это один и тот же цилиндр).

Потому здесь не может произойти случайного преждевременного воспламенения водорода от «встречного огня», да и форсунки для впрыска работают всегда в благоприятной (в смысле долговечности), холодной зоне мотора. На водороде японскийВанкель развивает 110 лошадиных сил - почти вдвое меньше, чем на бензине.

Вообще-то, в расчёте на вес водород энергетически более «содержательное» топливо, чем бензин. Но таковы настройки топливных систем, выбранные инженерами Mazda.

Итак, BMW и Mazda нанесли двойной удар по стану сторонников топливных элементов.

Хотя стоимость последних постоянно снижается, а технологии совершенствуются, не исключено, что именно серийные ДВС на водороде откроют новую эру на дорогах планеты.

Вот прогноз баварцев.

В последующие три года водородные заправки (хоть по одной) построят во всех западноевропейских столицах, а также на самых крупных трансъевропейских магистралях.

В 2015-м на дорогах двутопливных авто будет уже несколько тысяч. В 2025 году четверть мирового автопарка будет питаться водородом.

Какую пропорцию среди водородных машин составят машины с ДВС и авто на топливных элементах - деликатные немцы уточнять не стали.

Цикл Аткинсона

В настоящее время почти все четырехтактные двигатели работают по циклу Отто. Но многие пытались и пытаются усовершенствовать их рабочий процесс. Британский инженер Джеймс Аткинсон еще до войны придумал свой цикл, который немного отличается от цикла Отто. В чем же отличие? Во-первых, объем камеры сгорания такого мотора (при том же рабочем объеме) меньше, и соответственно, выше степень сжатия. И степень расширения тоже больше -- а значит, мы эффективнее, на большем ходе поршня используем энергию отработавших газов и имеем меньшие потери выпуска Дальше все то же самое -- идут такты выпуска и впуска. Теперь, если бы все происходило в соответствии с циклом Отто и впускной клапан закрылся бы в НМТ, после искры последовала бы не вспышка смеси, а детонационный взрыв -- и двигатель, не проработал бы и часа. Джеймс Аткинсон решил продлить фазу впуска -- поршень доходит до НМТ и идет вверх, а впускной клапан меж тем остается открытым примерно до половины полного хода поршня. Часть свежей горючей смеси при этом выталкивается обратно во впускной коллектор, что повышает там давление -- вернее, уменьшает разрежение. Это позволяет на малых и средних нагрузках больше открывать дроссельную заслонку. Вот почему насосные потери двигателя оказываются ниже, чем в цикле Отто. Так что такт сжатия, когда закрывается впускной клапан, начинается при меньшем надпоршневом объеме. Казалось бы, чего проще: сделай повыше степень сжатия, измени профиль впускных кулачков, и дело в шляпе -- двигатель с циклом Аткинсона готов! Но дело в том, что для достижения хороших динамических показателей во всем рабочем диапазоне оборотов двигателя надо компенсировать выталкивание горючей смеси во время продленного впускного цикла, применяя наддув, в данном случае -- механический нагнетатель. А его привод отбирает у мотора львиную долю той энергии, что удается отыграть на насосных и выпускных потерях. Применение цикла Аткинсона на безнаддувном двигателе гибрида ToyotaPrius стало возможным благодаря тому, что он работает в облегченном режиме. Кстати, сразу после второй мировой войны американец Ральф Миллер, экспериментируя с судовыми двигателями с впрыском природного газа, видоизменил цикл Аткинсона, закрывая впускной клапан не позже, а раньше НМТ -- при этом тоже снижались насосные потери. Но эффективность цикла Миллера оказалась ниже, и какого-либо применения на автомобильных моторах он не получил. А двигатель MillerCycle автомобиля MazdaXedos 9 на самом деле работает по циклу Аткинсона и снабжен спиральным механическим нагнетателем типа Lysholm. Кстати, при работе по этим циклам благодаря тому, что степень расширения оказывается выше, чем степень сжатия, еще и снижается термонагруженность двигателя. Поэтому циклы Миллера и Аткинсона называют циклами с высокой степенью расширения или циклами с внутренним охлаждением.

Рис.1Индикаторная диаграмма. Цикл Отто и цикл Аткинсона

Схема работы автомобиля с гибридным двигателем на примереToyotaPrius

Для начала движения необходимо нажать на тормоз -- иначе не тронуться с места. Переводим расположенный на руле селектор трансмиссии в положение Drive, нажимаем на педаль газа. И Prius с выключенным двигателем бесшумно трогается с места -- пока только на батареях и электромоторе. Точно так же он ездит задним ходом.

Никакого переключения передач -- просто электродвигатель вращается в другую сторону. Причем усилитель рулевого управления уже наготове -- он с электроприводом и включается при каждом повороте руля. А при движении попрямой он выключен, что позволяет экономить энергию.

Рис.2 Поток крутящего момента и электроэнергии при старте и движении с малой скоростью

Разогнались до скорости 16 км/ч -- и вдруг сам по себе запустился двигатель. Сразу переключилась схема на дисплее -- крутящий момент от двигателя пошел на колеса и на генератор, а от него к электромотору и опять на колеса. Как же так: ни сцепления, ни коробки передач нет, а двигатель во время движения то стоит, то набирает обороты? Дело в том, что хитро рассчитанная комбинация планетарной передачи, электромотора и генератора работает как бесступенчатая трансмиссия, как электромеханический вариатор. Собственно, для этого и понадобился отдельный генератор -- иначе пришлось бы городить огород с "автоматом" илис клиноременным вариатором. А это дополнительный вес и механические потери.

Рис. 3 Поток крутящего момента и электроэнергии прималых и средних нагрузках

При добавлении газа гибрид "задумался", словно автомобиль с обычным "автоматом", через секунду-полторы взревел двигателем -- и Prius с ростом оборотов мотора начал бодренько набирать скорость. В режиме малых и средних нагрузок мы ехали, частично или полностью используя только 58 лошадиных сил двигателя. Просто треть его энергии переводилась в электричество и через электромотор снова суммировалась с основным потоком. А теперь, при интенсивном разгоне, к нему на помощь приходит энергия от батарей, и общая мощность силового агрегата (двигатель плюс свободная часть мощности электромотора) составляет 88 лошадиных сил.Конечно, спортивного азарта ждать не приходится, но к концу прямика скоростного кольца на дисплее спидометра запрыгали немаленькие цифры: 125, 130 км/ч.

Рис. 4 Поток крутящего момента и электроэнергии при полной нагрузке

Близится поворот. Сбрасываем газ, и Prius начинает потихоньку снижать скорость. Да не просто так, а с пользой для дела: электромотор переключился в режим генератора и рекуперирует энергию -- закачивает ее обратно в подсаженные во время старта и разгона батареи. Нажимаем на тормозную педаль -- электроника включает режим рекуперации на полную 30-киловаттную катушку, а оставшуюся долю энергии интенсивного торможения оставляет пропадать зря, рассеиваясь в виде тепла от вентилируемых дисков обычной гидравлической тормозной системы. Тормозим до полной остановки, и мотор сразу же глохнет.Но тут электроника спохватывается. И двигатель вновь сам собой запускается, подзаряжая уставшие аккумуляторы.

Рис. 5 Поток крутящего момента и электроэнергии при рекуперативном торможении

Преимущества.Высокая экономичность, как следствие -- экономия расходов на бензин и необходимость реже заезжать на заправку.

§ Низкий уровень загрязнения атмосферы. Частично это следствие экономичности (чем меньше сжигается топлива, тем меньше вредных выбросов), а частично -- выключения двигателя на остановках, когда в атмосферу попадают особенно вредные для здоровья людей газы. Согласно сайту autolook.ru, «по сравнению с традиционным автомобилем Приус выбрасывает в атмосферу на 85 % меньше несгоревших углеводородов СnНm и окислов азота NOx».

§ Низкий уровень шума, по нескольким причинам:

§ Во время остановок двигатель выключается

§ Вместе с бензиновым двигателем, а иногда и вместо него, работает более тихий электродвигатель

§ Отличная динамика:

§ тяговый электродвигатель всегда выдает максимальный крутящий момент

§ отсутствие КПП как таковой (используется планетарная передача)

§ Высокий уровень безопасности для водителя и пассажиров, по нескольким причинам:

§ Две независимые системы торможения -- рекуперативная и фрикционная

§ Машина тяжёлая (1240 кг)

§ Высокие результаты краш-тестов для водителя и пассажиров

§ Электронный ключ зажигания.

Недостатки

§ Более высокая цена, чем у обычных автомобилей того же класса. Во многих странах, однако, высокая цена частично компенсируется налоговыми льготами. Кроме того, разницу в ценах частично или полностью компенсирует экономия бензина.

§ Существует мнение, что бесшумность машины может быть опасной для слепых или невнимательных пешеходов.

§ Автомобиль не рекомендуется оставлять без движения на срок более 3 месяцев из-за возможной разрядки аккумуляторов.

§ Малое количество специалистов по ремонту и автосервисов, ремонтирующих гибридные автомобили.

§ При отрицательных температурах достоинства гибридного привода могут теряться, т.к. двигатель внутреннего сгорания работает почти всегда, вырабатывая энергию для обогрева салона, если он включен.

§ Высокая динамика достижима лишь на малых скоростях, так как при высоких скоростях вся нагрузка приходится на маломощный двигатель внутреннего сгорания.

Критика.

Некоторые считают, что в будущем возникнет проблема утилизации использованных аккумуляторов, как уже сейчас существует проблема их «грязного» производства. Однако Тойота (и Хонда) взяли на себя обязательство утилизировать использованные аккумуляторы; более того, они не только принимают использованные аккумуляторы, но и платят за каждый по $200.

В Topgear Джереми Кларксон критиковал Prius за то что она не так экономична и не экологична, так как поставка и переработка всех компонентов автомобиля, в частности аккумуляторных батарей оставляет слишком большой экологический след. На треке BMW M3 и ToyotaPrius сделали одновременно 10 кругов со скоростью 60 км/ч. BMW M3 следовал за ToyotaPrius. Экономичней оказалась BMW с пробегом 19,4 мили на галлон бензина, в то время как пробег Prius составил 17.2 миль на галлон бензина.

Заключение

Итак, мы видим, что двигатели внутреннего сгорания - очень сложный механизм. И функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы - вся их работа основана на использовании теплового расширении газов. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности.

Я думаю, что со временем ДВС будут совершенствоваться, и неважно какими они будут: гибридными или водородными, самое главное, по моему мнению, чтобы они были экологичными.

Список литературы

1. http://it-day.ru/technics/65-dvs.html

2. http://avtoshar.ru

3. http://www.autoreview.ru/novinki/n21/elektro2.htm

4. http://www.5koleso.ru

5. http://autopeople.ru

6. http://ru.wikipedia.org/wiki/Toyota_Prius

Размещено на Allbest.ru


Подобные документы

  • Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.

    творческая работа [925,7 K], добавлен 06.03.2008

  • Двигатели внутреннего сгорания (ДВС) широко применяются во всех областях народного хозяйства и являются практически единственным источником энергии в автомобилях. Расчет рабочего цикла, динамики, деталей и систем двигателей внутреннего сгорания.

    курсовая работа [2,5 M], добавлен 07.03.2008

  • Принцип действия двигателей внутреннего сгорания. Мощность механических потерь. Удельный индикаторный расход топлива. Подача воздушной смеси с помощью дросселя. Перспективы развития двигателестроения. Механические потери в современных двигателях.

    реферат [2,4 M], добавлен 29.01.2012

  • Устройство деталей кривошипно-шатунного механизма двигателя ЗИЛ-508.10 автомобиля ЗИЛ-4314.10. Принцип работы карбюратора К-90 на режиме частичных нагрузок, схема путей топлива, воздуха и эмульсии. Описание процесса расширения в действительном цикле.

    контрольная работа [1,4 M], добавлен 12.11.2013

  • Бензин, газ и дизельное топливо как основные топлива для автомобильных двигателей внутреннего сгорания. Характеристика бензина, который является продуктом перегонки нефти. Метан, являющийся основным компонентом природных газов. Характеристика карбюратора.

    курсовая работа [66,9 K], добавлен 10.02.2011

  • Понятия датчика и датчиковой аппаратуры. Диагностика электронной системы управления двигателем. Описание принципа работы датчика дроссельной заслонки двигателя внутреннего сгорания. Выбор и обоснование типа устройства, произведение патентный поиска.

    курсовая работа [3,4 M], добавлен 13.10.2014

  • Модель управления бензиновым двигателем внутреннего сгорания, экологические требования к нему. Датчик кислорода или концентрации кислорода в выпускной системе. Принцип работы системы зажигания и впрыска. Принцип работы электромагнитной форсунки.

    реферат [1,9 M], добавлен 08.01.2014

  • Техническая характеристика двигателя внутреннего сгорания. Тепловой расчет рабочего цикла и свойства рабочего тела. Процессы выпуска, сжатия, сгорания, расширения и проверка точности выбора температуры остаточных газов, построение индикаторной диаграммы.

    курсовая работа [874,5 K], добавлен 09.09.2011

  • Классификация судовых двигателей внутреннего сгорания, их маркировка. Обобщённый идеальный цикл поршневых двигателей и термодинамический коэффициент различных циклов. Термохимия процесса сгорания. Кинематика и динамика кривошипно-шатунного механизма.

    учебное пособие [2,3 M], добавлен 21.11.2012

  • Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.

    презентация [990,4 K], добавлен 18.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.