Средства технической эксплуатации автомобилей

Характеристика оборудования для покраски автомобильных кузовов, используемого на современном этапе, его разновидности и особенности. Расчёт устройств, используемых для разогрева и подогрева автомобилей в зимних условиях, гидравлического подъемника.

Рубрика Транспорт
Вид контрольная работа
Язык русский
Дата добавления 06.03.2010
Размер файла 150,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

25

1. Оборудование для покраски автомобильных кузовов

Покрасочная камера Beta 6 фирмы SAIMA с внутренней длинной кабины 6.01 м.

Базовая комплектация:

- 3-х створчатые ворота.

- Дополнительная сервисная дверь.

- 2 ряда верхних светильников под 450(по 3 лампы в каждом светильнике, каждая по 30 W)

- Наружное виниловое покрытие синего цвета.

- Внутреннее покрытие белого цвета.

- Тепло генератор с потоком воздуха 18.000 м3/час, с мотором вентилятора 5.5 kW, мощностью горелки 180.000 Kcal, (обеспечивает температуру покраски 2300C при внешней температуре - 100C).

- Дизельная горелка.

- Комплект предварительных фильтров в теплогенераторе, потолочных и напольных фильтров.

- Устанавливается на бетонное основание (чертежи основания предоставляются отдельно)

- Нижние гальванизированные решетки с фильтрами - 2 ряда.

Технические характеристики покрасочной камеры BETA 6:

Внешние размеры покрасочной камеры, мм (длина * ширина * высота)

6130 * 4070 * 3050

Внутренние размеры покрасочной камеры, мм (длина * ширина * высота)

6010 * 3960 * 2550

Максимальная температура сушки, градусов

60

Производительность вентилятора в тепло генераторе, м3

18000

Скорость воздуха в пустой камере, м/сек

0,21

Мощность теплогенератора, кКал

180000

Потребляемая мощность, кВт

7,5

Нагрузка на решетку одного колеса, кг

480

Дополнительные опции:

Полные решетки на полу.

Пять рядов гальванизированных решеток.

Увеличение высоты камеры на 250 мм.

Позволяет красить микроавтобусы с высотой до 2.75 м.

Металлическое основание для малярно-сушильной камеры:

Позволяет производить установку камеры на ровное основание без выполнения вентиляционных каналов в фундаменте.

Имеет пять рядов гальванизированных решеток и заездные рампы.

Технические характеристики металлического основания:

Длина, мм

6130

Ширина, мм

4070

Высота, мм

350

Нагрузка на решетку, кг

480

Более мощные теплогенераторы для работы с красками на водной основе с повышенной скоростью воздуха в камере (обеспечивает температуру покраски 230C при внешней температуре минус 100C).

Технические данные более мощных теплогенераторов:

Производительность вентилятора, м3

22000

24000

26000

Скорость воздуха в пустой камере м/сек

0.26

0.28

0.3

Потребляемая мощность, кВт

7,5

2*4

19.5

Тепловая мощность, кВт

180000 кКал

240000 кКал

300 kW

Дополнительный вытяжной агрегат SimpleBox.

Позволяет уменьшить избыточное давление в камере и обеспечивает более длительный срок использования нижних фильтров при их загрязнении.

Технические характеристики дополнительного вытяжного агрегата

Производительность вентилятора, м3

20000

24000

26000

Потребляемая мощность, кВт

7.5

8

9.2

Система автоматической регулировки давления в покрасочной камере. 90% рециркуляция воздуха в режиме сушки.

Позволяет осуществить режим 90% рециркуляции в режиме сушки, что значительно сокращает время выхода на заданную температуру и экономит расход топлива.

Газовая горелка.

Двухступенчатая дизельная или двухступенчатая газовая горелка.

Позволяет сократить время выхода на заданную температуру в режимах покраски и сушки.

Аварийная отсечка пламени.

Дополнительная заслонка для локализации огня в случае возникновения пожара.

Измеритель давления в покрасочной камере KIMO sensor.

Показывает давление в камере с помощью водяного манометра.

Измеритель давления в покрасочной камере - манометр MAGNELIC.

Показывает давление в камере с стрелочного манометра.

Покрасочная камера Beta 6.6 фирмы SAIMA с внутренней длинной кабины 6.61 м

Базовая комплектация:

- 3-х створчатые ворота.

- Дополнительная сервисная дверь.

- 2 ряда верхних светильников под 450(по 4 лампы в каждом светильнике, каждая по 30 W)

- Наружное виниловое покрытие синего цвета.

- Внутреннее покрытие белого цвета.

- Теплогенератор с потоком воздуха 26.000 м3/час, с мотором вентилятора 18.9 kW, тепловая мощность 300 kW (обеспечивает температуру покраски 230C при внешней температуре - 100C).

- Дизельная горелка.

- Вытяжной вентилятор ECO12, 26.000 м3/час с мотором 9.2 kW

- Комплект предварительных фильтров в теплогенераторе, потолочных и напольных фильтров.

- Устанавливается на бетонное основание (чертежи основания предоставляются отдельно).

- Нижние гальванизированные решетки с фильтрами - 2 ряда.

Технические характеристики покрасочной камеры BETA 6.6:

Внешние размеры покрасочной камеры, мм (длина * ширина * высота)

6730 * 4070 * 3050

Внутренние размеры покрасочной камеры, мм (длина * ширина * высота)

6610 * 3960 * 2550

Максимальная температура сушки, градусов

60

Производительность вентилятора в тепло генераторе, м3

26000

Производительность вытяжного вентилятора, м3

26000

Скорость воздуха в пустой камере, м/сек

0,27

Мощность тепло генератора, kW

300

Потребляемая электрическая мощность, кВт

30

Нагрузка на решетку одного колеса, кг

480

Дополнительные опции:

Полные решетки на полу.

Пять рядов гальванизированных решеток.

Увеличение высоты камеры на 250 мм.

Позволяет красить микроавтобусы с высотой до 2.75 м.

Металлическое основание для малярно-сушильной камеры:

Позволяет производить установку камеры на ровное основание без выполнения вентиляционных каналов в фундаменте.

Имеет пять рядов гальванизированных решеток и заездные рампы.

Технические характеристики металлического основания:

Длина, мм

6730

Ширина, мм

4070

Высота, мм

350

Нагрузка на решетку, кг

480

Более мощный теплогенератор.

Для работы с красками на водной основе с повышенной скоростью воздуха в камере (обеспечивает температуру покраски 230C при внешней температуре - 100C).

Технические данные более мощного теплогенератора:

Технические данные более мощного теплогенератора

Производительность вентилятора, м3

28000

Скорость воздуха в пустой камере м/сек

0.3

Потребляемая мощность, кВт

16,5

Тепловая мощность, кВт

330 kW

Более мощный вытяжной агрегат SimpleBox

Позволяет уменьшить избыточное давление в камере и обеспечивает более длительный срок использования нижних фильтров при их загрязнении.

Технические характеристики более мощного вытяжного агрегата

Производительность вентилятора, м3

28000

Потребляемая мощность, кВт

8

Система автоматической регулировки давления в покрасочной камере

90% рециркуляция воздуха в режиме сушки.

Позволяет осуществить режим 90% рециркуляции в режиме сушки, что значительно сокращает время выхода на заданную температуру и экономит расход топлива.

Газовая горелка.

Двухступенчатая дизельная или двухступенчатая газовая горелка.

Позволяет сократить время выхода на заданную температуру в режимах покраски и сушки.

Аварийная отсечка пламени.

Дополнительная заслонка для локализации огня в случае возникновения пожара в тепло генераторе.

Измеритель давления в покрасочной камере KIMO sensor.

Показывает давление в камере с помощью водяного манометра.

Измеритель давления в покрасочной камере - манометр MAGNELIC.

Показывает давление в камере с стрелочного манометра.

Покрасочная камера Beta 7 фирмы SAIMA с внутренней длинной кабины 7.21 м

Базовая комплектация:

- 3-х створчатые ворота.

- Дополнительная сервисная дверь.

- 2 ряда верхних светильников под 450(по 3 лампы в каждом светильнике, каждая по 30 W)

- Наружное виниловое покрытие синего цвета.

- Внутреннее покрытие белого цвета.

- Теплогенератор с потоком воздуха 20.000 м3/час, с мотором вентилятора 7.5 kW, мощностью горелки 180.000 Kcal (обеспечивает температуру покраски 230C при внешней температуре - 100C).

- Дизельная горелка.

- Комплект предварительных фильтров в теплогенераторе, потолочных и напольных фильтров.

- Устанавливается на бетонное основание (чертежи основания предоставляются отдельно)

- Нижние гальванизированные решетки - 2 ряда.

Технические характеристики Beta 7

Внешние размеры покрасочной камеры, мм (длина * ширина * высота)

7330 * 4070 * 3050

Внутренние размеры покрасочной камеры, мм (длина * ширина * высота)

7210 * 3960 * 2550

Максимальная температура сушки, градусов

60

Производительность вентилятора в тепло генераторе, м3

20000

Мощность тепло генератора, kW

180000 кКал

Потребляемая электрическая мощность, кВт

9,5

Нагрузка на решетку одного колеса, кг

480

Дополнительные опции:

Полные решетки на полу.

Пять рядов гальванизированных решеток.

Увеличение высоты камеры на 250 мм

Позволяет красить микроавтобусы с высотой до 2.75 м.

Металлическое основание для малярно-сушильной камеры:

Позволяет производить установку камеры на ровное основание без выполнения вентиляционных каналов в фундаменте.

Имеет пять рядов гальванизированных решеток и заездные рампы.

Технические характеристики металлического основания

Длина, мм

7330

Ширина, мм

4070

Высота, мм

350

Нагрузка на решетку, кг

480

Более мощные теплогенераторы.

Для работы с красками на водной основе (обеспечивают температуру покраски 230C при внешней температуре - 100C).

Технические более мощных теплогенераторов

Производительность вентилятора, м3

24000

28000

30000

Скорость воздуха в пустой камере м/сек

0.23

0.27

0.29

Потребляемая мощность, кВт

2*4

16.5

19.5

Тепловая мощность, кВт

240000 кКал

330 kW

360 kW

Дополнительный вытяжной агрегат SimpleBox.

Позволяет уменьшить избыточное давление в камере и обеспечивает более длительный срок использования нижних фильтров при их загрязнении.

Технические характеристики дополнительного вытяжного агрегата

Производительность вентилятора, м3

20000

24000

28000

30000

Потребляемая мощность, кВт

7.5

8

9.2

11

Система автоматической регулировки давления в покрасочной камере.

90% рециркуляция воздуха в режиме сушки.

Позволяет осуществить режим 90% рециркуляции в режиме сушки, что значительно сокращает время выхода на заданную температуру и экономит расход топлива.

Двухступенчатая дизельная или двухступенчатая газовая горелка.

Позволяет сократить время выхода на заданную температуру в режимах покраски и сушки.

Аварийная отсечка пламени.

Дополнительная заслонка для локализации огня в случае возникновения пожара.

Измеритель давления в покрасочной камере KIMO sensor.

Показывает давление в камере с помощью водяного манометра.

Измеритель давления в покрасочной камере - манометр MAGNELIC.

Показывает давление в камере с стрелочного манометра.

Покрасочная камера Gamma 7 фирмы SAIMA с внутренней длинной кабины 7.21 м

Базовая комплектация:

- 4-х створчатые полностью раскрываемые ворота.

- Дополнительная сервисная дверь

- 2 ряда верхних светильников под 450по 3 лампы, каждая 30 W.

- 2 ряда нижних боковых светильников по 3 лампы, каждая 30 W.

- Наружное виниловое покрытие синего цвета.

- Внутреннее покрытие белого цвета

- Тепло генератор 23.000 м3/час с мотором вентилятора 2*4 kW, мощность горелки 240.000 Kcal, (обеспечивает температуру покраски 230C при внешней температуре - 100C)

- Дизельная горелка.

- Комплект предварительных фильтров в теплогенераторе, потолочных и напольных фильтров.

- Устанавливается на бетонное основание (чертежи основания предоставляются отдельно).

- Гальванизированные решетки - 2 ряда.

Технические характеристики камеры GAMMA

Внешние размеры покрасочной камеры, мм (длина * ширина * высота)

7330 * 4070 * 3050

Внутренние размеры покрасочной камеры, мм (длина * ширина * высота)

7210 * 3960 * 2550

Максимальная температура сушки, градусов

80

Производительность вентилятора в тепло генераторе, м3

23000

Мощность тепло генератора, kW

240000

Потребляемая электрическая мощность, кВт

11

Нагрузка на решетку одного колеса, кг

480

Дополнительные опции:

Металлическое основание для покрасочной камеры:

Позволяет производить установку камеры на ровное основание без выполнения вентиляционных каналов в фундаменте

Пять рядов гальванизированных решеток и заездные рампы.

Технические характеристики металлического основания

Длина, мм

7330

Ширина, мм

4070

Высота, мм

350

Нагрузка на решетку, кг

480

Более мощные теплогенераторы.

Для работы с красками на водной основе (обеспечивает температуру покраски 230C при внешней температуре -100C).

Технические более мощных теплогенераторов

Производительность вентилятора, м3

28000

30000

Скорость воздуха в пустой камере м/сек

0.27

0.29

Потребляемая мощность, кВт

16.5

19.5

Тепловая мощность, кВт

330 kW

360 kW

Дополнительный вытяжной вентилятор SimpleBox.

Позволяет быстро производить точную регулировку избыточного давления в камере по мере загрязнения фильтров.

Технические характеристики

Производительность вентилятора, м3

24000

28000

30000

Потребляемая мощность, кВт

9.2

11

11

Система автоматической регулировки давления в покрасочной камере.

90% рециркуляция воздуха в режиме сушки

Позволяет осуществить режим 90% рециркуляции в режиме сушки, что значительно сокращает время выхода на заданную температуру и экономит расход топлива.

Двухступенчатая дизельная или двухступенчатая газовая горелка.

Позволяет сократить время выхода на заданную температуру в режимах покраски и сушки

Аварийная отсечка пламени.

Дополнительная заслонка для локализации огня в случае возникновения пожара в тепло генераторе.

Измеритель давления в покрасочной камере KIMO sensor.

Показывает давление в камере с помощью водяного манометра

Измеритель давления в покрасочной камере - манометр MAGNELIC.

Показывает давление в камере с стрелочного манометра.

Окрасочные камеры для грузовиковFBK 15000

Внутренние размеры:

Длина

15.000 мм

Ширина

5000 мм

Высота

4970 мм

Внешние размеры:

Длина

15.200 мм

Ширина

5120 мм

Высота

5600 мм

Мощность вентилятора всасывания

10 к.с.* 2

Мощность вентилятора вытяжки

10 к.с.* 2

Двигатель сушки

-

Производительность вентилятора всасывания

24.000 м3/ч * 2

Производительность вентилятора вытяжки

24.000 м3/ч * 2

Вентилятор сушки

-

Мощность горелки

250.000 Ккал / ч * 2

Максимальные температуры сушки

600С / 800С

Освещение

160*40 Ват

Общая мощность

45 КВат

В данную камеру включена полная комплектация камеры:

- трехстворчатая въездная дверь с встроенной сервисной дверью

- металлическое основание для установки камеры на ровный пол

- две линии металлических решетчатых секций

- система рециркуляции в режиме сушки

- теплогенераторная группа

- экс тракторная группа

- манометр внутреннего давления

- малярный кронштейн и столик

- освещение 24*40 Ватт

Дополнительные опции:

- дополнительный нижний пояс освещения

- замена дизельной горелки 237 кВт до 307 кВт

- комплект агрегатной группы производительностью18000 м3/ч с пультом управления

- комплект агрегатной группы производительностью 24000 м3/ч с пультом управления.

Окрасочные камеры для вагонов.FBK 30000

Внутренние размеры:

Длина

30.000 мм

Ширина

6000 мм

Высота

6000 мм

Внешние размеры:

Длина

30.200 мм

Ширина

6120 мм

Высота

6600 мм

Мощность вентилятора всасывания

5 kwt. * 8

Мощность вентилятора вытяжки

5 kwt. * 8

Производительность вентилятора всасывания

144.000 м3

Производительность вентилятора вытяжки

144.000 м3

Мощность горелки

250.000 Ккал / ч * 4

Освещение

42*4*36 Ват верхнее 6048 w

50*3*18 Ват нижнее 2700 w

Общая мощность

110 КВат

В данную камеру включена полная комплектация камеры:

- трехстворчатая въездная дверь с встроенной сервисной дверью

- металлическое основание для установки камеры на ровный пол

- две линии металлических решетчатых секций

- система рециркуляции в режиме сушки

- теплогенераторная группа

- экс тракторная группа

- манометр внутреннего давления

- малярный кронштейн и столик

- освещение 24*40 Ватт

Дополнительные опции:

- дополнительный нижний пояс освещения

- замена дизельной горелки 237 кВт до 307 кВт

- комплект агрегатной группы производительностью 18000 м3/ч с пультом управления

- комплект агрегатной группы производительностью 24000 м3/ч с пультом управления

Покрасочные камеры для автобусов FBK 15000

Внутренние размеры:

Длина

15.000 мм

Ширина

5000 мм

Высота

4970 мм

Внешние размеры:

Длина

15.200 мм

Ширина

5120 мм

Высота

5600 мм

Мощность вентилятора всасывания

10 к.с.* 2

Мощность вентилятора вытяжки

10 к.с.* 2

Производительность вентилятора всасывания

24.000 м3

Производительность вентилятора вытяжки

24.000 м3

Мощность горелки

250.000 Ккал / ч * 2

Максимальные температуры сушки

600С / 800С

Освещение

160*40 Ват

Общая мощность

45КВат

В данную камеру включена полная комплектация камеры:

- трехстворчатая въездная дверь с встроенной сервисной дверью

- металлическое основание для установки камеры на ровный пол

- две линии металлических решетчатых секций

- система рециркуляции в режиме сушки

- теплогенераторная группа

- экс тракторная группа

- манометр внутреннего давления

- малярный кронштейн и столик

- освещение 24*40 Ватт

Дополнительные опции:

- дополнительный нижний пояс освещения

- замена дизельной горелки 237 кВт до 307 кВт

- комплект агрегатной группы производительностью18000 м3/ч с пультом управления

- комплект агрегатной группы производительностью 24000 м3/ч с пультом управления

2. Расчёт гидравлического подъёмника

2.1 Исходные данные

- грузоподъёмность - 3160 кг.

- количество стоек подъёмника - 4

- высота подъёма автомобиля - 1,6 м.

- время подъёма автомобиля - 1,8 мин.

Грузоподъёмность подъёмника определяется массой автомобилей, которые предполагается обслуживать на данном оборудовании.

В зависимости от количества стоек изменяются размеры плунжера.

Давление рабочей жидкости рекомендуется использовать 1,0 Мпа.

Высота подъёма плунжера назначается удобством доступа к агрегатам и узлам автомобиля во время его обслуживания и ремонта.

Чем меньше время подъёма автомобиля, тем выше производительность труда, но одновременно с этим увеличивается мощность двигателя.

2.2 Расчёт отдельных элементов подъёмника

Требуется разработать четырёх стоечный подъёмник на котором предполагается обслуживать автомобиль ПАЗ - 37421. Масса данного автомобиля в снаряжённом состоянии составляет 4627 кг. (НИИАТ). На переднюю ось автомобиля приходится масса - 2027 кг, на задние - 2600 кг. Поскольку целесообразно размеры стоек проектировать одинаковыми, то грузоподъёмность одной стойки будет определяться массой автомобиля, приходящейся на заднюю ось.

2.2.1 Геометрические параметры плунжера

Грузоподъёмность одной стойки рассчитывается по формуле:

GП = 10-3КЗМЗg (2.1),

где КЗ - коэффициент запаса грузоподъёмности, КЗ = 1,2; МЗ - масса автомобиля, приходящаяся на заднюю ось, кг; g - ускорение свободного падения.

GП = 10-3 * 1,2 * 2600 * 9,81 = 30,61 кН.

Если известна грузоподъёмность и давление рабочей жидкости, то можно определить необходимую площадь и диаметр плунжера:

GП = pf (2.2),

где p - давление рабочей жидкости, f - площадь поперечного разреза плунжера.

GП = 1,0 * f??

Диаметр плунжера:

d = 2 (2.3),

где 103 - коэффициент, необходимый для перевода давления, выраженного через Мпа в кПА.

d = 2 = 0,197 кПА.

2.2.2 Расчёт производительности насоса

Производительность насоса, который обслуживает подъёмник, определяется объёмом, который занимают плунжеры подъёмника при перемещениях из крайнего нижнего положения в крайнее верхнее положение и временем, за которое эти перемещения происходят:

QН = 6 * 104 * h * m, (2.4)

где h - высота подъёма, м; ? - время подъёма, с; m - количество стоек подъёмника.

Коэффициент 6 * 104 переводит м3/с в л/мин.

QН = 6 * 104 * 1,6 * 4 = 108,320 л/мин.

По известной производительности выбирается конкретная модель насоса. Чаще используются шестерёнчатые насосы. Если существующие насосы не отвечают требованиям, то рассчитывают его геометрические размеры, а на их основе разрабатывают конструкцию насоса.

2.3 Расчёт геометрических параметров шестерёнчатого насоса

Действительная производительность насоса отличается от геометрической благодаря перетеканию масла из областей повышенного давления в область пониженного давления:

QГ = (2.5)

где ?v - объёмный коэффициент подачи, ?v = 0,7…0,82

QГ = = 135,4

Геометрическая производительность насоса связана с его геометрическими размерами зависимостью:

QГ = 2 * ? * mZ2 * z * b * n * 10-6 (2.6)

где mZ2 - модуль зуба шестерни, мм; z - число зубьев шестерни; n - частота вращения шестерён, мин-1; b - ширина шестерни или длины зуба, мм.

QГ = 2 * 3,14 * 32 * 10 * 2500 * 0,000001 * 10-6 = 1,413

Приняв частоту вращения шестерни (2500 мин-1), можно определить диаметр начального колеса шестерни при условии, что линейная скорость V ? 8 м/с. Это гарантирует отсутствие кавитации при работе насоса:

d0 ?, (2.7)

d0 ? = 61,15 = 61 мм.

Полученный диаметр округляется до стандартного значения.

Диаметр шестерни связывает между собой число зубьев и модуль:

d0 = m * z (2.8)

d0 = 3 * 15 = 45 и это как и положено <61

В шестерёнчатых насосах используются шестерни с числом зубьев 8…15 и модулем 2…4

Таким образом, можно определить ширину шестерни:

b = (2.9)

b = = 63

Выбор модуля, числа зубьев и окружной скорости можно считать удачным, если находится в пределах 0,8…1,5.

= = 1,4

2.4 Расчёт мощности двигателя

Мощность двигателя для привода насоса можно определить через работу, которую совершает подъёмник и время, за которое он эту работу он совершает, кВт:

N = (2.10)

где ?М - механический коэффициент полезного действия всей системы, ?М= 0,75…0,85.

N = = 2,27 кВт.

По рассчитанной мощности подбирается двигатель.

Вывод: Разработал четырёх стоечныйподъёмник на котором предполагается обслуживать автомобиль ПАЗ-37421. Рассчитал геометрические параметры плунжера, производительность насоса, геометрические параметры шестерёнчатого насоса, и мощности двигателя.

3. Расчёт устройств, используемых для разогрева и подогрева автомобилей в зимних условиях

Цель работы: ознакомиться с устройством и принципом действия устройств для разогрева и подогрева автомобильных двигателей в холодное время года; определить основные параметры данных установок.

3.1 Водообогрев и парообогрев

Одним из широко распространённых способов подогрева или разогрева автомобильных двигателей при низких температурах является водо - или парообогрев. Для осуществления водообогрева необходимы устройства для нагрева воды или источники пара. К устройствам для нагрева воды относятся водогрейные и паровые котлы низкого давления, бойлеры, баки, в которых нагрев осуществляется паром, или электронагревательные котлы типа НР.

3.2 Определение расчётного количества тепла

Для определения расчётного количества тепла, которое необходимо получить в установке, за основу принимают следующие уравнения.

Суммарные затраты в течение всего времени подогрева или разогрева определяется по формуле:

Q = q * N * ?,

где q - необходимая тепло производительность источника теплоты на один автомобиль, Вт; ? - время, в течение которого подводится тепло, ч.; N - число обогреваемых автомобилей.

Расчётная теплопроизводительность установки:

qрас = 1,2 + qпот,

qрас = 1,2 * + 1856 = 2396,

где 1,2 - опытный коэффициент, учитывающий нагрев металла составных частей установки; qпот - суммарные потери тепла в единицу времени в окружающую среду от всех составных частей установки, Вт.

Для определения потерь теплоты каждым тепловым аппаратом применяется выражение:

qпот = К1 * Fст * (tж - tв),

qпот = 1,16 * 40 * (95 - 20) = 1856,

где К1 - коэффициент теплопередачи от жидкости через стенку теплообменника в воздух (для нагревателей с теплоизоляцией принимают К1 = 1,16 Вт/м2*0С; без теплоизоляции К1 = 5,8 - 11,6 Вт/м2*0С); tж и tв - средняя температура нагретой жидкости и температура воздуха в помещении, где установлен теплообменник; при расчёте принимают tв = 200С; Fст - поверхность наружных стенок теплообменника, м2.

Если данных о размерах теплообменника нет, то для ориентировочных расчётов можно задаться следующей величиной - на каждые 4200 Дж тепла, идущего на подогрев или разогрев двигателя, приходится 0,04 - 0,06 м2 поверхности теплообменника. При этом потери тепла в трубах при достаточно хорошей изоляции могут не учитываться.

Если источник тепла предназначен не только для подогрева (разогрева) автомобилей, но и для отопления помещения, следует это учесть, соответственно увеличив qрасч.

3.3. Расчёт теплотехнических данных установки, водогрейные и паровые котлы

Зная расчётную тепло производительность установки, можно определить необходимое количество котлов.

Для определения количества паровых котлов необходимо найти количество пара, соответствующее расчётной тепло производительности установки:

Драс = ,

Драс = = 0,895,

где in - теплосодержание пара, кДж/кг (для котлов низкого давления - p = 7 кПа - можно принимать in = 2680 кДж/кг); iк - теплосодержание конденсата (его принимают равным 4,19 кДж/кг).

Суммарная поверхность нагрева котлов определяется из выражения, м2:

? Нк = 1,1 ,

? Нк = 1,1 = 0,05,

где Д640 / Нк - тепловое напряжение поверхности нагрева котла по нормальному пару (для котлов низкого давления Д640 / Нк = 17,5…21 Вт/м2); 1,1 - коэффициент запаса.

Необходимое количество паровых котлов:

n= ,

Нк = 0,05 / 3 = 0,016, следовательно

n = = 3 шт.,

где Нк - поверхность нагрева котла, выбираемая по техническим характеристикам.

В состав установки рекомендуется включать не менее двух котлов, чтобы в случае выхода из строя или ремонта одного из них котельная не прекращала работу.

Расход топлива в котельной находят по выражению:

? Вк = ,

? Вк = = 0,98,

где ? - расчётный КПД котельной установки (для котлов низкого давления ? = 0,60…0,65); Qнр - низшая теплотворная способность топлива, кДж/кг (принимают: для каменного угля - 27000; для мазута - 39400).

Нормы расхода топлива устанавливаются обычно в единицах условного топлива, т.е. такого топлива, низшая теплотворная способность которого приблизительно равна 30000 кДж/кг. 1 кг любого топлива, имеющего теплотворную способность Qнр кДж, эквивалент Qнр / 30000 кг условного топлива.

Площадь поперечного сечения дымовых труб в зависимости от их высоты: при 10 м - 0,18 м2; при 15 м - 0,19…0,27 м2; при 20 м - 0,38…0,53 м2.

Целью расчёта теплообменников: является определение поверхности нагрева и подбор теплоизоляции.

Поверхность нагрева теплообменника:

F= ,

F = =,

где Q - расчётное количество тепла, необходимое для нагрева воды (пара), Дж; qпот - тепло потери данного теплообменника, Вт; К - коэффициент теплопередачи от теплоносителя через стенку к нагреваемой жидкости, Вт/м20С; ?t - средний перепад температур - разность между средними арифметическими температурами (теплоносителя и жидкости), 0С.

При паровом способе нагрева:

?t = + ,

где tnиtк - температура пара и конденсата соответственно, 0С; t1иt2 - температуры входящей и выходящей нагреваемой жидкости, 0С, при водяном способе нагрева:

?t = - ,

где tв.вх и tв.вых - температура входа и выхода воды, 0С.

Подбор теплоизоляции проводится из условия:

? 1,0

где ?1, ?2,?3,…?n - толщина каждого из слоёв изоляции; ?1,?2,?3,… ?n - коэффициенты тепло проводимости соответствующей теплоизоляции, Вт/(м*0С).

Величины коэффициентов теплопередачи выбирают по теплотехническим справочникам.

Вывод: ознакомился с устройством и принципом действия устройств для разогрева и подогрева автомобильных двигателей в холодное время года; определил основные параметры данных установок.

Вывод

В данной контрольной работе я закрепил практические знания, полученные при изучении курса «Проектирование средств технической эксплуатации автомобилей». Развил навыки и умение при решении практических задач.

Список используемой литературы

1. Говорущенко Н.Я. Системотехника проектирования транспортных машин / Н.Я. Говорущенко, А.Н. Туренко. - Харьков: ХНАДУ, 2002. - 166 с.

2. Завьялов С.Н. Организация механизированной мойки автомобилей и оборотного водоснабжения / С.Н. Завьялов. - М.: Транспорт, 1987. - 126 с.

3. Теоретико-экспериментальное исследование параметров струйных моечных установок. - М.: МАДИ, 1989. - 170 с.


Подобные документы

  • Методика разработки подъемника гидравлического 2-х стоечного, предназначенного для ремонта и обслуживания автомобилей, его конструкция и техническое обслуживание. Охрана труда и экологическая безопасность при эксплуатации гидравлического подъемника.

    курсовая работа [308,5 K], добавлен 12.03.2010

  • Устройство и маркировка автомобильных шин. Конструкция колес легковых автомобилей. Взаимодействие шин с дорогой. Долговечность, износостойкость и дисбаланс шин. Ремонт покрышек в условиях автопредприятия. Эксплуатация зимних шин на грузовых автомобилях.

    курсовая работа [2,4 M], добавлен 13.05.2011

  • Сведения об устройстве современных автомобильных кузовов. Кузова легковых автомобилей. Предназначение, строение и работа. Особенности эксплуатации. Структура технологического процесса ремонта кузовов. Основные неисправности. Элементы и приспособления.

    дипломная работа [2,2 M], добавлен 31.07.2008

  • Основные принципы запуска двигателя. Особенности использования различных видов масел. Особенности технического обслуживания автомобилей в зимних условиях. Исследование отказов автомобилей. Расчет и построение динамической характеристики автомобиля.

    дипломная работа [39,8 M], добавлен 18.06.2011

  • Характерные дефекты кузовов и кабин. Ремонт неметаллических деталей кузовов. Подготовка к покраске, покраска и инструменты для покраски. Пескоструйная обработка. Восстановительная, защитная полировка кузова, локальная покраска. Антикоррозийные материалы.

    курсовая работа [3,6 M], добавлен 03.11.2013

  • Характеристика условий безгаражного хранения автомобилей в различных климатических зонах. Распределение среднесуточных температур в году. Особенности безгаражного хранения автомобилей в зимних условиях. Влияние низких температур на надежность автомобиля.

    курсовая работа [2,4 M], добавлен 18.04.2012

  • Дефекты кузовов и кабин. Технологический процесс ремонта кузовов и кабин. Ремонт неметаллических деталей кузовов. Качество ремонта автомобилей. Незначительные прогибы на пологих лекальных поверхностях, видимые при боковом освещении. Вмятины.

    курсовая работа [1,6 M], добавлен 04.05.2004

  • Основы обеспечения качества и надежности автомобилей в процессе их эксплуатации. Процессы, приводящие к неисправностям и отказам автомобилей. Качество и надежность автомобильных шин. Роль сферы сервиса в поддержании работоспособности автомобиля.

    учебное пособие [2,1 M], добавлен 29.01.2010

  • Газ, как альтернативное топливо для автомобилей. Общая характеристика газа, как альтернативного топлива для автомобилей. Специфика газобалонного оборудования для автомобилей. Машины на газовом топливе в Европе. Проблемы перевода автомобилей на газ в США.

    дипломная работа [137,2 K], добавлен 23.10.2004

  • Устройство мест стоянки для автомобилей. Нормативные требования к потребности в автомобильных стоянках. Открытые стоянки для временного хранения легковых автомобилей. Оценка местных потребностей. Расстановка автомобилей на стоянках линейного типа.

    реферат [486,9 K], добавлен 26.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.