Судовые вспомогательные механизмы и устройства

Характеристика судовых вспомогательных механизмов и систем как важной части судовой энергетической установки. Классификация судовых насосов, их основные параметры. Судовые вентиляторы и компрессоры. Механизмы рулевых, якорных и швартовных устройств.

Рубрика Транспорт
Вид контрольная работа
Язык русский
Дата добавления 03.07.2015
Размер файла 11,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Перед вскрытием системы необходимо запустить в работу нагнетательный и вытяжной вентиляторы, если они были остановлены. Сразу после вскрытия фреоновых компрессоров, аппаратов и трубопроводов обслуживающий персонал должен на время покинуть помещение, которое необходимо тщательно проветрить. Иногда фреоновую систему приходится вскрывать в рефрижераторных кладовых или в других помещениях, не имеющих искусственной вентиляции. В этом случае следует, вскрыв систему, сначала убедиться в том, что запорные вентили, отсекающие вскрываемое соединение труб, полностью герметичны, затем в открытые концы труб плотно вставить заранее подготовленные деревянные или резиновые пробки, произвести тщательное проветривание помещений с помощью переносных вентиляторов. При соблюдении всех этих условий входить в кладовую, в которой в течение 30 мин и более были разобраны трубы, следует, не закрывая за собой двери, а лучше под наблюдением другого лица и после повторного проветривания помещения. Несчастные случаи, имевшие место на судах с фреоновыми установками из-за невнимания к этим требованиям, вынуждают настаивать на их неукоснительном выполнении.

При осмотре внутренних полостей и аппаратов можно пользоваться только переносными лампами напряжения не выше 12 В или электрическими карманными фонарями. Рефрижераторное отделение должны систематически проветривать.

В связи с тем что при температуре выше 400°С хладон разлагается с выделением фосгена, курить в рефрижераторном отделении запрещается. Использовать галоидную лампу необходимо наиболее короткое время. Перед тем "как пользоваться лампой, помещение тщательно проветривают.

В рефрижераторном отделении на видном месте должны быть вывешены плакаты с правилами оказания первой помощи при обмораживании, удушье, попадании холодильного агента в глаза. Противогаз, защитные очки, резиновые перчатки и аптечка также должны находиться в удобном месте, желательно в застекленном шкафу на входе в рефрижераторное отделение. Рефрижераторные механики и мотористы должны уметь оказать помощь пострадавшему при удушье, обмораживании, попадании хладона в глаза.

При удушье, вызванном недостатком кислорода в помещении, заполненном газообразным хладоном, необходимо немедленно вынести пострадавшего на свежий воздух. Желательно дать ему кислород. При общей слабости пострадавшего напоить крепким чаем или кофе. В случае прекращения дыхания до прихода врача пострадавшему сделать искусственное дыхание. При попадании жидкого хладона на кожу во избежание обмораживания следует сразу окунуть пораженный участок в воду, имеющую температуру 35-40°С на 5-10 мин, затем, не растирая, осушить кожу полотенцем, смазать мазью Вишневского или пенициллиновой и наложить повязку. Если на коже образовались пузыри, следует, не вскрывая их, наложить мазьевую повязку и направить пострадавшего к врачу. При попадании хладона в глаза необходимо промыть их струей воды комнатной температуры, 2°/оным раствором поваренной соли и 2-4% -ным раствором борной кислоты. Затем закапать в глаза стерильное вазелиновое масло и немедленно обратиться к врачу.

Следует особо подчеркнуть, что ошибочное мнение об относительной безвредности хладона и пренебрежение в связи с этим правилами безопасности труда может привести к трагическим последствиям.

Требования охраны труда в аварийных ситуациях

Основные аварийные ситуации, которые могут возникнуть в ходе эксплуатации холодильных установок:

выброс хладагента (вследствие внезапной неисправности оборудования или в ходе ремонтных работ);

разрушение элементов оборудования и трубопроводов (из-за повышенных давлений, некачественного монтажа, физического износа, несрабатывания приборов защиты);

возгорание (в ходе сварки, пайки);

незапланированное отключение электроэнергии;

выход параметров оборудования за нормативные пределы.

В случае нарушения герметичности холодильной установки нужно немедленно ее остановить, перекрыть запорными вентилями нарушенный участок, включить общую и аварийную вентиляции, вывести людей из помещения, в котором происходит утечка хладагента. В необходимых случаях следует использовать соответствующие фильтрующие и изолирующие противогазы, дыхательные аппараты.

. В случае возникновения пожара следует применить имеющиеся местные средства пожаротушения и сообщить в противопожарную службу (организации или территориальную).

При отклонении параметров режима холодильной установки (давление, температура) от нормативных значений, определяемых документами организации-изготовителя и окружающей средой, до предельно допустимых величин следует немедленно остановить холодильную установку и выявить причины.

При внезапном отключении электроэнергии следует в условиях аварийного освещения перевести холодильную установку в нерабочее состояние (переключением соответствующих приборов, арматуры, рубильников, кнопок).

При любых аварийных ситуациях и пожарах необходимо поставить в известность своего непосредственного руководителя и администрацию организации, оказать первую (доврачебную) медицинскую помощь пострадавшим (при удушьи, травмировании, отравлении и т.д.).

Устранение аварийной ситуации производить только после выявления ее причин.

10. Опреснительные установки

Назначение и типы установок.

На современных морских судах пресная вода, необходимая для технических и хозяйственных нужд, вырабатывается путём опреснения забортной воды специальными опреснительными установками. В первом случае опресненная вода используется для охлаждения отдельных механизмов, питания паровых котлов, доливки аккумуляторных батарей; во втором случае - для умывания и мытья экипажа и пассажиров, стирки. а после специального приготовления - для мытья посуды, питья и приготовления пищи.

Известны химические, физические и термические методы опреснения морской воды.

Химический метод применяют при опреснении небольшого количества воды и на флоте используются только в аварийной ситуации. (аварийное снабжение коллективных спасательных средств).

В основу физического метода (обратного осмоса или гиперфильтрации) положено фильтрация воды под большим давлением (около 100-34 кг/см2) через специальные мембраны. При этом происходит задержание ионов растворимых в воде солей на мембранах. Мембраны выполнены в виде пучка полых волокон из триацетата целлюлозы с внутренним диаметром 40 мкм и наружным 85-100 мкм или из металлической фольги облученной тяжелыми ионными пучками в ускорителях этих частиц. Установки конструктивно просты и надежны в работе и поэтому находят все большее применение. Недостатком метода обратного осмоса является относительно быстрая замена мембран или их специальная промывка от солей.

К термическим методам опреснения относят дистилляцию (выпаривание) морской воды.

Если воду довести до кипения, удалять выделяющиеся пары и конденсировать их, то будет вырабатываться дистиллят. Установки, в которых происходит такой процесс, называются испарительными, и они делятся на два типа.

В установке первого типа вода кипит при температуре насыщения, соответствующей давлению внутри испарителя. Такой испаритель называется кипящим.

В установке второго типа вода подогревается в одной секции, а затем подаётся в другую, где давление значительно ниже, вследствие чего она начинает кипеть и превращаться в пар. Такой испаритель называется ваккумным. Процесс испарения при давлении ниже атмосферного имеет много положительных сторон: улучшается теплопередача от греющего пара (воды) к подаваемой забортной воде, уменьшается образование накипи, снижаются потери тепла, увеличивается производительность на единицу массы и объёма испарителя. Испарители этого типа отличаются компактностью и простотой конструкции.

Поэтому в настоящее время на судах с дизельной установкой - теплоходах, наибольшее применение получили вакуумные одноступенчатые утилизационные водоопреснительные установки, использующие тепло охлаждающей пресной воды из ситемы охлаждения главного дизеля.

Широкое применение на судах морского флота нашли опреснительные фирм "АТЛАС", "НИРЕКС"

Рассмотрим устройство и работу установки фирмы "АТЛАС" (Рис45):

конденсатор 6. Греющей средой, как сказано было выше, служит горячая пресная вода из системы охлаждения двигателя. Часть воды с температурой 65-700С пропускается через испаритель 11. В испарителе греющая вода, омывая трубки снаружи отдает часть теплоты для испарения забортной морской воды. Морская вода насосом 8 подается в нижнюю часть испарителя 11 и поступает внутрь трубок. Процесс испарения морской воды происходит при температуре 65-700С вследствие создаваемого в корпусе испарителя вакуума (порядка 93%) с помощью эжектора 7. образовавшийся пар проходит через отбойный щит сепаратора и достигает горизонтального конденсатора. В конденсаторе пар конденсируется и в виде дистиллята отводиться дистиллятным насосом 12 через соленомер 13 и расходомер 15 в танки пресной воды. При превышении солесодержания в дистилляте выше допустимого соленомер через электромагнитный клапан 14 возвращает дистиллят на повторное испарение. Неиспарившаяся морская вода с повышенным содержанием солей (рассол) постоянно откачивается рассольным насосом 9 за борт. Насос забортной воды 8 одновременно подает морскую воду в испаритель и обеспечивает работу вакуумного эжектора 7.

Рис. 45 Схема водоопреснительной установки типа "АТЛАС": 1 - главный двигатель; 2 - терморегулятор; 3 - охладитель пресной воды; 4 - маслоохладитель; 5 - охладитель воздуха; 6 - конденсатор; 7 - эжектор; 8 - насос забортной воды; 9 - рассольный насос; 1 - ротаметр; 11 - испаритель; 12 - дистиллятный насос; 13 - соленомер; 14 - электромагнитный клапан; 15 - расходомер; 16 - насос забортной воды; 17 - насос пресной воды

В одном корпусе установки удачно скомпонованы испаритель 11 и При включении в работу такой установки необходимо учесть, что она начинает работать как охладитель пресного контура системы охлаждения дизеля.

В последние годы получили применение водоопреснительные установки с использованием принципа обратного осмоса - гиперфильтрации. Как было сказано выше он основан на разделении растворов фильтрованием через полупроницаемые мембраны, поры которых пропускают молекулы воды, но не пропускают гидратированные соли или молекулы недиссоциированных соединений. Если в сосуде между пресной и соленой водой поместить полупроницаемую перегородку, способную пропускать воду и задерживать гидратированные ионы растворимых в воде солей, то можно наблюдать, как пресная вода начинает поступать в отсек с соленой водой. Переток чистой воды происходит вследствие разницы концентрации жидкости по обеим сторонам перегородки. Через некоторое время уровень пресной воды станет заметно ниже уровня соленого раствора. Разница уровней после установившегося равновесия характеризует осмотическое давление растворенного вещества. Если создать в соленом растворе давление, превышающее осмотическое, то возникает перетекание молекул пресной воды в направлении, обратном ее естественному движению, т.е. вода из раствора начинает перетекать через перегородку в пресную воду. Такой процесс известен под названием обратного осмоса. Опреснение соленой воды методом обратного осмоса основывается как раз на процессе перетекания молекул чистой воды из раствора при создании давления, превышающего осмотическое, в направлении от раствора к пресной воде через полупроницаемую перегородку. Полупроницаемая перегородка выбирается с таким расчетом, чтобы через ее поры могли проходить молекулы воды, но не могли проходить ионы солей, растворенных в соленой воде. Поскольку ионы солей, в размере примерно в 1,5 раза больше, чем молекулы воды, то это осуществить (в техническом смысле) вполне возможно.

Метод обратного осмоса по сравнению с традиционными методами обладает существенными преимуществами: затраты энергии на процесс относительно невелики, установки конструктивно просты и компактны, их работа мало зависит от колебаний качества исходной воды, для эксплуатации не требуется высококвалифицированного персонала, работа установок может быть легко автоматизирована. Основной особенностью обратного осмоса является практическое отсутствие расхода каких-либо химических реагентов для обработки воды (кислоты, щелочи и др.), если не считать небольших затрат для корректировки рН, ингибирования солеотложений и периодической промывки мембран.

11. Установки по предотвращению загрязнения морской среды

Каждое морское судно является источником загрязнения окружающей среды нефтепродуктами, сточными водами. мусором, пищевыми отходами, выхлопными газами. конвенцией МАРПОЛ 73/78 установлены правовые, организационные и нормативно-технические требования, направленные на предотвращение загрязнения моря с судов.

11.1 Установки очистки нефтесодержащих вод

Из всего разнообразия конструкций сепараторов очистки нефтесодержащих вод "ФРАМ", "ПП МАТИК", "ГИДРОПУР", "САРЕКС", "СОФРАНС", "АКВАМАРИН","ПЕТРИЛИМИНАТОР", "РWО", "ТУРБО" и др. можно выделить общие принципы работы: многоступенчатость очистки; автоматическая работа сепараторов. (По требованию Конвенции МАРПОЛ 73/78 если концентрация нефтепродуктов в очищенной воде превысит 15 мл/л происходит прекращение сброса воды за борт и ее перпуск на повторную очистку.) В настоящее время применяют следующие способы очистки нефтесодержащих вод: остой, коалесценция. коагуляция, флотация, биологические методы. Рассмотрим работу установки "СОФРАНС" (Франция), в которой очистка осуществляется способом отстоя и коалесценции. (Рис.46)

Рис. 46 Схема установки "СОФРАНС"

Насосом 1 НВ подается в установку 2 через приемный патрубок 3. В верхней полости 6 установки происходит отстой НВ, в процессе которого пленочные и капельные нефтепродукты всплывают вверх. Частично очищенная вода проходит через полипропиленовые пластины 8, которые, и являются коалесцирующим материалом.

Внутри пластин мелкие частицы нефтепродуктов укрупняются, и всплывают. Из полипропиленовых пластин вода поступает по трубе 9 в патронный фильтр 7. В нем происходит окончательная очистка. Накопление в верхней части установки нефтепродуктов контролируется датчиками 5, которые через систему управления открывают клапана 4 для сброса нефтепродуктов в шламовую цистерну. В установке используется насос объемного типа с низкой частотой вращения. Применение такого насоса позволяет исключить дополнительное эмульгирование НВ при перекачивании её насосом.

11.2 Установки очистки сточных вод

Хорошо себя зарекомендовали конструкции судовых установок очистки сточных вод:

- Установка типа "БИО-КОМПАКТ"

- Установка типа "Нептуматик"

- Установка типа "Юнекс-Био"

Установки типа "БИО КОМПАКТ"

Установки типа "Био Компакт" фирмы "Дойче Герэтэтау Зальц-коттен" (Германия) работают по технологической схеме продленной аэрации (рис.47). Фекальные и хозяйственно-бытовые воды по трубопроводу 6 поступают в аэротанк первой ступени 15, где перемешиваются и обрабатываются воздухом с помощью аэратора 2. Аэратор 2 расположен в аэротанке асимметрично, чем обеспечивается естественная циркуляция стоков. Воздух на аэраторы подается компрессором 8. Частично окисленные стоки поступают по трубопроводу 3 для последующей обработки в аэротанк второй ступени 1. Избыточный воздух и продукты окисления удаляются по вентиляционной трубе 5

Рис. 47. Принципиальная схема установки "Био Компакт": 1 - аэротанк второй ступени; 2 - аэратор; 3,4 - трубопровод; 5 - вентиляционная труба; 6-трубопровод; 7,14 - аэролифт; 8 - компрессор; 9 - шкафу управления;; 10 - датчики; 11 - насос-дозатор; 12 - камера дезинфекции; 13 - отстойник; 15 - аэротанк первой ступени

Окисленные стоки по трубопроводу 4 подаются в отстойник 13 для осветления. Осевший активный ил возвращается аэролифтом 14 в аэротанк первой ступени 1. Туда же аэролифтом 7 откачиваются всплывшие частицы,

Осветленная вода из отстойника 13 направляется в камеру дезинфекции 12, где обрабатывается хлорсодержащими реагентами. Ввод реагентов в камеру 12 ведется насосом-дозатором 11. Периодическая работа насоса-дозатора 11, откачивающего насоса-измельчителя 16 обеспечивается автоматически. Регулирование уровня в камере 12 осуществляется датчиками 10. Вся система автоматики смонтирована в шкафу управления 9.

11.3 Установки переработки мусора

В соответствии с требованиями Приложения V конвенции МАРПОЛ 73/78 на судне должен быть предусмотрен один из перечисленных видов оборудования по предотвращению загрязнения моря мусором:

Устройства для сбора мусора.

Устройства для обработки мусора.

Установка для сжигания мусора.

Поэтому можно выделить два способа утилизации: сбор и обработка мусора на судне.

Сбор мусора на судах

Количество мусора может быть уменьшено путем повторного использования упаковки. В случаях, когда существует возможность выбора, судовое снабжение следует поставлять в упаковке из материалов иных, чем утилизируемый пластик. Следует рационально использовать расходные материалы с учетом срока их хранения после вскрытия упаковки. Необходимо сводить к минимуму прием на борт судна потенциального мусора, а также образование мусора на борту.

На каждом судне длиной более 12 м должны вывешиваться плакаты, извещающие экипаж судна и пассажиров о требованиях по сбору мусора. Плакаты должны быть написаны на официальном языке государства, под флагом которого плавает судно, и на английском или французском языке, если суда заняты в рейсе к портам или морским терминалам других сторон Конвенции.

Каждое судно валовой вместимостью более 400 и каждое судно, сертифицированное для перевозки более 15 человек, должно иметь и выполнять план операций с мусором. План операций с мусором разрабатывается в соответствии с Руководством, принятым резолюцией МЕРС 70/38 от 10.07.1996 г. В плане должны быть отражены следующие вопросы:

процедуры сбора, хранения, обработки и удаления мусора;

состав судового оборудования для операций с мусором;

мероприятия по уменьшению количества мусора на судне;

ответственное лицо за выполнение плана.

План оформляется на рабочем языке команды судна.

Администрация судна обязана постоянно следить за санитарным состоянием устройств и оборудования для сбора и обработки мусора и своевременно принимать меры по устранению выявленных недостатков.

Устройства по сбору мусора

Для сбора мусора на судне могут быть предусмотрены съемные устройства (контейнеры), мешки, встроенные в корпус мусоронакопительные емкости (бункеры) или бункеры установок для уплотнения мусора.

Устройства для сбора мусора, в которых он должен собираться и храниться, должны быть надежно закрыты, причем на каждом из них должна быть соответствующая маркировка, указывающая вид мусора. Так же они должны размещаться, как правило, в зоне действия судовых грузоподъемных средств для обеспечения возможности погрузки и выгрузки их с учетом удобства сбора мусора. Съемные устройства для сбора мусора должны надежно крепиться к корпусу судну.

Категорически запрещается смешивать пищевые отходы с бытовыми и нефтесодержащими отходами.

Конвенция по защите морской среды района Балтийского моря рекомендует на судах, построенных после 1 октября 1993 г., иметь следующие минимальные емкости для хранения мусора всех категорий.

Объем емкостей для хранения мусора:

При расчете емкости мусоросборников следует руководствоваться национальными санитарными правилами. При подходе к особым районам и другим районам моря, где сброс мусора запрещен, администрация судна обязана оповестить об этом экипаж и пассажиров. Все средства для сбора периодически сбрасываемого в море мусора должны быть заблаговременно опорожнены и приготовлены для приема мусора. 1

Выбор ёмкостей, включая необходимые объемы судовых накопительных цистерн и контейнеров, а также устройств, сосредоточенных в портах, зависит от многих факторов, но в первую очередь от класса, типа судна и условий эксплуатации (район плавания, длительность рейса между заходами в порты). Естественно, что для судов, совершающих короткие рейсы, существует возможность один раз в 2.3 дня передавать отходы на берег, достаточно простейших накопительных устройств.

Данный способ применяют в том случае, когда необходимое оборудование есть и на судне, и в порту, в который намечено передать отходы. На судне должны быть прежде всего контейнеры, размещенные, как правило, на корме, а в портах - суда-сборщики, специализированные причалы, машины-мусоросборщики, устройства для переработки отходов и т.п.

Обработка мусора на судне

Судно может быть оснащено устройствами для обработки и уничтожения мусора такими, как:

установка для сжигания судовых отходов (инсинераторы);

измельчитель мусора (грохот);

установка для прессования мусора.

Инсинераторы

Значительное развитие и широкое применение в последние годы получил термический способ обработки судовых отходов. Отходы сжигаются в специальных печах-инсинераторах. Данным способом можно уничтожить практически все виды судовых отходов, за исключением металла и стекла, которые следует отделять из общей массы. Производительность инсинератора определяется количеством отходов, которые могут быть сожжены в единицу времени.

Способ термической обработки судовых Отходов имеет следующие преимущества: возможность переработки всех видов мусора и значительное уменьшение его объема, стерильность образующихся остатков, автоматизация процесса.

Установки для сжигания мусора должны иметь сертификат Регистра, подтверждающий фактическую способность сжигать отходы, наименование которых должно быть перечислено в Инструкции по эксплуатации установки для сжигания мусора. Кроме того, все инсинераторы, установленные на судах после 01 января 2000 г., должны иметь Свидетельство о типовом одобрении (СОТО). В инсинераторах, имеющих СОТО, разрешено частичное сжигание пластика (например, бумаги - 30%, картона - 40%, ветоши - 10%, пластика - 20%. Зола, которая образуется в результате сжигания мусора, представляет собой обеззараженный мусор, и он сбрасывается за борт на расстоянии более 12 морских миль от ближайшего берега за пределами особых районах за исключением золы пластмасс, которая может содержать остатки токсичных веществ и тяжелых металлов. Такая зола сохраняется на борту и сдается на береговые или плавучие сооружения3.

При сжигании мусора запрещается загружать в инсинераторы большое количество промасленной ветоши и пластика, так как это может привести к резкому повышению температуры в реакторе и повышенной дымности отходящих газов, поэтому следует обратить внимание на использование инсинераторов в портах. Так, например, в территориальных водах стран - участников Конвенции ХЕЛКОМ 92 в районе Балтийского моря запрещается любое сжигание отходов, образовавшихся на борту судна.

Отсепарированные нефтяные остатки и нефтесодержащая ветошь подлежат уничтожению на судне в установках для сжигания судовых отходов или сдаче на берег, о чем делается соответствующая запись в ЖНО (журнале нефтяных операций), часть 1.

К недостаткам способа можно отнести достаточную пожароопасность на судне, повышеный расход топлива и трудоемкость дополнительного обслуживания.

Принцип работы:

Процесс сжигания мусора в инсинераторе можно условно разделить на два этапа: предварительное высушивание и собственно сжигание.

Высушивание мусора позволяет полнее использовать их теплотворную способность и тем самым экономить топливо. Эффективность высушивания отходов зависит от следующих факторов: распределения влаги в пределах массы отходов, температуры в зоне высушивания (сгорания), наличия устройств для перемешивания отходов с целью повышения скорости переноса тепла, размера частиц отходов (уменьшение размеров частиц способствует не только более быстрому высушиванию, но и более эффективному сжиганию).

В современных инсинераторах предварительное высушивание отходов осуществляется непосредственно в топке. Исключение составляет шлам сточных вод: влажность его значительно превышает допустимый предел, до которого можно сжигать отходы без подачи в топку дополнительного топлива. Иногда шлам предварительно перемешивают с топливом в специальном смесительном устройстве. Подсушке способствуют применяемые для этих целей колосниковые решетки, а также подача в топку воздуха.

Перед сжиганием отходы целесообразно подготовить: отделить предметы, способные при расплавлении залить отверстия колосниковых решеток и тем самым уменьшить подачу воздуха, например предметы из алюминиевых сплавов или стекла (температура плавления их соответственно около 700 и около 1100°С). Процесс подсушивания отходов, а следовательно, и их последующее сжигание значительно улучшаются, если в топке есть устройства для перемешивания отходов.

Топку обычно разогревают до температуры не менее 500°С и заполняют твердыми отходами. Сжигание отходов осуществляется по принципу пиролиза. При температуре около 300°С из органических веществ начинается испарение газообразных фракций. Происходит так называемая сухая перегонка твердых отходов. Газы поднимаются в верхнюю часть топки или в смежную камеру сгорания, и там с помощью вспомогательного факела полностью сгорают. При температуре более 750°С дурно пахнущие газы в течение нескольких секунд распадаются.

Жидкие отходы подают в инсинераторы в распыленном виде через специальные шламовые форсунки. Подготовка жидких отходов к сжиганию заключается в приготовлении смеси, содержащей не менее 50 % топлива и предварительно подогретой до 60.80°С. Теоретически для сжигания 1 кг жидких отходов требуется около 4 кг атмосферного воздуха. Для уверенности в полном сгорании отходов рекомендуется обеспечивать 50 % избытка воздуха. Следовательно, рекомендуемый расход составляет 6 кг воздуха на 1 кг отходов. 4

Типы судовых инсинераторов

Рассмотрим работу инсинератора GS-500 (Норвежского производства) (Рис.48) Установка состоит из двух камер, образующих так называемую полупиролизную систему. Левая камера 1 предназначена для сжигания мусора, правая 2 - для сжигания шлама. Она оборудована топливной и шламовой форсунками, соединенными в специальное топочное устройство (на рисунке не показано) и газоходом 4. Вентилятор, подсоединяемый к газоходу, создает в камерах необходимое разрежение. Воспламенение отходов осуществляется за счет теплового излучения от топочного устройства.

Твердые отходы загружаются через приемный поворотный люк 3 после того, как температура в печи достигнет заданного значения. Колосниковая решетка 7, на которую попадают отходы, имеет шурующее устройство, обеспечивающее более эффективное их сгорание.

Рис. 48 Инсинератор GS-500

Поток газов, отходящих от сжигаемых отходов, поступает во вторичную камеру, где происходит их дожигание, а также несгоревших частиц отходов. Пройдя зону горелки, поток дымовых газов смешивается с потоком охлаждающего воздуха и затем выбрасывается в дымоход вентилятором рециркуляции. В газоходе между камерой сгорания и вентилятором имеется шибер (заслонка). Процесс горения (количество подаваемого воздуха) регулируется положением заслонки.

Камеры сгорания представляют собой стальные конструкции с обмуровкой из шлакоустойчивых огнеупорных блоков 5. Обмуровка имеет модульную конструкцию, позволяющую менять отдельные блоки. Внутренняя сторона стальных камер покрыта слоем изоляции. Между двойными листами стали находится воздушная охлаждающая рубашка 6. Камеры сгорания имеют круглую форму и соединены между собой отверстием в районе днища.

Емкость приемного пространства около 9 л. На лицевой стороне установки на дверце 9 предусмотрено смотровое стекло, позволяющее механику контролировать количество загруженных в камеру отходов и наблюдать за работой системы. В нижней части расположена дверца 8 для удаления золы и шлака.

Топочное устройство состоит из форсунки с двумя соплами. Производительность 14 - 28 л/ч. Шламовая форсунка также вмонтирована в топочное устройство и состоит из двух труб. Внутренняя труба предназначена для подвода шлама. Диаметр ее канала равен 8 мм. Наружная труба служит для подвода пара, который используется для распыливания и отчасти - для подогрева шлама. Топочное устройство расположено таким образом, чтобы наиболее эффективно использовать факелы горения. В данном инсинераторе завихренные факелы сначала направляются к днищу, откуда поднимаются в центральной зоне камеры сгорания и лишь затем направляются к газоходу.

Охлаждающий воздух, смешиваемый с дымовыми газами на выходе из камеры, засасывается из нижней части кожуха камеры и понижает температуру отходящих газов до уровня не выше 400°С. Процесс сжигания автоматически контролируется специальной программой. Для контроля горения используется фотоэлектрический датчик.

Измельчители мусора

Также для обработки твердых бытовых отходов используются измельчители - установки, оборудованные специальными режущими приспособлениями, позволяющими размельчать любые виды твердых отходов, включая стеклянные предметы, консервные банки, деревянные ящики и др.

Широкого распространения измельчители не получили, хотя известны случаи их применения на некоторых судах. Это произошло потому, что данное устройство практически не позволяет отказаться от других видов оборудования для обработки отходов, в частности от контейнеров. Дело в том, что наш флот значительную часть времени находится в особых районах, где сброс измельченных твердых отходов, кроме пищевых, запрещен. Кроме того, определенную часть времени суда находятся в прибрежных зонах, на акватории портов, а также во внутренних водоемах, где запрещен сброс любых отходов, даже измельченных.

Представляет интерес способ дробления (измельчения) пищевых отходов, внедренный на некоторых судах и в некоторых портах. На судах пищевые отходы дробятся измельчителем, установленным на камбузе, после чего размельченные пищевые отходы направляются в судовую сборную цистерну (например, в цистерну сбора сточных вод). После выхода судна из порта за 12-мильную зону измельченные отходы вместе с СВ откачиваются за борт.

Прессы

Сложнее обстоит дело в тех случаях, когда передача отходов на берег затруднена или невозможна (например, при эксплуатации судна в необжитых районах, в условиях ледового плавания и т.п.). Бывают случаи, когда порты не оснащены необходимым оборудованием для приема и обработки мусора. Такая ситуация может осложниться, если судно вынуждено задержаться в порту, так как емкости судовых контейнеров может не хватить.

Конвенцией МАРПОЛ 73/78 такая ситуация предусмотрена. В ней указано, что отсутствие оборудования в порту не должно быть основанием для сброса отходов за борт на акватории порта, на рейде и в прибрежных (территориальных) водах. В качестве одного из способов борьбы с отходами, точнее, для уменьшения объема скапливающихся судовых отходов, рекомендуется использовать специальные прессы - устройства, снижающие объем твердых бытовых отходов примерно в 8.10 раз.

Прессование как способ обработки отходов имеет следующие преимущества: возможность обработки любых видов твердых отходов (при этом не обязательна предварительная их сортировка); установки для прессования имеют простую конструкцию и почти не требуют ухода; возможность монтажа в любом месте судна, включая палубу; небольшая потребляемая мощность. К недостаткам этого способа следует отнести то, что для хранения спрессованных отходов требуются помещения и обеззараживание при хранении спрессованных отходов на судне. http://www.bestreferat.ru/referat-194582.html - sdfootnote8sym#sdfootnote8sym

11.4 Установки очистки выхлопных газов судовых дизелей (Скрубберы)

Скруббер (англ. "scrubber", от англ. scrub - "скрести", "чистить") - устройство, используемое для очистки твёрдых или газообразных сред от примесей в различных химико-технологических процессах. Газоочистка - это улавливания из отводимых с печей газов пыли, возгонов и оксидов селена, телура, свинца и других элементов. Очистка газов от примесей с помощью скрубберов относится к мокрым способам очистки. Этот способ основан на промывке газа жидкостью (обычно водой) при максимально развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Данный метод позволяет удалить из газа частицы пыли, дыма, тумана и аэрозолей (обычно нежелательные или вредные) практически любых размеров.

Выделяют следующие виды скрубберов:

- циклоны (насадочные скрубберы);

- орошаемые циклоны (центробежные скрубберы);

- пенные аппараты;

- скрубберы Вентури.

Аппараты мокрого пылеулавливания

Процесс мокрого пылеулавливания основан на контакте запыленного газового потока с жидкостью, которая захватывает взвешенные частицы и уносит их из аппарата в виде шлама.

Мокрая очистка, промывка газов, скрубберная очистка - все это синонимы, определяющие мокрый способ удаления аэрозолей из газовых потоков, являющийся одним из самых эффективных методов пылеулавливания.

Мокрую очистку газов применяют в тех случаях, когда допустимы охлаждение и увлажнение очищаемых газов и хорошо отработаны технологические мероприятия по предотвращению брызгоуноса и утилизации отработанных стоков. Однако, несмотря на указанные ограничения, мокрое пылеулавливание в ряде случаев может оказаться более целесообразным и оправданным, чем сухое. Аппараты мокрого пылеулавливания проще по конструкции, но при этом обладают эффективностью, присущей наиболее сложным сухим пылеуловителям. Их легко изготовить непосредственно на химическом предприятии; как правило, они не имеют подвижных узлов, которыми часто оснащены сухие пылеуловители (например, узлы встряхивания в рукавных фильтрах).

Достоинства мокрых пылеуловителей, по сравнению с аппаратами сухого типа:

- более высокая эффективность улавливания взвешенных частиц;

- возможность использования для очистки газов от частиц размером крупнее 0,1 мкм;

- допустимость очистки газов при высокой температуре и повышенной влажности, а также при опасности возгораний и взрывов очищенных газов и уловленной пыли;

- возможность наряду с пылью одновременно улавливать парообразные и газообразные компоненты.

Однако метод мокрого обеспыливания имеет и ряд недостатков:

- выделение уловленной пыли в виде шлама, что связано с необходимостью обработки сточных вод, т.е. с удорожанием процесса;

- возможность уноса капель жидкости и осаждения их с пылью в газоходах и дымососах;

- в случае очистки агрессивных газов необходимость защищать аппаратуру и коммуникации антикоррозионными материалами.

В качестве орошающей жидкости в мокрых пылеуловителях чаще всего применяется вода; при одновременном решении вопросов пылеулавливания и химической очистки газов выбор орошающей жидкости (абсорбента) обусловливается процессом абсорбции.

В результате контакта запыленного газового потока с жидкостью в мокрых пылеуловителях образуется межфазная поверхность контакта. В различных аппаратах характер поверхности контакта фаз различный: она может состоять из газовых струек, пузырьков, жидкостных струй, капель, пленок жидкости. Поскольку в пылеуловителях наблюдаются различные виды поверхностей, то пыль улавливается в них по различным механизмам.

Общепринятой классификации мокрых пылеуловителей до настоящего времени не существует. Обычно они подразделяются на группы в зависимости от характера (вида) поверхности контакта фаз (капельные, пленочные, барботажные) или способу действия:

- полые газопромыватели (оросительные промывные камеры; полые форсуночные скрубберы);

- насадочные скрубберы;

- тарельчатые газопромыватели (барботажные и пенные аппараты);

- газопромыватели с подвижной насадкой;

- мокрые аппараты ударно-инерционного действия;

- мокрые аппараты центробежного действия;

- механические газопромыватели (механические скрубберы, динамические скрубберы);

- скоростные газопромыватели (скрубберы Вентури, эжекторные скрубберы).

Иногда мокрые пылеуловители подразделяют по затратам энергии на низконапорные, средненапорные и высоконапорные. К низконапорным аппаратам относятся пылеуловители, гидравлическое сопротивление которых не превышает 340 Па. В эту группу входят форсуночные скрубберы, барботажные аппараты, мокрые центробежные аппараты и другие. К средненапорным мокрым пылеуловителям с гидравлическим сопротивлением от 340 до 3000 Па относятся некоторые динамические скрубберы, газопромыватели ударно-инерционного действия, эжекторные скрубберы. Группа высоконапорных газопромывателей с гидравлическим сопротивлением более 3000 Па включает в основном скрубберы Вентури и аппараты с подвижной насадкой.

Полые газопромыватели

В полых газопромывателях запыленные газы пропускают через завесу распыляемой жидкости. При этом частицы пыли захватываются каплями промывной жидкости и осаждаются в аппарате, а очищенные газы удаляются из него.

Наиболее распространенным аппаратом этого класса является полый форсуночный скруббер.

Полые форсуночные скрубберы представляют собой колонны круглого или прямоугольного сечения, в которых осуществляется контакт между газами и каплями жидкости, распыливаемой форсунками. По направлению движения газов и жидкости полые скрубберы делятся на противоточные, прямоточные и с поперечным подводом жидкости. При мокром обеспыливании обычно применяют аппараты с противонаправленным движением газов и жидкости, реже - с поперечным подводом жидкости. Прямоточные полые скрубберы широко используются при испарительном охлаждении газов.

В противоточном скруббере (рис.49) капли из форсунок падают навстречу запыленному потоку газов. Капли должны быть достаточно крупными, чтобы не быть унесенными газовым потоком, скорость которого обычно составляет vг = 0,6-1,2 м/с. Поэтому в газопромывателях обычно устанавливают форсунки грубого распыления, работающие при давлении 0,3-0,4 МПа. При скоростях газов более 5 м/с после газопромывателя необходима установка каплеуловителя.

Рис. 49 Полый форсуночный скруббер: 1 - корпус; 2 - газораспределительная решетка; 3 - форсунки

Высота аппарата обычно в 2,5 раза превышает его диаметр (Н = 2,5D). Форсунки устанавливают в аппарате в одном или нескольких сечениях: иногда рядами (до 14-16 в сеч.), иногда только по оси аппарата.

Факел распыла форсунок может быть направлен вертикально сверху вниз или под некоторым углом к горизонтальной плоскости. При расположении форсунок в несколько ярусов возможна комбинированная установка распылителей: часть факелов направлена по ходу газов, другая часть - в противоположном направлении. Для лучшего распределения газов по сечению аппарата в нижней части скруббера устанавливают газораспределительную решетку.

Полые форсуночные скрубберы широко используют для улавливания крупной пыли, а также при охлаждении газов и кондиционирования воздуха. Удельный расход жидкости невелик - от 0,5 до 8 л/м3 очищенного газа.

Эффективность очистки в полом противоточном скруббере возрастает с уменьшением размера капель и с увеличением скорости газа. Поскольку эти условия являются взаимоисключающими, при эксплуатации скруббера необходимо придерживаться определенного оптимального гидродинамического режима. Согласно расчетам, максимальная эффективность при инерционном осаждении частиц пыли на каплях наблюдается при dк = 0,8 мм. Капли такого размера могут быть получены при помощи обычных центробежных форсунок грубого распыла, работающих под давлением (3-4) 105 Па. При эксплуатации таких форсунок можно использовать оборотную воду, содержащую взвеси.

Степень улавливания частиц крупнее 10 мкм в полых форсуночных скрубберах составляет 99 %, но для частиц меньшего размера она резко снижается. Полые форсуночные скрубберы малоэффективны при улавливании частиц размером менее 5 мкм.

Насадочные газопромыватели

Насадочные газопромыватели представляют собой колонные аппараты с неподвижной насадкой в виде колец, шаров, седел или тел другой формы. В пылеулавливании нашли в основном применение противоточные насадочные скрубберы (рис. 50).

Рис. 50 Схема противоточного насадочного скруббера: 1 - корпус скруббера; 2 - входной патрубок; 3 - насадка; 4 - решетка для насадки; 5 - трубопровод для подачи жидкости; 6 - выходной патрубок; 7 - направляющий конус для жидкости; 8 - штуцер для вывода шлама

Насадка предназначена для увеличения поверхности контакта фаз. Жидкость течет пленкой по насадке, газ проходит противотоком. Такие газопромыватели используют для улавливания хорошо смачиваемой пыли, но при невысокой ее концентрации, поскольку в противном случае происходит частое забивание насадки.

Литература

1. Андреенков В.Г. Теория судна (конструкция корпуса судна, судовые устройства и системы): учеб. пособие / В.Г. Андреенков, А.В. Самохвалов; Новороссийская гос. морская акад. - 2-е изд. - Новороссийск: НГМА, 211. - 176 с.

2. Кацман Ф.М. Теория и устройство корабля: учебник для вузов / Ф.М. Кацман, Д.В. Дорогостайский. - СПб: Судостроение, 2009. - 279 с.

3. Правила классификации и постройки морских судов: В 3-х т. Т.1: Морской Регистр Судоходства - М: Транспорт, 2005. - 428 с.

4. Теория и устройство судов: метод. руководство по разработке курсового проекта "Расчет посадки, остойчивости и непотопляемости судна в процессе эксплуатации" / сост. Ю.И. Юдин, А.А. Соловьев. - Мурманск: МГАРФ, 213. - 36 с.

Размещено на Allbest.ru


Подобные документы

  • Судовая сеть и ее характеристика. Технические показатели насоса. Конструкция, принцип действия, обслуживание в работе центробежных насосов. Состав рулевого устройства, типы рулевых органов, рулевые приводы. Принцип действия электрических рулевых машин.

    шпаргалка [1,1 M], добавлен 13.01.2011

  • Механизмы буксирных устройств: якорные и швартовные устройства. Передача грузов между кораблями на ходу: грузовые лебедки и грузовое устройство со стрелами, крановое устройство, приводы грузовых устройств. Механизмы шлюпочных и рулевых устройств.

    реферат [27,7 K], добавлен 07.06.2011

  • Основные судовые документы. Исключения в отношении наличия судовых документов. Подлинность судовых документов. Документы, выдаваемые компетентными органами, подтверждающие определенные качества судна. Документы, отражающие жизнедеятельность судна.

    контрольная работа [14,2 K], добавлен 14.07.2008

  • Выбор главных двигателей и конструирование валопровода. Обоснование выбора главных двигателей. Вычисление систем, обслуживающих судовые энергетические установки. Выбор рулевой машины, якорно-швартовных механизмов, вспомогательных дизель-генераторов.

    курсовая работа [397,2 K], добавлен 13.09.2013

  • Рассматриваются топливные насосы для судовых двигателей внутреннего сгорания. Устройство насосов разных типов, их назначение и принципы действия. Условия применения и эксплуатации топливных насосов в зависимости от их типов и видов судовых двигателей.

    реферат [3,2 M], добавлен 13.10.2008

  • Состав и функции основных элементов вспомогательного энергетического комплекса судна. Обоснование оптимального режима работы вспомогательных двигателей. Расчет топливной системы судовой энергетической установки. Выбор водоопреснительной установки.

    дипломная работа [860,5 K], добавлен 04.02.2016

  • Изучение использования судовых ядерных установок. Обоснование выбора энергетической установки фрегата. Тепловой расчет двигателей. Описания схемы и принципа работы мобильной установки кондиционирования. Процесс монтажа холодильной машины в контейнер.

    дипломная работа [946,3 K], добавлен 16.07.2015

  • Принципы подбора насосов для обеспечения перемещения жидкости по трубопроводу. Преимущества и принцип действия центробежных насосов, их попарное использование. Устройство сепаратора, его режимы работы. Описание опреснительных установок самоиспарения.

    реферат [1,6 M], добавлен 04.06.2009

  • Основные технические данные судна, двигателя, судовой электростанции. Анализ комплекса систем управления техническими средствами судовой энергетической установки. Перечень аварийных ситуаций и противоаварийных действий. Требования техники безопасности.

    курсовая работа [1,6 M], добавлен 09.12.2013

  • Технические данные устройств зашиты судовых генераторов. Разработка функциональной схемы стенда. Алгоритмы проведения испытаний устройств защиты судовых генераторов. Обеспечение повышенной устойчивости проектируемого объекта. Проведение испытания стенда.

    дипломная работа [172,5 K], добавлен 27.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.