Буксировка аварийного судна в ледовых условиях
Анализ ледовых условий на основных транспортных путях. Распределения льда в мировом океане, мониторинг ледовой обстановки. Самостоятельное плавание транспортного судна во льдах. Определение сопротивления движению судна во льдах и скорости буксировки.
Рубрика | Транспорт |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 06.05.2010 |
Размер файла | 14,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Во льдах первого типа судно продвигается, взламывая их носовой частью; больше всего сказывается на скорости движения толщина и прочностные свойства ледяного покрова.
Рисунок 2.6 - Характер изменения сопротивления льда движению судна Rл в зависимости от средних размеров льдин r (AB, DC - соответственно мелкобитого и сплошного льда)
Движение во льдах второго типа происходит в основном посредством раздвигания льдин, и основная часть сопротивления льда определяется потерями кинетической энергии при ударах о льдины, а также работой, затрачиваемой на раздвигание и притапливание льдин. Как правило, в реальных условиях преобладают льды средних горизонтальных размеров. На рис.2.6 отчетливо видно, что сопротивление льда движению судна резко возрастает с увеличением горизонтальных размеров льдин, при этом характер зависимости определяется скоростью судна.
С какой же скоростью транспортному судну следовать во льдах? Ответ один - с безопасной, т.е. возможно большей скоростью, при которой судно, случайно ударившись о лед или намеренно нанеся удар в лед, не получит серьезных повреждений корпуса. Но дать общую рекомендацию для всех типов транспортных судов невозможно. Во-первых, почти всегда трудно четко оговорить, о каких условиях ледового плавания идет речь. Например, нельзя сказать, что при сплоченности льда 4 балла скорость судов класса УЛ должна быть непременно около 7 уз. Если судно идет в мелкобитых льдах, такая скорость, безусловно, будет безопасной; если же на пути то и дело встречаются поля или обломки тяжелого многолетнего льда, судно рискует получить повреждение. Данная ситуация во многом зависит еще от условий видимости на пути судна. При плавании в более сплоченных льдах количество факторов, от которых зависит безопасная скорость, возрастает и ответить на вопрос, с какой скоростью следовать судну, еще более затруднительно.
Для иллюстрации изложенного выше отметим, что, по оценкам специалистов, удар о льдину толщиной 100 см и весом 50 т, например, для судов типа "Волголес" (категория Л1) может привести к повреждению корпуса при скорости свыше 14,8 уз. Если же льдина весит 3000 т и имеет толщину 200 см, предел скорости снижается до 1,9 уз. Ясно одно - при плавании во льдах не может быть понятия опасной или безопасной скорости без учета конкретной обстановки.
Кроме того, следует помнить, что предел безопасной скорости транспортного судна зависит от величин инерции поступательного движения судна: чем больше инерция, тем меньше предел безопасной скорости. В свою очередь инерция судна тем больше, чем больше его водоизмещение. Предел безопасной скорости, с одной стороны, зависит от конструкции, прочности и водоизмещения судна, а с другой - от характера преодолеваемого льда и условий видимости. Таким образом, вопрос о пределе безопасной ледовой скорости каждого судна в конкретных природных условиях должен решаться самими судоводителями на основе опыта плавания во льдах.
Некоторые общие правила для выбора скорости движения транспортного судна в условиях хорошей видимости:
для оценки льда следует руководствоваться приемами, изложенными в гл.1;
надо учитывать, что при уменьшении скорости судна ухудшается его маневренность, а значит, и вероятность столкновения со льдом;
при плавании в редких льдах, примерно равномерно распределенных по поверхности моря, судно может следовать почти без снижения скорости, если оно имеет нормальную поворотливость и управляется опытными рулевыми;
при плавании в разреженных льдах в связи с повышением сплоченности судну приходится больше лавировать между отдельными льдинами или пятнами льда; в этом случае целесообразно применять способ движения, называемый "со стопом" - судно, двигаясь при гаснущей инерции, для сохранения поступательного движения и управляемости дает время от времени на непродолжительное время малый ход вперед;
при плавании в сплоченных, но доступных для прохода судна льдах (мелкобитых) ход машины можно довести до полного; необходимо обходить тяжелые льдины.
При выборе скорости движения и выполнении маневра во льдах большая роль принадлежит рулевому. Поэтому при маневрировании во льдах рулевому следует давать лишь общее направление движения, указывая на характерные ориентиры.
При маневрировании судна во льдах рулевой должен соблюдать следующие правила:
когда дается задний ход, не ожидая команды, ставить руль прямо;
не перекладывать руль после заднего хода до тех пор, пока судно не получит движения вперед;
при столкновении со льдом брать льдину только на форштевень;
не прижиматься вплотную к тяжелым льдинам во избежание ударов судна об их острые углы;
избегать крутых поворотов в тяжелых льдах;
при форсировании перемычки для удержания судна на курсе заранее переложить руль в сторону тяжелого льда, в противном случае нос судна уклонится в сторону слабого льда;
при движении в сплоченных льдах избегать лишних перекладок руля, стремясь направить судно по линии наименьшего сопротивления.
Соблюдение перечисленных правил позволит судоводителю держать скорость судна во льдах до максимально допустимой. Последнее исключительно важно как для безопасности прохождения, так и ускорения оборачиваемости транспортных судов и повышения эффективности их использования.
2.5 Счисление пути судна во льдах
За последние одно-два десятилетия в районах традиционного ледового плавания существенным образом улучшилось навигационное оборудование. Развитие получили радиотехнические и космические навигационные средства, использование которых позволяет с большой уверенностью располагать курсы судов во льдах вне видимости берегов. Это, конечно, снизило значение традиционных методов счисления пути судна во льдах, но еще полностью не освободило судоводителя от их применения. До сих пор в ряде ледовитых акваторий радиотехнические и космические средства пока отсутствуют и здесь по-прежнему велико значение традиционных методов.
До настоящего времени существовал единственный способ счисления при плавании во льдах, предложенный еще в начале века адмиралом С.О. Макаровым, - так называемое пятиминутное счисление. Можно сказать, что пятиминутное счисление явилось порождением того времени, когда средства навигационного оборудования ледовитых акваторий имели слабое развитие. Тем не менее и в последние годы этот способ успешно применялся судоводителями, если не было возможности получить обсервованное место судна.
Сущность пятиминутного счисления весьма проста: при следовании судна во льдах вахтенный штурман по истечении каждой пятой минуты фиксирует курс и скорость судна, на основании которых вычисляется генеральный курс и путь судна за час или 30 мин. В результате получают счислимое место судна на конкретный момент времени.
Целесообразно соблюдать следующие положения:
курс судна регистрируется с точностью до 1°, при этом учитывается преобладающее движение в течение 5 мин;
скорость судна определяется на глаз и лишь время от времени, особенно по мере существенного изменения ледовых условий, корректируется с помощью точных способов (о них будет сказано дальше);
фиксируется общая характеристика состояния льда, что позволяет при необходимости контролировать записи о скорости судна.
Далее производится обработка записей элементов счисления за час или за 30 мин: с точностью до 1 кб рассчитываются расстояния, пройденные за каждые 5 мин плавания; курсы, определенные по гирокомпасу, прокладываются на миллиметровке и сводятся в генеральный курс (тем самым устанавливается пройденное по нему расстояние); вводится поправка на величину дрейфа судна за рассматриваемый период времени; генеральный курс и путь переносятся на путевую карту, определяются координаты судна.
Главный недостаток способа пятиминутного счисления - он отнимает у вахтенного штурмана много времени и отвлекает его от непосредственного управления судном. В связи с этим были предложены различные способы упрощения вычисления генерального курса и пути судна, в частности, использование планшетов типа круга Севастопольской морской обсерватории (СМО) в такой последовательности:
против индекса устанавливается соответствующее "первому" курсу деление шкалы подвижного прозрачного диска и от центра в направлении индекса откладывается соответствующий этому курсу путь;
против индекса устанавливается "отсчет", соответствующий "второму" курсу, и от конца первого вектора откладывается соответствующий "второму" курсу путь параллельно линии "центр круга - индекс";
аналогичным образом откладываются все последующие курсы;
конец последнего вектора устанавливается на линии "центр круга - индекс" и по отсчету против индекса определяется генеральный курс. Расстояние от центра круга до конца вектора в масштабе построений будет отражать путь судна. Масштаб построений определяется в зависимости от скорости движения: при малой скорости целесообразно использовать более крупный масштаб (5 мм - 1 кб), при большой скорости - более мелкий масштаб (10 мм - 1 миля). Применение планшета типа круга СМО существенно облегчает работу штурмана. При отсутствии планшета его можно изготовить на любом судне.
При плавании транспортного судна во льдах сплоченностью 6-9 баллов при скорости до 6 уз можно успешно использовать планшет, сочетающий в себе параллельную линейку, транспортир, циркуль и таблицы для расчета пройденного расстояния (рис.2.6). Планшет представляет собой круг диаметром 200 мм. По его окружности нанесена градусная шкала. По радиусу круга от его центра в направлении 360° сделана прорезь шириной 2 мм. В секторе круга нанесена номограмма пройденного расстояния в зависимости от времени (до 10 мин) и скорости (до 6 уз). Вдоль прорези нанесена шкала "кабельтовы". Для учета циркуляции на круге имеются отверстия, соответствующие радиусам циркуляции 0,5, 1,0, 1,5, 2,0 и 2,5 кб. Прокладка пути судна во льдах с помощью данного планшета производится в такой последовательности: планшет накладывается на миллиметровую бумагу с фиксацией центра круга в произвольно выбранной точке; отсчет курса судна по градусной шкале совмещается с вертикальной линией, проходящей через выбранную точку, прорезь на круге покажет направление курса; на номограмме от шкалы времени по минутам, пройденным данным курсом, следует идти параллельно прорези до пересечения с линией скорости, с которой судно шло на данном курсе; из точки пересечения линии времени и линии скорости по линии, параллельной шкале времени, нужно идти в сторону выреза - на шкалу "кабельтовы"; по расстоянию от центра круга до найденной точки определяется путь, пройденный судном на данном курсе; подобная операция повторяется для следующего курса, причем конец предыдущего отрезка пути явится началом последующего; через час или 30 мин крайние точки на миллиметровой бумаге соединяются. Это и будет генеральный курс и пройденный по нему путь.
Рисунок 2.6 - Планшет для ведения прокладки пути судна при плавании во льдах
Как показал опыт, использование данного планшета значительно облегчает работу штурмана, сокращая время расчетов генерального курса и пути в 2-3 раза. Планшет можно изготовить самостоятельно по образцу в масштабе радиуса 1 кб в 1 см.
Необходимым условием безаварийного судовождения во льдах является знание скорости судна в любой момент времени. При ледовом плавании вдоль побережья в условиях постоянного радиолокационного и визуального контакта с берегом имеется возможность определить место судна с круговой ошибкой 1-4 кб. При отсутствии такого контакта, а также ненадежности радиотехнических средств возникает проблема измерения скорости судна во льдах. Знание скорости важно и при пятиминутном счислении пути судна во льдах, когда требуется корректировка глазомерных определений скорости уточненными данными.
В ходе практики ледового плавания выработан ряд способов определения скорости судна во льдах. Одним из основных принципов является измерение промежутка времени, за которое судно проходит определенное расстояние (базу). В качестве базы используется вся длина судна.
Определение скорости судна этим способом происходит таким образом: впереди по курсу выбирается какая-либо приметная льдина; когда эта льдина поравняется с форштевнем, включается секундомер; когда льдина поравняется со срезом ахтерштевня, секундомер останавливается; по пройденному расстоянию L (длине судна) и времени его прохождения t определяется скорость судна.
Для упрощения этих расчетов можно составить таблицу, на основании которой по времени прохождения длины данного конкретного судна получают скорость движения. Иногда для определения скорости движения судна в узлах используют соотношение 2L/t, точность которого вполне удовлетворительная - 0,1 уз.
Рисунок 2.7 - Общий вид визиров на борту судна для определения скорости хода во льдах
Чтобы избежать ошибок в определении начала или конца измерения скорости, на судах ледового плавания снаружи крыльев мостика по каждому борту устанавливаются визиры (рис.2.7). Порядок определения скорости судна по визирам аналогичен изложенному выше с той лишь разницей, что вместо длины судна определяется расстояние между визирными линиями, отсекающими отрезок пути на льду на уровне действующей ватерлинии. Следует только учитывать, что мерное расстояние зависит от осадки судна, поэтому целесообразно иметь таблицу мерных расстояний между визирными линиями с учетом загруженности судна.
В практике ледового плавания для определения скорости судна используются радиолокационные станции. Однако для получения достаточной точности измерений при использовании РЛС необходимо удержание судна на курсе, что при плавании во льдах не всегда возможно. Кроме того, на экране РЛС трудно идентифицировать выбранную отметку вследствие однообразия изображения льда. При использовании РЛС для определения скорости судна наиболее удобен и точен способ, когда отметка на экране выбирается на курсовых углах 0 или 180°. На пятимильной шкале этот способ дает удовлетворительные результаты.
Для измерения скорости судна во льдах могут использоваться индукционные лаги, отличительной особенностью конструкции которых является приемное устройство, не выступающее за корпус судна. Последнее обстоятельство имеет большое значение в условиях ледового плавания. Следует только помнить, что индукционные лаги проектировались как измерители относительной скорости для плавания по чистой воде, поэтому в условиях ледового плавания при определении скорости судна возможны погрешности, вызванные изменением поля скоростей обтекания приемного устройства, намагниченности корпуса судна (влияние ударов о лед), магнитной проницаемости среды и другие. Эти явления недостаточно пока изучены, и опыт использования индукционных лагов при плавании во льдах еще невелик.
Рисунок 2.8 - Движение отметки на экране РЛС вблизи траверзных курсовых углов при постоянном курсе судна
Для измерения скорости судна во льдах перспективными можно считать лаги, работа которых основана на эффекте Допплера. Как известно, допплеровские лаги в зависимости от диапазона используемых частот и среды, в которой распространяются излученные и отраженные колебания, делятся на гидроакустические и радиолаги.
Работа первых из них основывается на измерении скорости сигнала, отраженного от морского дна, вторых - сигнала, отраженного от поверхности воды или льда. Эти особенности и определяют возможности их применения при плавании во льдах. Чтобы защитить антенны гидроакустических лагов от ударов о лед, антенны размещают внутри корпуса без выреза обшивки. На ледоколах типа "Капитан Сорокин" гидроакустические антенны, не выступающие за обшивку корпуса, защищены перфорированными пластинами. Следует помнить также, что попадание льда под корпус судна может вызвать рассеивание мощности сигнала гидроакустического лага (а значит, ошибку в определении скорости судна, а при использовании допплеровского радиолага во льдах при смене подстилающей поверхности (лед - вода) из-за смещения спектра частот отраженных колебаний возникает дополнительная ошибка (около 7%).
3. Определение сопротивления движению судна во льдах и скорости буксировки
3.1 Общие положения
Морская буксировка может быть запланированной и вынужденной. Все расчеты, связанные с плановой буксировкой, выполняются заблаговременно в КБ с учетом особенностей предстоящей операции: числа и типа буксирных судов и буксируемых объектов, вида буксирной линии (однородная, неоднородная, несимметричная и пр.), предполагаемых погодных условий, районов плавания (узкости, мелководье). Эти расчеты выполняются по существующим методикам, одобрены регистром России, и выдаются в виде чертежей и рекомендаций для выполнения буксировочной операции.
При вынужденной буксировке капитан буксировщика обязан выполнить расчеты скорости буксировки, а также элементов буксировочной линии (длины, толщины троса и его провиса). Задача может свестись к выбору безопасной скорости буксировки, при которой прочность имеющегося буксирного троса оказалась бы достаточной. Поскольку при вынужденной буксировке капитан не всегда может располагать точными сведениями о буксируемом объекте, расчеты приходится вести с использованием простейших эмпирических формул.
В этой части диплома приведен способ расчета сопротивления движению судна во льдах и скорости буксировки, пригодный для выполнения расчетов в судовых условиях.
Максимальной скоростью при буксировке будет та, при которой сопротивление буксирующего и буксируемого судов в сумме составят силу, равную упору винта:
, (3.1)
где Pm-максимальный упор винта буксировщика, кН;
R0-суммарное сопротивление, кН;
R1-сопротивление буксирующего судна, кН;
R2-сопротивление буксируемого судна, кН.
Расчет буксировки производится в следующем порядке:
Определяется максимальный упор винта буксировщика или сопротивление движению судна при максимальной скорости, которое равно упору винта при швартовом режиме.
Определяется сопротивление буксирующего и буксируемого судов на различных скоростях буксировки.
Составляется таблица и чертятся графики R1, R2, R0 зависимости сопротивлений от скорости буксировки, по которым определяются максимальная скорость буксировки и тяга на гаке.
3.2 Расчет упора винта буксировщика
Для приближенной оценки упора винта буксировщика может быть использована формула Регистра России расчета упора винта на швартовах:
кН, (3.2)
где Рm - упор винта, кН;
Ni - мощность главной силовой установки, кВт,
3.3 Расчет сопротивления судов
Сопротивление буксирующего судна равно сумме сопротивлений:
, (3.3)
где RСТ - сопротивление трения, кН;
RС - остаточное сопротивление, кН;
Rвозд - сопротивление воздуха, кН;
RВ-сопротивление от волнения, кН,
Rл - ледовое сопротивление, кН (рассчитываем для битого льда, сплоченностью 6 баллов)
Сопротивление буксируемого судна отличается от сопротивления буксирующего судна дополнительным сопротивлением застопоренного винта RЗ. В и буксирного троса RТР, кН:
. (3.4)
Сопротивления можно рассчитать по эмпирическим формулам:
Сопротивление трения (в кН):
, (3.5)
где х - плотность воды, кг/м3 (плотность соленой воды - 1025 кг/м3);
S - площадь смоченной поверхности судна, м2;
Кф - коэффициент трения.
Для транспортных судов и плавбаз:
где Lв - длина действующей ватерлинии при средней осадке, м; В - ширина, м; Тср - средняя осадка, м (используем по Тср в грузу). Для буксирующего судна:
2568,1 м2
Для буксируемого судна:
1383,4 м2
Сопротивление остаточное (в кН):
, (3.6)
где Vб - скорость судна при буксировке, м/с;
д - коэффициент полноты водоизмещения;
Dв - водоизмещение судна, т;
L - длина судна, м.
Воздушное сопротивление (в кН):
, (3.7)
где Ко-коэффициент обтекания, при ветре, параллельном ДП, равен 0,8);
х=1,25-плотность воздуха, кг/м3;
AН-проекция надводной части поверхности судна на плоскости
мидельшпаунгоута, м;
vB-скорость встречного ветра, м/с;
vб-скорость буксировки, м/с.
Сопротивление застопоренного винта (в кН):
, (3.8)
где dВ-диаметр винта, м.
3.4 Чистое ледовое сопротивление движению судна в битых льдах
Процесс движения судна в битых льдах очень сложен, составить его аналитическое описание не представляется возможным. Поэтому расчетные зависимости, связывающие сопротивление судна в битых льдах со скоростью движения, размерениями и параметрами льда, создавались на основании эмпирических данных, полученных в ходе натурных экспериментов. Основываясь на исследованиях, чистое сопротивление движению судна в битых льдах представим в следующем виде:
(3.9)
Где r - протяженность битого льда, м;
h - толщина битого льда, м;
- плотность льда, т/м3;
fт - коэффициент трения борта о лед (fт = 0,08ч0,15);
- коэффициент полноты действующей ватерлинии;
н - коэффициент полноты носовой части действующей ватерлинии;
0 - угол входа носовой ветви действующей ватерлинии, град;
- безразмерные коэффициенты (табл.3.1);
Sсж - сила сжатия, баллы;
g - ускорение свободного падения, м/с2.
Таблица 3.1 - Значения коэффициентов
Коэффициенты |
Сплоченность льда, баллы |
||||
4 |
6 |
8 |
10 |
||
0 |
0 |
7 10-2 |
7,4 10-2 |
||
0,93 |
2,54 |
5,70 |
8,2 |
||
4,3 |
4,3 |
4,3 |
4,3 |
||
- |
- |
- |
30 10-2 |
Транспортное судно будет испытывать большее сопротивление, чем ледокол из-за наличия цилиндрической вставки. Поэтому ледовое сопротивление судна можно выразить:
, (3.10)
гдеRлч - ледовое сопротивление, рассчитанное без учета влияния цилиндрической вставки (в кН);
lцв - длина цилиндрической вставки, м;
Kцв - коэффициент, равный 0,4.
Расчеты сопротивлений судов сводим в таблицу 3.2
3.4 Определение максимальной скорости буксировки и силы тяги на гаке
По данным таблицы 3.2 строим графики сопротивлений R0 и R2 в прямоугольной системе координат, затем используют их для определения максимальной скорости буксировки и силы тяги на гаке (Рисунок 3.1).
Рисунок 3.1 - Определение тяги на гаке и скорости буксировщика
Максимальный упор гребного винта буксировщика равен 829,6 кН. Требуется определитьVбmax и силу тяги на гаке Тг.
По оси ординат откладываем отрезок "0a", равный 829,6 кН. Через точку "a" проводим линию, параллельную оси абсцисс, до пересечения с кривой суммарного сопротивления в точке "b". Из точки "b" опускаем перпендикуляр на ось абсцисс и получаем при их пересечении точку "c". Отрезок "0c" представляет собой максимальную скорость буксировки Vбmax, которая равна 11,3 уз.
Для определения тяги на гаке отыскиваем точку пересечения перпендикуляра "bc" с кривой сопротивления буксируемого судна. Обозначив эту точку буквой "d", проведем через нее линию, параллельную оси абсцисс, до-пересечения ее с осью ординат в точке "e". Отрезок "0e" определяет тягу на гаке Тг, которая равна 380 кН. Это и есть усилие, на которое следует подбирать буксирный трос.
4. Разработка буксирного устройства и кранцевой защиты для обеспечения буксировки аварийного судна транспортным судном
4.1 Буксирное устройство на ледоколах
При проектировании буксирного устройства и кранцевой защиты для транспортного судна я основывался на принципиальной схеме буксирного устройства судов ледокольного типа (рис.4.1 и рис.4.2).
Основные составляющие:
буксирная лебедка с емкостью барабана около 500-700 м буксирного троса с канатоукладчиком и автоматикой для удержания заданной длины и тягового усилия в канате;
амортизатор (демпфер) гидродинамического или иного типа;
две буксирные серьги - одна у самого кормового выреза, другая на палубе по линии буксирного троса между лебедкой и кормовой серьгой;
кормовой вырез достаточной глубины для предотвращения выхода из него форштевня буксируемого судна на поворотах, оборудованный надежными мягкими кранцами.
На мощных ледоколах кранцы, как правило, устанавливаются в два яруса, причем кормовые кранцы для большей износоустойчивости покрываются металлической кольчужной сеткой.
4.2 Необходимые составляющие
Зачастую, в случаях аварийной буксировки на транспортном судне выбор снабжения ограничен. Исходя из этого, при проектировке буксирного устройства я использовал элементы, имеющие достаточно широкое применение на судах транспортного флота.
1 - лебедка; 2 - стопор Булливана; 3 - буксирная серьга;
4 - блок Николаева; 5 - бензель
Рисунок 4.1 - Буксирное устройство на ледоколах типа "Капитан Белоусов"
1 - лебедка; 2 - демпфер; 3 - оттяжка;
4 - блок Николаева; 5 - буксирная серьга; 6 - бензель
Рисунок 4.2 - Буксирное устройство на ледоколах типа "Арктика"
4.2.1 Выбор буксирного троса
Запас прочности буксирной линии должен быть равен 5Тг, если Тг не превышает 100 кН, или 3Тг, если тяга на гаке более 100 кН.
Из построенного графика (рисунок 3.1) определим тягу на гаке Тг = 380 кН - это усилие, по которому будет подбираться буксирный трос. Запас прочности равен 3 х 125 кН = 1480 кН, т.к тяга на гаке более 100 кН.
При вынужденной буксировке диаметр буксирного троса, линейную плотность можно определить, пользуясь сертификатом имеющегося на судне троса или таблицами ГОСТа. Исходя из условий нашей задачи, я выбрал "Канат стальной двойной свивки типа ЛК-О ГОСТ 3069-80":
Разрывная прочность троса Рр = до 1624 кН;
Диаметр стального троса и = 60,5 мм;
Линейная плотность троса q = 14, 25 кг/м.
4.2.2 Элементы кранцевой защиты
В последнее время на судах наибольшее распространение получили пневматические кранцы (рисунок 4.3), которые обладают большой энергоемкостью и обеспечивают малые контактные давления на корпус судна. Бескамерные кранцы имеют резиновую оболочку, укрепленную для восприятия больших нагрузок синтетическим или металлическим кордом. Толщина оболочки в зависимости от размеров кранцев составляет 9-30 мм.
Одной из самых распространённых моделей кранцев является модель НКВ-3:
Габариты 2200х3800 мм
Внутренне рабочее давление 0,8 - 1,0 Мпа
Энергия поглощаемая кранцем 320 кДж
Нагрузка, воспринимающая при 50% сжатии 1100 кН
Исполнение пневматические, бескамерные
Средний срок службы 7 лет
1, 3 - клапаны; 2 - оболочка; 4, 5 - скобы; 6 - огон; 7, 8, 9 - меридианальные и окружные канаты; 10, 11 - резиновые трубки; 12 - строп; 13 - скоба; 14 - шины; 15 - фланец; 16 - подкрепляющее кольцо; 17 - корд; 18 - резина; 19 - шпилька; 20 - съемный стакан; 21 - внутренний обух; 22 - цепь; 23 - наружный рым.
Рисунок 4.3 - Пневматический бескамерный кранец
4.2.3 Блок конструкции С.В. Николаева
Немаловажной составляющей буксирного устройства является блок конструкции Н.М. Николаева или их набор для буксировки различных судов.
Он состоит из шкива 1, щек 2 и болта 3. Брага заводится на шкив, а буксирный трос 4 крепится за болт 3; таким образом, блок и строп-брага 5 постоянно пристопорены к буксирному канату. Принцип работы блока заключается в следующем: при рысканьи буксируемого судна блок катается по браге, поэтому обе ветви стропа-браги все время натянуты, вследствие чего усилие в каждой ветви значительно меньше усилия в буксирном тросе.
Рисунок 4.4 - Устройство блока Николаева
Рис.4.5 показывает работу блока Николаева. Этот блок применялся широко при буксировках ледоколами, но он не пригоден для длительных морских буксировок, так как, катаясь по браге, быстро ее перетирает.
В случае отсутствия на судне блока Николаева, вместо него может быть использована якорная скоба.
Рисунок 4.5 - Работа блока Николаева.
4.3 Сборка кормовой кранцевой защиты
Перед началом сборки буксировщик подходит кормой к носу буксируемого судна (рис.4.7). Для переноса кранцев на корму буксировщика и последующей заводки используются грузовые стрелы обоих судов. В дополнение к ним, я предлагаю использовать оттяжки из тросов, пропущенные через клюзы буксируемого судна и заведённые на якорную лебёдку.
Если подойти таким образом невозможно, то возможен и другой вариант заводки (см. рисунок 4.6):
Рисунок 4.6 - Альтернативный метод сборки кранцевой защиты
Рассмотрим конструкцию кранцевой защиты (рис.4.8). Для её крепления на фальшборт буксировщика привариваются скобы, за которые и будут подвешиваться кранцы с помощью такелажных цепей.
Порядок сборки следующий:
За корму буксировщика заводится и вывешивается горизонтальный кранец.
Вывешивается пара вертикальных кранцев. Здесь я хочу обратить внимание на то, что перед заводкой в них немного спускается воздух. Это делается для того, чтобы после соединения кранцев цепями восстановить в них первоначальное давление, тем самым добиться более плотного контакта кранцев друг с другом. Исходя из этого, для более удобной их последующей подкачки, клапаны должны находиться вверху.
При помощи прочных такелажных цепей, соединённых с рымами кранцев, и талрепов сверху и снизу стягиваются вертикальные кранцы.
Таким же образом снизу соединяются вертикальные кранцы с горизонтальным.
Для большей фиксации конструкции за нижние рымы кранцы крепятся к скобам у основания фальшборта.
Восстанавливается первоначальное давление в кранцах.
1 - скоба; 2 - фальшборт; 3 - такелажная цепь; 4 - кормовой клюз; 5 - талреп
Рисунок 4.8 - Кранцевое защитное устройство кормы
Для уменьшения износа кранцев можно воспользоваться металлической кольчужной сеткой, защитив ею рабочую поверхность кранцев от непосредственного соприкосновения с носом буксируемого судна.
После сборки кранцевой защиты через кормовой клюз на буксируемое судно заводится буксировочный трос и буксируемое судно втягивается носовой оконечностью между вертикальных кранцев.
1 - кранцевая защита; 2 - киповая планка; 3 - швартовный кнехт; 4 - фиксирующие тросы
Рисунок 4.9 - Схема фиксации носовой оконечности в корме буксировщика
Для снижения вероятности выхода носовой части судна из диаметральной плоскости буксировщика, перед буксировкой необходимо провести дополнительную фиксацию. Для этого через клюза буксировщика подаются дополнительные тросы, которые заводятся по схеме, приведённой на рисунке 4.9
4.4 Выводы по произведённым расчётам
Результатом произведенных в третьем и четвёртом разделе дипломной работы расчетов является вывод о возможности проведения буксировочной операции для заданных судов с рассчитанными параметрами буксирного троса и скоростью буксировки, которые сводятся в итоговую таблицу 4.1, а также о необходимой подготовке обоих судов к буксировке, исходя из полученных результатов.
Таблица 4.1 - Параметры буксирной линии и скорость буксировки
Параметр |
Числовое значение |
Параметр |
Числовое значение |
|
R0, кН |
813 |
Рр, кН |
1624 |
|
Vбmax, уз |
11,3 |
?, мм |
60,5 |
|
Tг, кН |
380 |
q, кг. м |
14, 25 |
5. Организация и технические мероприятия взятия аварийного судна на буксир и проводка его по ледовому каналу
5.1 Предварительная подготовка
Перед предстоящей буксировкой на обоих судах необходима соответствующая предварительная подготовка. Подготовка на буксирующем судне рассмотрена в четвёртом разделе дипломной работы. Проводимое судно также должно заблаговременно подготовиться к буксировке. Подготовка к ней заключается в следующем:
Якоря убирают на палубу, что необходимо для продевания буксирного стропа буксировщика через якорные клюзы, а также во избежание поломки якорей и повреждения борта буксировщика при соприкосновении с судном. На судах, у которых клюзы выходят близко к ватерлинии, вообще рекомендуется перед входом в лед убирать якоря на палубу, так как они могут быть повреждены торосами и отдельными льдинами, становящимися на ребро у форштевня. Суда при плавании в ледовых условиях должны быть всегда готовыми к поднятию якорей на палубу.
На баке судна готовят в достаточном количестве бросательные концы и тросы-проводники со скобами для приемки буксира с буксировщика. Буксир подается обычно с "усами" - стропом, который продевается через клюзы буксируемого судна (рисунок 5.1).
Заранее готовят все необходимое для принятия и крепления "усов" на палубе судна, для чего через клюзы заводят стальные тросы-проводники со скобами, предназначенные для присоединения их к концам "усов", которые будут протаскиваться через клюзы на палубу.
Необходимо предусмотреть быструю отдачу буксирного стропа, поданного с ледокола. Один из способов крепления стропа заключается в том, что выходящие через якорные клюзы на палубу огоны "усов" связывают манильским или пеньковым тросом. Для отдачи буксира этот найтов рубят. Чтобы это можно было сделать без малейшей задержки, под найтов плотно подкладывают деревянный брус. При буксировке нужно вблизи найтова выставить вахтенного матроса, снабженного топором.
а) два стропа пропущены через клюзы и соединены при помощи бревна; б) огоны стропа соединены бензелем; в) строп пропущен через блок Николаева; г) блок Николаева: 1 - якорная скоба; 2 - бревно; 3 - ветви стропа; 4 - буксирный трос; 5 - бензель
Рисунок.5.1 - Крепление буксирного троса на буксируемом судне
Можно также закрепить буксир, продев через огоны "усов" бревно. Но такой способ не рекомендуется для больших судов, так как быстрая отдача буксира затруднена и работа с бревном опасна.
Если буксирный трос буксировщика не снабжен стропом для продевания через якорные клюзы буксируемого судна, надо приготовить строп, выходящий за борт судна через клюзы, или изготовить брагу, обнесенную вокруг палубных надстроек, надежно соединенных с корпусом судна. Строп или брагу удобнее изготовить так, чтобы их забортную часть можно было взять на палубу, что позволит легко соединить принятый с ледокола буксир с буксирным устройст-вом судна. Выпуская присоединенный буксирный трос за борт, в месте крепления надо подсоединить надежную оттяжку (свистов), чтобы за нее вы-бирать трос на палубу, когда потребуется его отдать.
5.2 Взятие на буксир, крепление и отдача буксира
При подходе кормы буксировщика к носу судна, примерно с расстояния 10-15 м, подают швартов с буксировщика через центральные клюзы, крепят его на судне, затем с помощью шпиля втягивают форштевень судна в кранцевую конструкцию на минимальном переднем ходу буксировщика или без хода. После того как форштевень судна подведен в кормовой вырез буксировщика, дают минимальный задний ход с целью фиксации упора друг в друга. При этом диаметральные плоскости должны составлять одну прямую линию.
При отлаженных, согласованных действиях экипажей буксировщика и буксируемого судна весь процесс заводки буксира занимает 25-30 мин.
Безопасность судов при возможном навале из-за обесточивания буксировщика обосновывается тем, что буксировщик практически не останавливается сразу, поэтому разность скоростей контакта незначительна. Возможный удар буксируемого судна в кранец ледокола даже скулой судна будет в пределах упругой деформации скуловых шпангоутов судов этого типа.
При буксировке в тяжелых льдах нельзя крепить буксирные тросы за швартовные кнехты, которые не рассчитаны на большие нагрузки и при приложении такой нагрузки будут срезаны или выворочены. Недопустима буксировка за брашпиль, так как при рывках он будет поврежден или же сорван с фундамента.
Буксируемое судно должно идти строго в диаметральной плоскости буксировщика и по указанию с него держать руль так, чтобы улучшалась управляемость буксировщика.
На резких поворотах во льду буксировщик должен сбавлять скорость, чтобы избежать обрыва буксирного стропа. При буксировке судов большого водоизмещения или большой длины буксировщик управляется плохо. В этих случаях при поворотах на буксируемом судне необходимо класть руль в противоположную сторону и переходить к нормальному управлению, как только буксировщик начнет выправляться на канале или на курсе.
Обеспечение безопасности плавания при буксировке судов
Рекомендовано несколько основных мер предосторожности при буксировке вплотную:
перед входом в перемычку тяжелого льда или крупного тороса заранее уменьшить скорость тандема и привести буксируемое судно в линию с диаметральной плоскостью ледокола;
снизить скорость при движении среди крупных обломков льда, от которых буксировщик отбрасывает в сторону;
в случае потери управляемости тандема дать задний ход на буксируемом судне; снизить скорость при проходе крутых поворотов в плотно забитом канале;
учитывать, что любой отброс буксировщика в сторону всегда ведет к вероятности обрыва буксира и возможности навала;
судоводителям буксировщика при выборе пути движения следует тщательно анализировать ледовые условия с расчетом заблаговременного осуществления маневра для избегания опасной ситуации. Это особенно важно на тех участках, где заранее можно предположить вероятность отброса буксировщика.
Заключение
В ходе дипломной работы мною был проведён анализ ледовых условий на основных транспортных путях. Изучены рекомендации и наставления по самостоятельному плаванию судов в зоне ледовой обстановки, исследован опыт буксировки в сложных условиях.
Результаты, полученные при выполнении дипломной работы:
Оценка ледовых условий на основных транспортных путях;
Расчёт полного ледового сопротивления при буксировке для двух конкретных судов;
Расчёт параметров, необходимых для проведения буксировочной операции;
Модель кранцевой защиты кормы буксировщика и методика её сборки в судовых условиях;
Комплекс организационных и технических мероприятий для взятия аварийного судна на буксир и проводки его по ледовому каналу.
На основании результатов вычислений сделан вывод о возможности буксировки аварийного транспортного судна в ледовых условиях судном, не предназначенным для буксировки в подобных условиях.
Особенно хочу отметить, что подбор всех элементов был произведён на основании стандартного снабжения транспортных судов, что позволяет подготовиться и начать аварийную буксировку в кратчайшие сроки.
Список использованных источников
1. Арикайнен А.И., Чубаков К.Н. Азбука ледового плавания. - М.: Транспорт, 1987. - 224 с.
2. Смирнов А.П. Безопасность плавания во льдах. - М.: Транспорт, 1993. - 335с.
3. Снопков В.И. Управление судном. - М.: Транспорт, 1991. - 359с.
4. Ионов Б.П., Грамузов Е.М. Ледовая ходкость судов. - Спб.: Судостроение 2001. - 512 с.
5. Международная символика для морских ледовых карт и номенклатура морских льдов - Л.: Гидрометеоиздат, 1984г.
6. Методические указания по подготовке к буксировкам судов ФПР западного бассейна. - Клайпеда: Гипрорыбфлот, 1982.
7. Войтунский Я.И. Сопротивление воды движению судов. - Л.: Судостроение, 1964-412 с.
8. Щетинина А.К. Управление судном и его техническая эксплуатация. - М.: Транспорт, 1983.
9. Российский Морской Регистр Судоходства. Правила классификации и постройки морских судов. - СПб.: РМРС, 1999.
10. Алексеев Г.М. Особые случаи морской практики. - М.: Морской транспорт, 1959.
11. Александров М.Н. Судовые устройства. Справочник. - М.: Судостроение, 1987.
12. Рекомендации по обеспечению безопасности судоходства в ледовых условиях. - М.: Транспорт, 1980.
Приложения
Приложение А
Исходные данные для расчётов элементов сопротивлении
Судно |
Буксирующее |
Буксируемое |
|
Название |
Тр "Тарханск" |
БМРТ "Пионер Латвии" |
|
L, м |
124 |
83,3 |
|
B, м |
17 |
14 |
|
Tср в гр., м |
7,32 |
5,48 |
|
Dв гр., т |
10010 |
3676 |
|
lцв, м |
49,6 |
33,3 |
|
Lв, м |
115 |
79 |
|
Ni, кВт |
6100 |
1472 |
|
Aн, м |
115 |
80 |
|
dв, м |
3,12 |
2,7 |
|
Vв, м/с |
12 |
12 |
|
g, м/с2 |
9,8 |
9,8 |
|
б |
0,79 |
0,83 |
|
бн |
0,4 |
0, 41 |
|
б0, град |
52 |
45 |
|
Вид движ. |
ВРШ |
ВРШ |
|
д |
0,65 |
0,61 |
|
r, м |
2,5 |
2,5 |
|
h, м |
1 |
1 |
|
с, т/м3 |
0,9 |
0,9 |
|
fт |
0,1 |
0,1 |
|
Кф |
0,143 |
0,143 |
Таблица 3.2 - Расчеты сопротивлений
Сопротивление |
Формула для расчета |
Скорость буксировки, Vб |
||||||||||||
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
уз |
||||
1,54 |
2,05 |
2,57 |
3,08 |
3,59 |
4,11 |
4,62 |
5,14 |
5,65 |
6,16 |
м/с |
||||
Буксиру-ющее судно |
Rст,kH |
3.5 |
8,6 |
14,6 |
22,2 |
31,1 |
41,2 |
53,0 |
65,7 |
80,1 |
95,4 |
111,9 |
||
Ro,kH |
3.6 |
0,2 |
0,7 |
1,7 |
3,4 |
6,3 |
10,9 |
17,4 |
26,6 |
38,8 |
54,8 |
|||
Rвозд,kH |
3.7 |
10,5 |
11,4 |
12,2 |
13,1 |
14,0 |
14,9 |
15,9 |
16,9 |
17,9 |
19,0 |
|||
Rлч,kH |
3.9 |
112,6 |
115,2 |
117,8 |
120,4 |
123,0 |
125,6 |
128,2 |
130,9 |
133,4 |
136,0 |
|||
Rл,kH |
3.10 |
141,9 |
145,1 |
148,4 |
151,7 |
155,0 |
158,3 |
161,5 |
164,9 |
168,1 |
171,4 |
|||
R1,kH |
3.3 |
273,8 |
286,9 |
302,3 |
319,7 |
339,5 |
362,7 |
388,7 |
419,3 |
453,7 |
493,2 |
|||
Буксиру-емое судно |
R'ст,kH |
3.5 |
4,5 |
7,7 |
11,6 |
16,2 |
21,6 |
27,7 |
34,4 |
41,9 |
49,9 |
58,6 |
||
R'o,kH |
3.6 |
0,2 |
0,5 |
1,3 |
2,6 |
4,8 |
8,3 |
13,3 |
20,3 |
29,6 |
41,9 |
|||
R'возд,kH |
3.7 |
7,3 |
7,9 |
8,5 |
9,1 |
9,7 |
10,4 |
11,0 |
11,8 |
12,5 |
13,2 |
|||
R'зв,kH |
3.8 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,0 |
0,1 |
0,1 |
0,1 |
0,1 |
|||
R`лч,kH |
3.9 |
108,1 |
109,4 |
110,6 |
111,9 |
113,1 |
114,4 |
115,7 |
117,0 |
118,2 |
119,5 |
|||
R`л,kH |
3.10 |
136,2 |
137,8 |
139,4 |
141,0 |
142,6 |
144,2 |
145,8 |
147,4 |
149,0 |
150,6 |
|||
R2,kH |
3.4 |
256,3 |
263,2 |
271,4 |
280,9 |
291,9 |
305,0 |
320,2 |
338,4 |
359,3 |
383,8 |
|||
Rо,kH |
R1+R2 |
530,1 |
550,2 |
573,8 |
600,5 |
631,4 |
667,7 |
709,0 |
757,7 |
813,0 |
876,9 |
1, 4 - грузовые стрелы; 2 - якорная лебёдка; 3 - рубка; 5 - якорный клюз
Рисунок 4.7 - Сборка кранцевой защиты
Подобные документы
Безопасность плавания транспортных судов во льдах. Информации о ледовых условиях на предполагаемом пути. Наблюдение гидрометеорологической обстановки. Подготовка судна и экипажа. Проверка навигационных приборов. Рекомендации при плавании за ледоколом.
дипломная работа [1,9 M], добавлен 21.03.2011Буксировка потерпевшего аварию или поврежденного судна. Трудности буксировки при спасательных работах. Особенности буксировки подводных лодок и судов во льдах. Расчет длины буксирного троса, основные меры по его амортизации и предупреждению обрыва.
реферат [1,8 M], добавлен 21.06.2015Обоснование архитектурно-конструктивного типа судна. Определение площади парусности и координат центра масс. Расчет сопротивления и скорости хода на тихой воде, в штормовых условиях и во льдах. Изучение особенностей оборудования системы водоснабжения.
курсовая работа [94,2 K], добавлен 29.11.2012Прием судна после ремонта и зимнего отстоя. Подготовка судна к плаванию. Особенности подготовки к плаванию в ледовых условиях. Меры безопасности при работе с буксирными тросами. Обеспечение безопасности отстоя судна. Планирование рейса, взятие на буксир.
курсовая работа [535,3 K], добавлен 12.04.2019Прием судна после ремонта и зимнего отстоя. Подготовка к выходу в плавание, к очередному рейсу буксира-толкача и рейсу пассажирского судна. Суда озерного плавания и особенности подготовки к плаванию в ледовых условиях. Запрещение выхода в плавание.
реферат [30,2 K], добавлен 09.12.2010Расчет скорости буксировки и определение элементов однородной буксирной линии. Расчет по снятию судна с мели. Определение основных параметров безопасной якорной стоянки. Выбор и обоснование места безопасной стоянки, закономерности данного процесса.
курсовая работа [590,3 K], добавлен 19.03.2013Характеристика грузовых трюмов. Определение удельной грузовместимости транспортного судна (УГС). Транспортные характеристики груза. Коэффициент использования грузоподъёмности судна. Оптимальная загрузка судна в условиях ограничения глубины судового хода.
задача [28,2 K], добавлен 15.12.2010Расчёт полной величины сопротивления воды движению судна, остаточного сопротивления судна и сопротивления воздушной среды. Сложность расчёта сопротивления среды движению плотов. Величина сил сопротивления судна при движении его в ограниченном потоке.
контрольная работа [76,0 K], добавлен 21.10.2013Допуск судов службой безопасности мореплавания к самостоятельному плаванию во льдах. Правила безопасного судовождения, борьба с обледенением. Методы определения местонахождения судна. Разновидности плавучих знаков. Знаки обозначения судового хода.
реферат [608,8 K], добавлен 21.11.2009Определение безопасных параметров движения судна, безопасной скорости и траверсного расстояния при расхождении судов, безопасной скорости судна при заходе в камеру шлюза, элементов уклонения судна в зоне гидроузла. Расчёт инерционных характеристик судна.
дипломная работа [1,5 M], добавлен 17.07.2016