Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
Проект и экономический анализ реконструкции контрольного пункта автосцепки вагонного депо "Ростов СКЖД" на основе внедрения поточного метода ремонта вагонов. Анализ износов и неисправностей корпуса автосцепки. Безопасность и экологичность проекта.
Рубрика | Транспорт |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 25.05.2009 |
Размер файла | 424,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
С позиции очистки поворотным краном автосцепки подают на двухсторонний поворотный стенд для разборки и контроля. Корпуса обмеряют шаблонами и диагностируют феррозондовым методом на стенде 24 Детали сцепного механизма подают на верстаки 2, где их осматривают и обмеривают.
Корпуса автосцепок, имеющие уширение зева и изгиб хвостовика направляют в правильное отделение. Краном-балкой корпуса устанавливают на транспортер , а затем краном-укосином подают поочередно в электропечь и пресс . Здесь же правят предохранители замка и специальном приспособлении .
Тяговые хомуты в сборе поглощающими аппаратами устанавливают на стол, где из разбирают. После разборки поглощающие аппараты направляют в специализированное отделение, где их устанавливают на стенд для разборки и последующей сборки. Комплектующие части аппаратов сложены на стеллаже. Тяговые хомуты и упорные плиты осматривают, диагностируют на столе . Неразрушающий контроль хомутов, проводят феррозондовым методом, оборудование для которого находятся на стенде .
При выявлении неисправностей, требующих ремонта сваркой или наплавкой, детали с позиции контроля направляют в сварочную кабину.
Корпус автосцепки краном-балкой снимают со стенда и устанавливают в патрон кантователя , тяговые хомуты тем же способом укладывают на стол сварочного поста . Эти детали наплавляют полуавтоматом 16 Мелкие детали ремонтируют ручной дуговой сваркой на сварочном посту 18.
После выполнения сварочно-наплавочных работ все детали на позицию механической обработки, оборудованной фрезерным 3, строгальным 4 и заточным 6 станками, а также приспособлениями 5 для обработки внутренних поверхностей корпуса и приводом и приспособлением для фрезеровки деталей механизма сцепления 3.
С позиции механической обработки детали, требующие уточнения поверхностей, направляют в отделение упрочненной наплавки. Здесь посредством токов высокой частоты, вырабатываемых установкой ТВЧ с охладителем , производят упрочнение наиболее изнашиваемых поверхностей корпуса автосцепки, тягового хомута, замка и замкодержателя ИМС. К индукторам детали подают и помощью манипуляторов .
По мере остывания после ИМС корпуса и детали подают на стенд для сборки, а тяговые хомуты на стенд для комплектовки с поглощающими аппаратами. После завершения сборочных работ узлы складывают на участке накопления, откуда их на электрокаре транспортируют в ВСУ.
Преимуществами предложенного варианта организации работ автосцепного оборудования являются:
- организация полноценного КПА с наличием необходимого технологического оснащения;
- возможность избежания противотоков в процессе ремонта;
- увеличение годовой программы ремонта участка и снижение себестоимости.
Технология ремонта автосцепок представлена в виде маршрутных карт.
2.3 Годовая программа ремонта автосцепного оборудования КПА
Программа ремонта определяется из расчета количества автосцепных комплектов, поступающих из ВСУ и с ПТО:
Nавт = Nв •2•1,2, авт.ком.,(35)
где 2 - количество автосцепных комплектов на одном вагоне;
1,2 - коэффициент, учитывающий 20% комплектов от годовой программы, поступающих с ПТО.
Nавт = 710 • 2 • 1,2 = 1704 авт.ком.
При такой программе ремонта участка внедрение поточно-конвеейрной линии /9/ не целесообразно, так как будет простой оборудования. Таким образом предлагаемый стационарный метод ремонта при перемещении деталей по отделениям удовлетворяет потребность ВСУ и ПТО в отремонтированном автосцепном оборудовании.
2.4 Определение штата работников КПА
Расчет штата рабочих для ремонта автосцепного устройства в КПА производим по формуле (36)
, чел,(36)
где Навт = 7,2 чел.-час - трудоемкость ремонта автосцепного устройства.
чел.
Приведенный расчет удовлетворяет определенной ранее численности работников по ремонту автосцепного устройства при расчете штата депо.
Распределение работников по профессиям представлено в таблице 17.
Таблица 17 Штатная ведомость работников КПА.
Профессия |
Трудоемкость Навт, чел.-час |
Количество, чел. |
|
Слесарь |
2,4 |
2 |
|
Строгальщик |
1,2 |
1 |
|
Сварщик |
1,2 |
1 |
|
Термист |
1,2 |
1 |
|
Дифектоскопист |
1,2 |
1 |
|
Итого |
7,2 |
6 |
2.5 Определение производственной площади
Реконструированный участок КПА имеет следующие размеры: L = 19м, В = 9м, Н = 4,7м.
Исходя из этих данных определяем площадь КПА
м2
Принятая площадь удовлетворяет нуждам депо и ПТО по ремонту автосцепных устройств и нормам размещения оборудования.
2.6 Контроль корпуса автосцепки феррозондовым методом
До настоящего времени для контроля корпуса автосцепки в депо Ростов СКЖД использовали 2 метода:
1- магнитопорошковый для контроля хвостовика;
2- вихретоковый для контроля неровных поверхностей головы автосцепки.
Для уменьшения затрат на технические средства контроля и трудоемкости работ предлагаем внедрить магнитный неразрушающий контроль корпуса автосцепки феррозондовым методом.
Феррозондовый метод неразрушающего магнитного контроля основан на обнаружении магнитных полей рассеяния, вызванных поверхностными и подповерхностными дефектами в намагниченных деталях. Этот метод позволяет контролировать детали как плоскими поверхностями, так и со сложной геометрической формой, меняется лишь тип феррозондового преобразователя (ФП), что при контроле корпуса автосцепки, имеющего сложную конфигурацию, имеет большое значение.
Порядок выполнения феррозондового неразрушаемого контроля корпуса автосцепки регламентирует приложение к РД 32.149/I-2000 /10/.
К техническим средством контроля корпуса относится:
- прибор магнитоизмерительный феррозондовый комбинированный
Ф - 205.30А ;
- намагничивающие устройства МСН 11-01 и МСН 12-01 ;
- стандартный образец СОП-НО-23.
Прибор магнитоизмерительный феррозондовый комбинированный Ф-205.30А.
Прибор Ф-205.30А МКИЯ. 427633.001-30А МКИЯ. 427.633.001 позволяет выполнять следующие основные операции:
- «ввод технологической операции» позволяет вводить в память прибора заголовок с информацией о детали, которую предполагается контролировать в рамках операции «обнаружение дефектов». Под этим же заголовком может вводиться таблица измерений, выполняемых в рамках операции «запись характеристик поля»;
- «обнаружение дефектов» сводится к обнаружению поверхностных и подповерхностных дефектов;
- «измерение постоянного поля» позволяет измерять величину и знак проекции вектора напряженности магнитного поля на продольную и нормальную ось ФП;
- «запись характеристик поля» позволяет записывать в память прибора до 16000 значений поля и градиента;
- «передача информации на компьютер» предусматривает передачу на компьютер данных, полученных и введенных в прибор в рамках операции «ввод технологической информации» и «запись характеристик поля».
Условия эксплуатации прибора:
- температура окружающего воздуха от +5оС до +40оС;
- относительная влажность воздуха от 30 до 90% при температуре +25оС;
- атмосферное давление от 630 до 800 мм рт. ст.
Работа с прибором Ф-205.30А производится в соответствии с
руководством по эксплуатации МКИЯ. 427633.001.30А РЭ, Форма хранения и вывод информации определена в документе «Паке программ РМД-1 и руководстве эксплуатации МКИЯ.НД-30 РЭ.
Прибор Ф-205.30А укомплектован феррозондовыми преобразователями двух типов:
- ФП с базой 4 мм - для контроля хвостовика автосцепки;
- ФП с базой 3 мм - для контроля переходов и сопряжений на голове автосцепки.
Форма насадки указывает на тип преобразователя (рис.1)
1 - основание; 2 - защитный колпачек; 3 - метка; 4 - корпус; 5 - этикетка; 6 - гибкий кабель.
Рисунок 1. ФП МДФ 9405.130 с базой 4 мм (а), ФП МДФ 9405.30 с базой 3 мм (б).
Намагничивающие устройства.
Намагничивающая система МСН 11-01 на постоянных магнитах предназначена для намагничивания корпуса автосцепки. МСН 11-01 представляет собой Г-образную магнитную систему, у которой изменяется расстояние между магнитными полюсами (чертеж И9.047.1.039.06.Д, рис.1). Система имеет постоянные магниты, расположенные в кассете 6 и цилиндрическом полюсе4. Кассета и полюсы имеют окраску, указывающую на полярность (красный цвет - южный полюс, синий цвет - северный полюс). От механических повреждений магниты предохранены полюсными наконечниками 7 и 4. Кассета с магнитами и полюсным наконечником крепится латунными винтами к треугольному магнитопроводу 5, образуя другой полюс системы. Полюса соединяются друг с другом штангой 3.
Прямоугольный магнитопровод может перемещаться и фиксируется на штанге с помощью цангового зажима 2. Максимальное расстояние между полюсами ограничивает гайка 1, расположенная на конце штанги.
МСН 11-01 создает в корпусе автосцепки магнитный поток, необходимый для возникновения на дефектах магнитных полей рассеяния. Работа с намагничивающим устройством ведется в соответствии с Руководством по эксплуатации МСН 11 РЭ.
Приставное намагничивающее устройство МСН 12-01 на постоянных магнитах предназначено для намагничивания зева корпуса автосцепки. Устройство представляет собой V-образную магнитную систему с гибким магнитопроводом из материала с высокими магнитной проницаемостью и индукцией насыщения (чертеж И9.47.1.039.06.Д, рис.2). Оно содержит постоянные магниты большой мощности, расположенные в держателях 2. Держатели имеют окраску, указывающую на полярность (красный цвет - южный полюс, синий цвет - северный полюс). От механических повреждений магниты предохранены полюсными наконечниками 1. Полюса соединены друг с другом гибким магнитопроводом в кожаном чехле. Максимально расстояние между полюсами ограничивается длиной магнитопровода.
Устройство создает в объекте контроля магнитный поток, необходимый для возникновения на дефектах магнитных полей рассеяния. Робота с устройством производится в соответствии с Руководством по эксплуатации МСН -12 РЭ.
Стандартный образец СОП - НО - 23.
Стандартный образец СОП-НО-23 предназначен для настройки рабочей чувствительности и проверки работоспособности дефектоскопов при контроле корпусов автосцепок.
Стандартный образец (рис.2) представляет собой пластину, размером 300х40х10 мм из стали 20ГФЛ с нанесенными на ней 3-мя искусственными дефектами. Пластина является частью замкнутой магнитной системы с
магнитопроводами и постоянными магнитами.
Магнитная система стандартного образца содержит устройство 3, позволяющее регулировать величину магнитного потока в образце. Величина магнитного потока изменяется от нуля до максимального значения при вращении ручки 3. Фиксатор 7 предназначен для предотвращения самопроизвольного проворачивания регулирующего устройства 6.
Искусственные дефекты стандартного образца изготовлены таким образом, что бы градиент их полей рассеяния был равен градиенту поля рассеяния максимального допустимого дефекта корпуса автосцепки.
Рисунок 2. Стандартный образец СОП-НО-23
1 - пластина с искусственными дефектами; 2 - магнитопровод; 3 - регулирующее устройство с постоянными магнитами; 4 - кожух; 5 - опора; 6 - ручка регулирующего устройства; 7 - фиксатор регулирующего устройства.
Технология контроля.
Технологический процесс феррозондового контроля корпуса автосцепки представлен в виде карты контроля корпуса автосцепки феррозондовым методом (чертеж И9.47.1.039.07.Д).
При контроле корпуса необходимо знать критерий браковки по экс-плуатационным и литейным дефектам, которые представлены в таблице 18.
Таблица 18 Критерии браковки корпуса автосцепки.
Зона контроля |
Характеристика дефекта |
Критерии браковки |
Применяемые меры |
|
Переход от головы к хвостовику |
Трещины поперечные и наклонные: -не переходящие на сопряженные поверхности |
Глубиной менее 15 мм |
Ремонт |
|
Суммарная длина нескольких трещин менее 110 мм |
Ремонт |
|||
Глубиной более 15 мм |
Исключить из инвентаря |
|||
Суммарная длина нескольких трещин более 110 мм |
||||
-переходящие на сопряженные поверхности |
Независимо от размера |
Исключить из инвентаря |
||
Хвостовик |
Трещины поперечные и наклонные: |
Корпус проработавший менее 20 лет: суммарная длина нескольких трещин менее 150 мм |
Ремонт |
|
суммарная длина нескольких трещин более 150 мм |
Исключить из инвентаря |
|||
Корпус поработавший более 20 лет: суммарная длина нескольких трещин менее 100 мм |
Ремонт |
|||
суммарная длина нескольких трещин более 100 мм |
Исключить из инвентаря |
|||
Трещины поперечные и наклонные, заваренные и не заваренные в зоне изгиба |
Независимо от размера |
Исключить из инвентаря |
||
Кромка отверстия для клина тягового хомута |
Трещины поперечные и наклонные: -не переходящие на сопряженные поверхности |
Независимо от размера |
Ремонт |
|
-переходящие на сопряженные поверхности |
Независимо от размера |
Исключить из инвентаря |
||
Перемычка хвостовика |
Трещины поперечные и наклонные: -не переходящие на сопряженные поверхности |
Независимо от размера |
Ремонт |
|
-переходящие на сопряженные поверхности |
Независимо от размера |
Исключить из инвентаря |
||
Кромки контура большого зуба |
- плоскости наружных ребер большого зуба |
Независимо от размера |
Ремонт |
|
- выходящие за горизонтальные плоскости наружных ребер большого зуба |
Независимо от размера |
Исключить из инвентаря |
||
Верхний угол отверстия для замка |
Трещины поперечные и наклонные по отношению к кромке отверстия: - не выходящие за горизонтальную поверхность головы |
Независимо от размера |
Ремонт |
|
- выходящие за горизонтальную поверхность головы |
Независимо от размера |
Исключить из инвентаря |
||
Верхний угол отверстия для замкодержателя |
Трещины поперечные и наклонные по отношению к кромке отверстия: - не выходящие за положение верхнего ребра со стороны большого зуба |
Независимо от размера |
Ремонт |
|
- выходящие за положение верхнего ребра со стороны большого зуба |
Независимо от размера |
Исключить из инвентаря |
||
Нижний угол для замкодержателя |
Трещины поперечные и наклонные по отношению к кромке отверстия |
Длиной менее 20 мм |
Ремонт |
|
Длиной более 20 мм |
Исключить из инвентаря |
|||
Нижний угол для замка |
Трещины поперечные и наклонные по отношению к кромке отверстия |
Длиной менее 20 мм |
Ремонт |
|
Длиной более 20 мм |
Исключить из инвентаря |
|||
Переход от ударной поверхности к боковой стенке большого зуба |
Трещины поперечные и наклонные по отношению к кромкам контура большого зубы |
Независимо от размера |
Исключить из инвентаря |
|
Переход от боковой стенки к тяговой поверхности большого зуба |
Трещины поперечные и наклонные по отношению к кромкам контура большого зубы |
Независимо от размера |
Исключить из инвентаря |
|
Все контролируемые поверхности |
Литейные дефекты |
|||
Раковины трещиновидные |
Независимо от длинны: - глубиной менее 7 мм |
Ремонт |
||
- глубиной более 7 мм |
Исключить из инвентаря |
2.7 Пресс для выправления корпуса автосцепки
Для правки корпусов применяется гидравлический пресс. Пресс состоит из рамы 1 (чертеж И9.47.1.039.03 ГЧ), на которой закреплены гидравлические цилиндры: вертикальный 2 усилием 500 кН и горизонтальный усилием 250кН. На штоках указанных цилиндров шарнирно закреплены нажимные элементы 3 и 8, имеющие очертания, соответствующие конструкции корпуса автосцепки в зоне выправляемых мест. Подача рабочей жидкости в цилиндры 2 и 7 осуществляется насосом 9 и электродвигателем 10. Резервуар 6 служит как компенсатор для размещения жидкости.
При правке изогнутого корпуса 4 автосцепки его устанавливают на профильную опору 5 и включают двигатель насоса гидропривода. Жидкость подается в вертикальный цилиндр 2, предназначенный для исправления изгибов хвостовиков в горизонтальной плоскости и для сжатия расширенного зева, или в цилиндр 7, служащий для исправления изгибов хвостовика в вертикальной плоскости корпуса. Пресс допускает производить правку корпуса одновременно в двух плоскостях в зависимости от характера деформации. После выправления нажимные элементы гидравлических цилиндров устанавливаются в исходное положение и корпус с помощью манипулятора вынимается из пресса. При сжатии расширенного зева между малым и большим зубьями устанавливается специальный ограничитель.
Расчет гидропривода пресса для выправления корпуса автосцепки.
Применяется электрогидравлический привод (рисунок 3), который способен развивать большие усилия /11/
Рисунок 3. Схема электрогидравлического привода.
1 - электродвигатель; 2 - резервуар с маслом; 3 - фильтр; 4 - предохранительный клапан; 5 - насос; 6 - обратный клапан; 7 -гидрораспылитель; 8 - цилиндр гидропривода.
Для данного пресса расчет производится двух гидроцилиндров:
- вертикального DВ = 0,35 м; dшm.в = 0,15 м; Рmв = 500кН
- горизонтального DГ = 0,25 м; dшm.г = 0,10 м; Рmг = 250кН;
Определяем усилие, развиваемое гидроприводом по формуле (37)
, Н, (37)
где РР - рабочее давление жидкости в полости цилиндра, Па, определяемое по формуле (38)
(38)
где Рm - усилие рабочее, Н;
f0=0.85 - коэффициент, учитывающий трение уплотняющих устройств;
=1,2 - коэффициент, учитывающий трение масла;
Fn -площадь поперечного сечения цилиндра, м2;
Fшm-площадь поперечного сечения штока, м2;
РС=0,1РР - величина противодействия сливной полости.
РС.В.=0,183,3105=8,33105 Па
РС.Г.=8,33105 Па
Определяем расход масла по формуле (39)
, м3/с (39)
где S - ход поршня, SВ = 0,35 м; SГ = 0,3 м
tnx =15 c - длительность прямого хода.
Подачу насоса QН и давление РН необходимо определить с учетом утечек жидкости и потерь во времени по формулам (40) и (41)
где - объемный КПД.
, Па , (41)
где -коэффициент, учитывающий потери давления:
Определяем диаметры нагнетательного и всасывающего трубопровода по формуле (42).
где Vm - скорость течения жидкости в трубопроводе,
Vm.наг= 5 м/с; Vm.вс= 2 м/с;
Длительность цикла работы гидросистемы определяем по формуле (43) для обоих цилиндров:
, с, (43)
где t=0.1 с -время срабатывания гидрораспределителя;
tnx=15 с длительность прямого хода;
tок=0,9 tnx =0,9 15=13,5 с - длительность обратного хода;
tЦ=20,1+15+13,5=28,7 с.
Выбор двигателя для гидропривода.
Выбор двигателя определяем, исходя из потребной мощности, по формуле (44) по большому усилию /11/
, кВт (44)
где k - коэффициент запаса на случай перегрузки двигателя, k = 1.1 ;
РН =10400 кПа - давление, которое должен создавать насос;
QН=0,0024 м3/с - подача насоса;
= 0,85 - полный КПД насоса;
n=1 - КПД передачи.
кВт
Принимаем двигатель мощностью 1 кВт.
Предложена реконструкция участка по ремонту автосцепки пассажирского вагонного депо Ростов СКЖД с организацией КПА со всеми ему присущими отделениями и оснащением участка современным технологическим оборудованием в соответствии с Инструкцией по ремонту автосцепного устройства. Определены годовая программа штата работников и производственная площадь КПА, которые удовлетворяют потребности депо и ПТО в отремонтированном автосцепном оборудовании. Для улучшения процесса магнитного контроля предложен феррозондовый метод контроля. В качестве механизации рассмотрен гидравлический пресс для выправления корпусов автосцепок с расчетом гидропривода.
3. АНАЛИЗ ИЗНОСОВ И НЕИСПРАВНОСТЕЙ КОРПУСА АВТОСЦЕПКИ
В настоящее время на пассажирских вагонах железных дорог России и других стран СНГ для соединения единиц подвижного состава используется автосцепка жесткого типа СА-3. Для выборки зазоров в автосцепном устройстве с целью снижения продольных ускорений пассажирские вагоны дополнительно оборудуются буферами.
Применение автосцепки СА-3 на пассажирских вагонах имеет ряд недостатков. В частности , мягкий рессорный комплект тележек приводит к большим относительным вертикальным перемещениям автосцепок в процессе движения и соответственно к их интенсивному износу, появляется опасность саморасцепов, возникает высокий уровень шума из-за частых ударов хвостовика автосцепки о центрирующую балочку.
3.1 Характеристика дефектов корпуса автосцепки
Корпус автосцепки при работе испытывает значительные динамические нагрузки, действующие в различных плоскостях, большие перепепады температур. Значительные продольные и поперечные нагрузки появляются при входе состава в кривые участки пути или выходе из них, при переломах профиля железнодорожного полотна , на сортировочных станциях и горках , при трогании с места и торможениях. Перегрузки возникают от несинхронности колебаний сочлененных вагонов. Сложный профиль корпуса автосцепки также является естественным источником концентрации внутренних напряжений.
Основной причиной ремонта и замены этой детали при плановых текущих ремонтах является износ.
К основным неисправностям корпуса автосцепки относятся:
- износы тяговых поверхностей большого и малого зубьев и износы ударных поверхностей большого зуба и зева существенно ухудшают продольную динамику вагонов и могут являться причиной саморасцепов;
- износ поверхностей корпуса в месте соприкосновения с поверхностями проема ударной розетки происходит в случае отклонения оси корпуса в вертикальной и горизонтальной плоскостях.
При проходе вагонов в кривых малого радиуса и особенно при сцеплении вагонов с разной длинной консольной части рамы оси автосцепки отклоняются и на первом этапе подвергаются износу вертикальные стенки корпуса автосцепки. Прочность стенок становится недостаточной при определенном износе, хвостовик начинает изгибаться в горизонтальной плоскости. При прохождении переломов профиля пути возникает заклинивание автосцепок в контуре зацепления. В результате этого хвостовик автосцепки упирается через тяговый хомут в верхнее перекрытие хребтовой балки и начинает поднимать вагон. Это приводит к изгибу хвостовика в вертикальной плоскости или изломам маятниковых подвесок смежной автосцепки.
- износ упорной поверхности хвостовика от взаимодействия с упорной плитой, износы стенок отверстия от взаимодействия с клином хомута являются причиной износа перемычки хвостовика; износ в месте сопряжения хвостовика с тяговым хомутом. Основной причиной этих износов является существенное увеличение продольных сил;
- износ поверхности упора головы автосцепки в выступ ударной розетки происходит из-за недостаточной эффективности поглощающих аппаратов в определенных поездных ситуациях;
- трещины в месте перехода от головы к хвостовику характеризуется хрупким разрушением и в большинстве своем происходят в результате износа перемычки;
- трещины в углах окон под замок и замкодержатель и трещины в углах образованных ударной стенкой зева и боковой стенкой большого зуба, а так же между этой стеной и тяговой стороной большого зуба. Эти трещины образуются в результате влияния концентрации напряжений в зонах перехода от одной поверхности к другой.
3.2 Меры повышения надежности корпуса автосцепки в эксплуатации
Мерой повышения износостойкости ударных поверхностей большого зуба и зева служит упрочнение этих поверхностей индукционно-металургическим способом. Этот способ позволяет увеличить срок службы корпуса между ремонтами в 2 раза.
Мерой уменьшения износов при вертикальных перемещениях автосцепок, опасности саморасцепов и высокого уровня шума может стать применение новой автосцепки. Такая автосцепка разработана ВНИИЖТом совместно с Тверским вагоностроительным заводом.
1- направляющий рог; 2 - большой зуб; 3- замок подпружиненный; 4 - предохранитель.
Рисунок 4. Автосцепка жесткого типа.
Автосцепка жесткого типа не допускает в сцепленном состоянии взаимных вертикальных перемещений. Для этого автосцепка оснащена направляющим рогом, который в процессе сцепления взаимодействует с нижней наклонной поверхностью большого зуба смежной сцепки и таким образом устанавливает их сносно, независимо от разности высот автосцепок перед сцеплением.
Новый механизм сцепления, разработанный ВНИИЖТом, имеет преимущества перед типовым. Подпружиненный замок не перекатывается как в автосцепке СА-3, а перемещается поступательно , что вместе с предохранителем полностью исключает опасность самопроизвольного расцепления автосцепок.
Для опоры автосцепки жесткого типа должно использоваться центрирующее устройство с упругой опорой хвостовика, например подпружиненная центрирующая балочка. Это исключит опасность передачи вертикальной нагрузки через автосцепку на смежный вагон при переломах профиля пути.
Опытные образцы автосцепки были изготовлены Брянским машиностроительным заводом и прошли стендовые испытания на Экспериментальном кольце ВНИИЖТа, которые показали надежную сцепляемость новой сцепки, как с аналогичной, так и с типовой.
Такая сцепка позволит увеличить межремонтные сроки эксплуатации и значительно уменьшить шум при движении поезда. Она взаимозаменяема с автосцепкой СА-3 и может устанавливаться на пассажирские вагоны эксплуатационного парка при проведении плановых видов ремонта.
Эта автосцепка также обеспечивает повышение безопасности движения поездов благодаря использованию разработанного ВНИИЖТом нового расцепного привода.
Его расцепкой рычаг 1 дополнительно оборудован третьим блокирующим плечом 2, которое связано с нижней частью балансира валика подъемника 3 блокирующей цепью 4 в дополнение к имеющейся на всех вагонах расцепкой цепи 5. Такая модернизация расцепного привода не препятствует расцеплению автосцепок при переформировании поездов.
1 - расцепной рычаг; 2- блокирующее плечо; 3 - валик подъемника; 4 - блокирующая цепь; 5 - расцепная цепь; 6 - ограничитель вертикальных перемещений.
Рисунок 5. Новый расцепной приыод.
Вместе с тем, в случае обрыва автосцепки обе цепи натягиваются одновременно и при дальнейшем расхождении вагонов сначала обрывается расцепная цепь 5, выполненная меньшей прочности, а затем блокирующая 4. При этом расцепления автосцепок не происходит. Таким образом, при наличии нового расцепного привода оборвавшаяся автосцепка сохраняет сцепленное положение со смежной и не падает на путь. Такой расцепной привод может использоваться не только с автосцепкой жесткого типа, но и с типовой, оборудованной ограничителем вертикальных перемещений 6.
Предложенные конструкции автосцепного устройства представлены в статье старшего научного сотрудника ВНИИЖТа, кандидата технических наук Беляева В.И., заведующего лабораторией автосцепки ВНИИЖТа Ступина Д.А. , заместителя руководителя департамента пассажирских сообщений МПС РФ Кузнецова А.
Произведен анализ износов и неисправностей корпуса автосцепки и определены причины их возникновения. В связи с этим, предложены меры повышения надежности корпуса автосцепки в эксплуатации, связанные с процессом ремонта и улучшением конструкции автосцепных устройств. Эти меры призваны уменьшить износы при перемещении вагонов, исключить возможность саморасцепов и увеличить межремонтные сроки.
4. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ РЕШЕНИЙ ПРОЕКТА
4.1 Обеспечение безопасности работ на контрольном пункте автосцепки
Ремонт пассажирских вагонов производят в вагонном депо, специализирующимся на ремонте цельнометаллических вагонов, в соответствии с руководством и инструкциями по деповскому ремонту.
В контрольном пункте автосцепки (КПА) производят ремонт автосцепного устройства на нескольких производственных участках в соответствии с технологическим процессом.
При выполнении работ по сварке и наплавке деталей автосцепного устройства на рабочем месте сварщика возникают определенные потенциальные опасности. При пробоях изоляции на токоведущей части сварочного оборудования и оснастки, при прикосновении к токоведущим частям или при поражении напряжением шага возникает опасность получения электротравм. Во время сварки и наплавки образуются брызги расплавленного металла, соприкосновение с которыми может привести к ожогам различной степени кожного покрова и повреждению глаз сварщика. Воздействие лучей открытой сварочной дуги приводит к поражению глаз и кожи. При очиcтке сварочных швов от шлака и окалины или не достаточной механизации на участке может возникнуть опасность получения механических травм. Газы, образующиеся при сварочных работах, насыщены вредными примесями, которые отрицательно влияют на здоровье сварщика, через дыхательные пути попадает в легкие и оседает в виде сажи.
Для устранения или уменьшения воздействия перечисленных выше опасностей предлагаются организационные и технические мероприятия по охране труда. При разработке мероприятий по безопасности при выполнении электросварочных работ базовым документом является ГОСТ 12.3.003-86
Организационные предприятия включают в себя: проведение всех необходимых инструктажей по технике безопасности; наличие предупреждающих и разъяснительных плакатов в близи рабочего места; контроль за соблюдением работниками всех требований по технике безопасности.
При выполнении работ обеспечивают надлежащую организацию труда, техническое оснащение оборудованием рабочих мест и создают на них безопасное условия работы, соответствующие ГОСТ 32.15-81 техническое обслуживание и ремонт вагонов. Требования безопасности, а также требования действующей документации и указаниям по охране труда.
Технические мероприятия разработаны в соответствии с существующими СНиПами и ГОСТами и привязаны к виду опасности.
Для избежания электротравм проводят такие мероприятия, как надежное защитное зануление корпусов электроустановок; зануление электросварочных агрегатов и зажима вторичной обмотки сварочных трансформаторов, к которому подключается обратный провод, а также защитное зануление столов и стендов для установки деталей, в соответствии с ГОСТ12.11.030-81. Обеспечивают надежную изоляцию и защиту от механических повреждений рабочих проводов, подводящих ток от сварочной машины или трансформатора. Применяют диэлектрические материалы при изготовлении рукояток электрододержателей. Не допускают соединение сварочной цепи электросварочного аппарата с зануленным проводом или корпусом аппарата. Сварщики имеют средства индивидуальной защиты (диэлектрические коврики, перчатки, для исключения попадания брызг расплавленного металла на кожу и глаза сварщика используют специальную одежду и обувь, защитные щитки и шлемы, а также козырьки на рукоятках электрододержателей.)
Для уменьшения воздействия лучей открытой электрической дуги на сварщика и работающих на других участках людей работы выполняют в кабинах, каркас которых изготавливают из труб или уголков, а стенки из тонкой листовой стали, стенки кабин окрашивать в светлые тона (серый, голубой, желтый) с добавлением в краску окиси цинка, которая уменьшает отражение ультрафиолетовых лучей дуги; снабжают рукоятки электрододержателей экранами, отражающими лучи дуги; обеспечивают сварщиков масками или щитками со вставленными в них защитными темными стеклами различной прозрачности в зависимости от величины сварочного тока.
Во избежание механических повреждений обеспечивают работающих очками с бесцветными стеклами для защиты глаз при очистке сварочных швов. Обеспечивают максимальную механизацию, особенно при перемещении и транспортировке деталей на участке. При эксплуатации кран-балки в соответствии с ГОСТ 12.2065-81 ограждают все доступные движущиеся либо вращающиеся части механизмов, исключают не предусмотренные контакты работающих с перемещаемым грузом, обеспечивают надежную прочность механизмов, вспомогательных и захватных приспособлений.
Для уменьшения вредного воздействия газов, образующихся при сварке каждое рабочее место сварщика оборудовано местной вытяжной вентиляцией для отвода газов и приточной вентиляцией в зону дыхания сварщика. Для улучшения вентиляции стенки кабин не доводят до пола на 100-150 мм. Наличие приточной вентиляции необходимо для обеспечения температурного режима на участке.
Рисунок 4.1. Схема системы местной приточно-вытяжной вентиляции
1 -- вытяжной зонт; 2 -- приточный патрубок; 3 -- вытяжной вентилятор; 4 -- приточный вентилятор; 5 -- калорифер
Важную роль в обеспечении безопасности на участке сварки и наплавки играет освещение. Нормирование освещения производят в соответствии с СНиП 23.05-95. На участке применяют боковое естественное освещение через оконный проем и искусственное в виде общего и местного. Общее искусственное освещение обеспечивает нормальный рабочий процесс на участке в темное время суток. В качестве источников света применяют люминесцентные лампы с исправленной цветностью ЛДЦ. Местное освещение применяют на рабочих местах для контроля за качеством выполняемых работ, в качестве источников света используют лампы накаливания.
Напряжение стационарных светильников местного освещения не превышает 50 В. При использовании искусственного освещения следят за выполнением основных требований: освещение предусмотрено достаточное, равномерное и экономичное. Лампы электрические эксплуатируют в соответствии с ГОСТ 12.2.007.13-88. Еmin = 300лк.
К мерам электробезопасности, указанным выше, и выполняемых на участке сварки и наплавки, добавляют мероприятия, общие для всего отделения: расположение электропроводки в недоступном для работающих месте при условии обеспечения надежной ее изоляции и защиты от анических повреждений; использование в сети зануления предохранителей в плавкими вставками.
Участок сварки и наплавки относят к горячим цехам, следовательно, большое внимание уделяют вопросам пожарной безопасности, которая обеспечивает как в рабочем состоянии объекта, так и в случаях возникновения пожара, в соответствии с ГОСТ 12.1.004-91. На участке предусматривают наличие пожарных проходов, пожарного оборудования (гидранты, пожарные краны), устройств пожарной сигнализации с автоматическим пуском, одного огнетушителя ОХП-10.
Выполнение всех мероприятий по технике безопасности, разработанных в проекте, обеспечивает безопасное условия труда на участке сварки и наплавки в контрольном пункте автосцепки, уменьшение случаев травматизма и клинических заболеваний работающих.
Проверка правильности выбора плавкой вставки предохранителя.
Для обеспечения электробезопасности при возникновении тока короткого замыкания в сети зануления электрооборудования, каждая фаза имеет предохранитель с плавкой вставкой.
Проверка плавкой вставки на срабатывание в четырехпроходной сети длиной 300м; сечение фазного провода Sф=25мм2, нулевого провода Sо=16мм2; провода алюминиевые, =0,0295Оммм2/м. Номинальная сила тока установленного плавкого предохранителя Iп.в.=60А, напряжение сети 380/220В.
1,2 - электроустановки; 6 - трубчатые заземлители; 3 - зануляющий проводник; 7 - соединительная полоса; 4 - зануляющая магистраль; 8 - нулевой ввод; 5 - выводы контура повторного заземления нулевого провода;
Рисунок 4.2. Принципиальная схема устройства защитного зануления с повторным заземлением нулевого провода
Определяем сопротивление фазного и нулевого проводов
Определяем силу тока короткого замыкания в сети
Из условия необходимая сила тока плавкой вставки составит
т.е. условие срабатывания плавкого предохранителя выдержано.
Из расчета следует, что выбранный предохранитель с плавкой вставкой будет срабатывать при возникновении в сети зануления тока короткого замыкания.
4.2 Охрана окружающей среды
Общая характеристика контрольного пункта автосцепки c точки зрения его влияния на окружающую среду. Требования законов РФ к этим влияниям.
Рассматриваемое в проекте депо находится в городе Ростове-на-Дону, который входит в список наиболее неблагополучных по состоянию атмосферы городов Российской Федерации. В виду этого вопросом экологии и охраны окружающей среды на предприятии должно уделяться еще больше внимания, тем более что депо находится в центре города вблизи жилых массивов. Наличие зеленых насаждений в районе размещения депо в какой-то степени улучшает экологическую ситуацию.
Вредные вещества попадают в атмосферу через системы вытяжной вентиляции, дымовую трубу котельной, системы удаления загрязненного воздуха от механических станков по обработке металлов и других материалов. Наиболее опасными с точки зрения загрязнения атмосферы производственными процессами являются: сборочный участок; малярное, механическое и кузнечное отделение; а также сварочные, аккумуляторный, гальванический участки. В результате их работы в атмосферу выбрасывается значительное количество таких токсичных веществ, как окись железа, марганец и его соединения, сили никеля, пары щелочей и кислот, масляные аэрозоли.
При производстве сварочных работ в воздушную среду выделяется вредные для здоровья человека и окружающей среды вещества. Среди них фтористый водород, соединения марганца, фториды, металлы и их оксиды, сварочные аэрозоли. Кроме того, может происходить загазованность помещения при неполном сгорании газа и недостаточной вентиляции и тяге, неудовлетворительном регулировании процесса горения. Выделение вредных веществ и их распространение в воздушной среде должны предотвращаться хорошей организацией технологического процесса и рациональным размещением атмосферно охранного оборудования.
При выполнении всех требований закона РФ «Об охране окружающей среды», 2002г., нормативных актов и «Экологической программой по охране окружающей среды 2001-2005гг.», а также при внедрении в процессы производства современных очистных технологий предприятие сможет существенно снизить выбросы вредных примесей в атмосферу, а значит, и плату за них. В 2002 году в Российской Федерации был принят закон «Об охране окружающей среды». Основными принципами охраны окружающей среды являются плотности природоиспользования и возмещения вреда окружающей среде обусловленного вредными выбросами, а так же обеспечение снижения вредных выбросов. Негативное воздействие на окружающую среду является платным статья 16 пункт 1.
Значение нормативов предельно допустимых значений выбросов для каждого предприятия вредного источника выброса устанавливаются с учетом результатов расчетов загрязнения атмосферного воздуха. Согласно законодательства РФ закреплена обязанность предприятия и организаций, деятельность которого связаны с выбросами загрязняющих веществ в атмосферу, проводить организационно хозяйственные технические мероприятия для выполнения условий и требований, предусмотренных решений на выброс принимать меры по снижению выбросов загрязняющих веществ, обеспечивать эффективную бесперебойную работу и поддерживать в исправном состоянии сооружений и оборудований для очистки выбросов и контроля.
Для оценки хозяйственной емкости эко системы и определенно-допустимого на них антропогенного воздействия на окружающую среду и на его основе осуществляют экологическую экспертизу.
Правовой базой экологической экспертизы являются законы, постановления и указы , а также различные документы международного характера.
Анализ и расчеты загрязнения среды рассматриваемыми объектами. Меры по снижению загрязнений и платы.
Проведем расчет выбросов при работе с электродами УОНИ-13/45. Расход электродов на участке 0,5 кг в сутки. Сварочный пост оборудован системой вентиляции, выброс загрязненных газов осуществляется на высоте Н=15м.
Определяем удельные выбросы вредных веществ в атмосферу, qi при выполнении работ по сварке и наплавке, которые составляют для электродов УОНИ-13/45 в г/кг:
- для твердых частиц (т.ч.)18
- для марганца и его соединений (Mn)0,3
- для окислов хрома (Cr)1,4
- для флоридов (F)3,45
- для фтороводорода(HF)0,75
- для окиси азота (NO)1,5
- для окиси углерода (GO)13,3
За год в КПА расходуется электродов
В=0,5251=125,5 кг/год,
Где 251 рабочих дней в году.
Количество вредных веществ определяется по формуле (73)
I=qiB10-3, кг/год(73)
т.ч.=18125,510-3=2,259 кг/год;
Mn=0,3125,510-3=0,038 кг/год;
Cr=1,4125,510-3=0,176 кг/год;
F=3,45125,510-3=0,433 кг/год;
HF=0,75125,510-3=0,094 кг/год;
NO=1,5125,510-30,188 кг/год;
GO=13,3125,510-31,67 кг/год.
Суммарные годовые выбросы вредных веществ при сварке составляют
=т.ч+Mn+Cr+F+HFNO+GO= 2,259 + 0,038 + 0,176 + 0,433 + 0,094 + + 0,188 + 1,67=4,858 кг/год.
Секундную массу суммарных выбросов определяем по формуле (74)
кг/с (74)
где n - число часов работы вентиляционной системы в сутки, n = 2 часа;
3600 - коэффициент перевода в секунды;
Т=251 - количество рабочих дней в году.
кг/с.
Параметры вентиляционной системы следующие: - объемный расход воздуха Q, определяем по формуле (75)
Q=400=4002.6810-6=12.0710-3 м3/c(75)
-площадь поперечного сечения вентиляционной системы , определяем по формуле (76)
, м2, (76)
где V=2.5м/с - скорость воздуха в вентиляционной системе.
м3;
5 диаметр вентиляционной системы D
м,
принимаем D=0,2 м.
Для каждой вредной примеси устанавливается предельно допустимая концентрация ПДК, которая при действии на организм человека в течение заданного промежутка времени не вызывает не вызывает необратимых изменений в нем. Научно обоснованные нормы ПКД в приземном слое атмосферы должны обеспечиваться контролем нормативов для всех источников выбросов. Такими нормативами являются предельно допустимые выбросы ПВД.
ПВД определяем для каждого загрязняющего вещества по формуле (77)
г/с, (77)
где ПДКрi - максимально разовая ПДК, г/м3;
Сфi - фоновая концентрация в приземном слое, г/м3;
А - коэффициент атмосферной температурной стратификации, определяющий условия вертикального перемещения слоев, для Северного Кавказа А=200;
F - коэффициент, учитывающий скорость оседания частиц, для газов F=1, для пыли F=23;
m,n - коэффициенты, учитывающие условия выбросов, m,n =1;
- коэффициент, характеризующий местность, для Северного Кавказа =1 (равнинная местность)
Фактические выбросы I и ПДВi за год сведены в таблицу 26.
Таблица 26 Фактические и предельно-допустимые выбросы загрязняющих веществ.
Загрязняющее вещество |
Фактические выбросы I |
ПДВi |
|||
г/с |
m/год |
г/с |
m/год |
||
Твердые частицы |
2,259 |
0,002 |
0,0014 |
0,003 |
|
Марганец и его твердые соединения |
0,038 |
0,00004 |
0,000095 |
0,0002 |
|
Окислы хрома |
0,176 |
0,0002 |
0,00028 |
0,0005 |
|
Фториды |
0,433 |
0,00043 |
0,00085 |
0,0015 |
|
Фтороводород |
0,094 |
0,00094 |
0,00057 |
0,001 |
|
Окислы азота |
0,188 |
0,00018 |
0,017 |
0,03 |
|
Окислы углерода |
1,67 |
0,0016 |
0,142 |
0,255 |
Годовая продолжительность выбросов при сварке и наплавке составляет
Тгод=23600251=1,8106 с/год,
Где 2 - общее количестве времени работы вентиляционной системы в сутки;
3600 - коэффициент перевода в секунды;
251 - количество рабочих дней в году.
При анализе полученных данных из таблицы 20 получаем, что фактические выбросы всех вредных веществ в атмосферу не превышают ПДВ. Исходя из этого, расчет платы за загрязнение воздуха производим по формуле (78)
Пi=IЦiКэКu , руб/год(78)
где Цi - базовая цена выброса одной тонны на 2003г, руб/m;
Кэ - коэффициент экологической ситуации для данной местности, для Ростова-на-Дону Кэ =1,92;
Кu - коэффициент индексации по отношению к 2004г, Кu=1,1.
Данные расчета сводим в таблицу 27.
Таблица 27 Расчет платы за загрязнение окружающей среды при сварке и наплавке в КПА.
Загрязняющее вещество |
Фактические выбросы I |
Нормативная плата, Цi, руб/т |
Плата Пi, руб/год |
|
Твердые частицы |
0,002 |
52 |
0,219 |
|
Марганец и его твердые соединения |
0,00004 |
2056 |
0,1735 |
|
Окислы хрома |
0,0002 |
1366 |
0,576 |
|
Фториды |
0,00043 |
205 |
0,186 |
|
Фтороводород |
0,000094 |
2056 |
0,4077 |
|
Окислы азота |
0,00018 |
52 |
0,019 |
|
Окислы углерода |
0,0016 |
0,6 |
0,002 |
|
Итого: |
1,583 |
Суммарная плата за выбросы вредных веществ при проведении сварочно-наплавочных работ в КПА на одном сварочном посту с использованием электродов марки УОНИ-13/45 составляет примерно 1,5 руб/год. Выплаты ведутся за счет себестоимости продукции. Малая сумма достигается небольшим объемом работ, связанных с ручкой электродуговой сваркой и наплавкой, в отделении.
Мероприятия по снижению воздействия на окружающую среду
Для уменьшения вредного воздействия технологического процесса капитального ремонта автосцепок в КПА проводят ряд мероприятий.
Для ликвидации вредных веществ из воздуха устанавливают мощную воздухоочистительную установку снабженную специальным фильтром для очистки воздуха от примесей.
В помещении, где производятся сварочно-наплавочные работы, устанавливается принудительная вентиляция. Вентиляция снабжена рядом специальных фильтров для очистки воздуха от пыли и различных примесей.
Для уменьшения вредных газовых выбросов сварочные участки оборудуют фильтрами электростатического улавливания сварочных аэрозолей. Вихревой аппарат с трехфазным слоем предназначен для пылеулавливания и очистки отходящих газов от сварочных участков.
Вентиляция применяется также при обточке и шлифовке элементов автосцепок и при заточке оборудования в слесарном участке.
Устанавливаются электрофильтры, циклоны групповые и батарейные, пенные аппараты (орошаемые водой абсорбенты).
Разрабатывается инвентаризация источников вредных выбросов от стационарных источников.. Для удаления выбросов применяется местная вытяжная вентиляция. Установка (УОВ-1) дает эффективность очистки 80-90 %. Область применения - для очистки воздуха на участках, удаленных от сварочно-наплавочных.
Организуется размещение отходов с привлечением организации имеющей лицензию на утилизацию.
В местах разлива нефтепродуктов (станки) предусматривается немедленное их удаление, применение масляных ванн.
На участке дефектоскопирования предусматривается местная вентиляция, организовывается сбор отработанной суспензии в специальные емкости, для дальнейшего повторного использования в работе.
5. ЭКОНОМИЧЕСКИЙ АНАЛИЗ РЕКОНСТРУКЦИИ КПА
Технико-экономическое обоснование проекта отделения (участка, цеха) Экономическая ценность проекта участка определяется расширением масштабов производства, снижением себестоимости ремонта, ростом прибыли. В общем виде экономическая эффективность определяется сопоставлением экономических результатов с затратами.
Проект участка изменяет следующие основные характеристики производства:
объем производства (реализуемая продукция);
текущие затраты;
размер созданного и функционирующего имущества (основных производственных фондов и нематериальных активов);
численность занятых в производстве;
длительность хозяйственного цикла и др. (ряд можно продолжить).
Исходные данные:
Показатели |
Ед.измерения. |
Значения |
||
до |
после |
|||
1. Годовая программа ремонта. Обслуживание и т.д. |
шт. |
939 |
1704 |
|
2. Стоимость расхода материала на ед. ремонта |
руб. |
280 |
280 |
|
3. Количество единиц основного оборудования |
ед. |
13 |
17 |
|
4. Стоимость единицы основного оборудования |
Тыс.руб. |
130 |
120 |
|
5 Годовой фонд рабочего времени явочных рабочих |
час. |
2004 |
2004 |
|
6 Количество явочных производственных рабочих |
чел. |
3 |
6 |
|
7 Количество списочных. производственных рабочих |
чел. |
3 |
6 |
|
8 Средний разряд основных произ. рабочих |
5 |
5 |
||
9 Площадь производственных помещений |
м2 |
117 |
171 |
|
10 Объем производственных помещений |
М3 |
550 |
803 |
|
11 Годовой расход энергоресурсов стоимость: * техническая вода * производственный пар * сжатый воздух * кислород |
м3/руб. м3/руб. м3/руб. м3/руб. |
400/12,64 2100/280 1500/0,4 2500/5 |
770/12,64 2310/280 1500/0,4 2640/0,5 |
|
12. Состав |
||||
ИТР: |
чел. |
|||
МОП: |
1. Расчет себестоимости ремонта (обслуживания, выпуска и т.д.)
С = Э/N
где Э - эксплутационные расходы участка (цеха, отделения) - определяются в расчетах, тыс. руб.
N - годовая программа ремонта (исходные данные). Все расчеты вести тыс. руб.
Амортизация и текущий ремонт основных фондов (зданий, сооружений, оборудования, инвентарь). Стоимость производственных зданий:
Sзд.п = Vзд • Сзд., тыс. руб.
где У3д. - объем производственных зданий (исходные данные). mj;
Сзд. - цена 1m3, тыс. руб., (0,580 тыс. руб.).
Sзд.п1 = 550•0,580 = 319 тыс.руб
Sзд.п2 = 803•0,580 = 465,74 тыс.руб.
Стоимость основного технологического оборудования:
Soб. = Поб • Соб, тыс. руб.
где Поб. - количество единиц основного оборудования (исходные данные);
Соб. - стоимость единиц основного оборудования (исходные данные), тыс. руб.
Soб.1 = 13•130 = 1690 тыс.руб.
Soб.2 = 17•120 = 2040 тыс.руб.
Стоимость вспомогательного оборудования, инвентаря и инструмента
Наименование оборудования |
Расчет в % |
Стоимость тыс.руб. |
||
до |
пос |
|||
Основное производственное оборудование (SОб.) его монтаж. Вспомогательное оборудование (SBC.) его монтаж. Транспортное оборудование (S тр.) его монтаж |
100 54 от Soб. 15 от Soб. 20 20 от SBC 10 от Sоб. 5 от Sтр. |
1690 912,6 253,5 50,7 169 8,45 |
2040 1093,5 303,75 60,75 202,5 10,13 |
|
Итого: |
3084,25 |
3695,63 |
||
Инвентарь Инструмент |
1 ОТ S об. 5 от S об. |
16,9 84,5 |
20,25 101,25 |
|
Итого: |
101,4 |
121,5 |
||
Всего: |
3185,65 |
3817,13 |
Амортизация основных фондов
Наименование группы основных фондов |
Стоимость основных фондов,(Sос) тыс.руб. |
Годовая норма амортиз. отчисл. |
Годовая сумма аморт. ОТЧИСЛ., Еам тыс. руб. |
Расход на текущий ремонт, Етр тыс. руб . |
|||||
до |
после |
% |
до |
после |
% |
величина |
|||
до |
после |
||||||||
Здания и сооружения Оборудование Инвентарь Инструмент |
313,5 3084 16,9 84,5 |
457,7 3695 20,25 101,2 |
5 15 20 25 |
15,7 462,6 3,4 21,1 |
22,8 554,3 4 25,3 |
3 7 3 3 |
9,4 215,9 0,5 2,8 |
13,7 258,7 0,6 3,3 |
|
Итого: |
3499 |
4274 |
502,8 |
606,4 |
228,6 |
276,3 |
Стоимость энергоресурсов
Силовая электроэнергия Расход силовой электроэнергии составит в год:
А=Р1пр •п•Д•Кс
где Р'пр - количество производственных рабочих первой смены (задание);
п - энерговооруженность одного производственного рабочего (18,1 кВт.•ч/раб.).
Д - количество рабочих дней в году, дн.;
Кс - коэффициент учитывающий долю электрического оборудования из общего количества основного оборудования участка;
А1= 3•18,1•13= 705,9 кВТ•час
А2= 6•18,1•17= 2172 кВТ•час
Наименование ресурсов |
Ед. изм. |
Норма расхода на ед. измерителя |
Годовой расход ресурсов |
Стоимость ед.потре. ресурсов. руо. |
Годовая стоимость ресурсов, тыс. руб. |
|||
до |
после |
до |
после |
|||||
Техническая вода |
м3 |
0,55 |
400 |
770 |
11,67 |
4,7 |
8,9 |
|
Произ-ный пар |
м3 |
0,33 |
2100 |
2310 |
280 |
588 |
646 |
|
Сжатый воздух |
м3 |
12 |
1500 |
1500 |
0,46 |
0,7 |
0,7 |
|
Кислород |
м3 |
0,4 |
2500 |
2640 |
5 |
12,5 |
13,2 |
|
Силовая энергия |
кВт*ч |
705,9 |
2172 |
2,1 |
0,3 |
0,8 |
||
Итого: Е оил.эн. |
606,2 |
669,6 |
Примечание: наименование ресурсов зависит от вида деятельности участка (цеха,отделения).
Годовой расход берётся из реальных действующих участков (цехов, отделений).
Расход электроэнергии на освещение
Eн.осв.=Hэ (Fпр+Fсл)Цэ
где Нэ - норма расхода электроэнергии на 1м" площади, (35кВт/м2)
Fпр, Fсл - площади производственных и служебных помещений, м , (сходные данные).
Цэ - стоимость 1кВт*час электроэнергии, тыс. руб. (2,1 руб.).
Eн.осв1 = 35 • 117 • 0,0021=8,5 тыс.руб
Eн.осв2 = 35 • 171 • 0,0021=12,5 тыс.руб
Годовые расходы на основные и вспомогательные материалы, запасные части, покупные изделия
На заданную программу выпускаемой продукции (ремонта, осмотра) имеем:
M=CM-N, тыс. руб.,
где См - стоимость основных материалов на единицу выпускаемой продукции (исходные данные), тыс. руб.;
Подобные документы
Определение показателей работы использования вагонов и инвентарного парка. Разработка варианта технического обслуживания вагонов на участке дороги. Обзор существующих планировок депо. Программа и производственная структура контрольного пункта автосцепки.
курсовая работа [138,0 K], добавлен 08.11.2012Структура и порядок взаимодействия основных участков вагонного депо. Анализ действующего технологического процесса ремонта автосцепного устройства. Разработка стенда дефектации корпуса автосцепки, расчет экономической эффективности его изготовления.
дипломная работа [4,9 M], добавлен 30.01.2012Назначение пассажирского вагонного депо. Определение основных параметров поточного производства вагоносборочного участка, размеры их площадей, компоновка. Расчёт штата рабочих участка, описание технологического процесса работы автоконтрольного пункта.
дипломная работа [114,0 K], добавлен 23.06.2010Автосцепка: назначение, устройство, работа, метод ее ремонта. Разработка схемы управления контрольным пунктом автосцепки. Расчет применяемых систем энергоснабжения, вентиляции и канализации на участке. Технология ремонта автосцепного устройства вагона.
дипломная работа [948,5 K], добавлен 03.07.2015Планирование показателей работы вагонного депо. Расчет производственной программы ремонта узлов и деталей вагонов на проектируемом участке. Планирование эксплуатационных расходов участка вагонного депо. Основные показатели эффективности работы участка.
курсовая работа [464,2 K], добавлен 23.06.2010Ремонтно-заготовительные цеха и участки депо. Кузнечно-рессорный, электрогазосварочный, слесарно-механический, ремонтно-хозяйственный, инструментальный участки. Контрольный пункт автосцепки. Разработка современного стенда дефектации корпуса автосцепки.
дипломная работа [4,8 M], добавлен 20.01.2012Назначение и состав пассажирского ремонтного вагонного депо Ростов. Совершенствование технологии контроля автосцепочного устройства. Техническое обоснование мероприятий, направленных на повышение безопасности движения. Организация работ в участках депо.
дипломная работа [3,8 M], добавлен 27.08.2009Назначение, устройство и принцип работы автосцепки. Техническое обслуживание и ремонт автосцепки. Особенности тормозной работы крана. Постоянные сигнальные знаки. Правила безопасности при осмотре и ремонте вагонного оборудования. Рабочее место машиниста.
дипломная работа [768,4 K], добавлен 12.11.2014Назначение и принцип работы автосцепки СА-3. Устройство поглощающего аппарата, предназначенного для смягчения ударов и рывков, передающихся от автосцепки на рамы кузовов вагонов. Движение поездов на участках, оборудованных диспетчерской централизацией.
курсовая работа [6,7 M], добавлен 11.09.2014Назначение вагонного депо по ремонту цистерн, состав отделений, участков; выбор режима работы, расчет фондов рабочего времени работников и оборудования. Параметры депо, площади основных и вспомогательных участков. Расчет себестоимости и цена ремонта.
дипломная работа [516,3 K], добавлен 07.02.2012