Балансировка роторной системы
Проведение балансировки ротора по методу трех пусков. Описание установки и методика проведения эксперимента. Балансировка роторной установки с использованием программного обеспечения. Определение величины и угла прикрепления корректирующей массы.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.03.2009 |
Размер файла | 45,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки РФ
Федеральное агентство по образованию
Южно - Уральский государственный университет
Кафедра « Автомобильный транспорт »
Курсовая работа
по дисциплине «Вибродиагностика»
на тему «Балансировка роторной системы»
Выполнил: студент группы АТ - 551
Проверил: Иванов Д.Ю.
Челябинск
2008
Аннотация
Курсовая работа по курсу: Вибродиагностика. - Челябинск: ЮУрГУ, АТ, 2008. - 14 с. 3 рис. Библиография литературы - 1 наименование.
В данной курсовой работе экспериментально исследуются колебания роторной системы, и по полученным экспериментальным данным производится балансировка одного из дисков лабораторной установки, производится расчет корректировочной массы, и угол на который необходимо установить корректировочную массу. Также проведен теоретический расчет значений амплитуд ускорений и проведено сравнение экспериментальных и теоретических результатов.
Содержание
Введение
1. Балансировка роторной системы
1.1. Цель работы
1.2. Описание установки и методика проведения эксперимента
1.3. Определение величины и угла прикрепления корректирующей массы
2. Теоретическое определение значений амплитуды ускорений
3. Оценка адекватности проведенной балансировки
Литература
Приложения
Введение
Необходимость точного измерения и анализа механических колебаний возникла с первых шагов разработки и конструирования машин, учитывающих вопросы амортизации механических колебаний и виброизоляции. Исследование механических колебаний прочных машин медленного действия в прошлом основывалось на опыте инженеров-конструкторов и применении несложных оптических приборов, измеряющих смещение механических колебаний.
В последние 15-20 лет произошло быстрое развитие техники измерения и анализа механических колебаний (виброметрии) с тем, чтобы удовлетворить всем требованиям исследования и оценки новых, легких и быстродействующих машин и оборудования.
1. Балансировка роторной системы
В данной работе экспериментально исследуются колебания роторной системы, и по полученным экспериментальным данным производится балансировка одного из дисков лабораторной установки. При этом производится расчет корректировочной массы, и угол на который необходимо установить корректировочную массу. Сопоставляя полученные теоретические и экспериментальные результаты, можно сделать выводы о качестве проведения балансировочных работ.
1.1 Цель работы
1. Проведение балансировки ротора по методу трех пусков.
2. Построение векторной диаграммы для определение величины и фазового угла корректирующей массы.
3. Сравнение полученных экспериментальных и теоретических результатов.
1.2 Описание установки и методика проведения эксперимента
Экспериментальная установка для определения АЧХ и ФЧХ системы показана на рис 1. Она состоит из роторной системы, управляющей и измерительной аппаратуры. Исследуемая система представляет собой простейшую роторную систему. Конструктивно лабораторная установка состоит из основания, на котором крепятся две опоры, кронштейн датчика и асинхронный двигатель типа КД-50-У4, мощностью 60 Вт с номинальной частотой вращения 2750 об/мин. В опорах на подшипниках качения вращается вал с двумя дисками. Вал соединен с двигателем с помощью муфты. Датчики виброускорения помещаются на опоры в вертикальном и горизонтальном направлениях, ближе к дискам с дисбалансом. На рисунке 1 представлена схема установки
Датчики виброускорения - пьезоэлектрические акселерометры установлены на опорах - подшипниках качения. Сигнал виброускорения с датчиков поступает на измерители амплитуды, датчики измеряют мгновенные значения виброускорений; измерители амплитуды показывают амплитуды виброускорения на опорах. Эксперимент проводится способом трех пусков с пробными массами.
Способ трех пусков с пробными массами
Данный способ применяют в тех случаях, когда отметку фазы получить нельзя. При этом используют виброизмерительную аппаратуру для определения амплитуды колебаний корпуса или бесконтактные датчики, измеряющие перемещения ротора. При первом запуске определяем амплитуду вибрации с начальным (исходным) дисбалансом ротора. Затем в плоскости коррекции устанавливаем пробную массу , запускаем ротор и определяем новую амплитуду колебаний корпуса. Эту операцию повторяем еще 2 раза, устанавливая на одном и том же радиусе, но под различными углами. Полученным трем амплитудам присваиваются номера в следующей зависимости: A1>A2, A1>A3. После этого строим векторную диаграмму дисбалансов (рисунок 2) .
Получаем систему треугольников, в каждом из которых неизвестна одна сторона Ап, но стороны равны между собой и пропорциональны. На основании теоремы косинусов:
А12=А02+Ап2 - 2А0Апcos; (1)
A22=А02+Ап2 - 2А0Апcos( - ); (2)
A32=А02+Ап2 - 2А0Апcos( - ). (3)
где - угол между первым и вторым положением пробной массы;
- угол между вторым и третьим положением пробной массы;
- угол между первым и третьим положением пробной массы.
Угловое положение для постановки корректирующей массы относительно положения первой пробной массы (в том же направлении, по которому отмечают, и ) определяем по зависимости полученной из первых трех выражений:
; (4)
Величину Ап находим после подстановки значения в одно из тех же выражений, или из их разности:
; (5)
на основании чего находим и величину корректирующей массы из соотношения
. (6)
Если балансировку выполнять удалением массы , то место коррекции находят под углом + 180°.
Порядок проведения работы
* проводится экспериментальное исследование колебаний системы; результаты эксперимента заносятся в таблицу;
* по результатам эксперимента вычисляются значения величины корректирующей массы и фазовый угол ее установки;
* строится векторная диаграмма дисбалансов диска роторной системы;
* сравнение теоретических и экспериментальных результатов;
* определение остаточного дисбаланса;
* делаются выводы о качестве проведенных балансировочных работ.
Результаты проведения эксперимента представлены в табл.
Таблица 1 - Результаты проведения эксперимента
,град |
,град |
,гр |
||||||
1 вертикально |
3,685 |
4,652 |
3,281 |
2,271 |
300 |
255 |
2,09 |
|
2 вертикально |
2,189 |
2,884 |
1,931 |
1,216 |
300 |
255 |
1,985 |
|
1 поперечно |
2,632 |
16,8904 |
7,079 |
2,121 |
60 |
315 |
2,09 |
|
2 поперечно |
3,384 |
4,392 |
3,982 |
2,265 |
60 |
315 |
1,985 |
1.3 Определение величины и угла прикрепления корректирующей массы
Установим порядковые номера амплитуд вибраций с пробными массами и угловые положения второго и третьего номеров относительно первого; согласно требованию А>А, А>Аз.
По формуле (4), (5),(6) рассчитываем значения угла для постановки корректирующей массы, величину Аn и значение корректирующей массы m k.
Корректирующую массу установим на выбранном радиусе R, под углом 186,74 и (189,12) от места постановки пробной массы с присвоенным номером один (), по направлению к месту пробной массы с присвоенным номером два , т.е. угол находим между углами и . Векторная диаграмма дисбалансов, построенная с помощью результатов рассчитанных по формулам (4), (5), (6) показана в приложении.
Таблица 2 - Результаты расчетов
,гр |
||||||
1 вертикально |
2,09 |
0,310497 |
197,2581 |
0,7755 |
5,6031 |
|
2 вертикально |
1,985 |
0,344665 |
199,0269 |
7,7115 |
0,2410 |
|
1 поперечно |
2,09 |
0,934072 |
223,0695 |
0,3997 |
16,8045 |
|
2 поперечно |
1,985 |
-0,65057 |
146,9363 |
22,8268 |
0,2410 |
По полученным данным строим векторные диаграммы дисбалансов
2 Балансировка роторной установки с использованием программного обеспечения
Теоретическое определение значений амплитуды ускорений производится при помощи программы ATLANT. Данная программа предназначена для теоретического определения амплитуд ускорений при балансировке роторной системы, места положения корректирующей массы для достижения наилучшего результата балансировки, также данная программа позволяет корректировать место положения данного груза, если расчетный угол не соответствует доступным для корректирования углам и оценить эффективность балансировки.
Результаты расчета приведены в таблицах 3, 4 и 5.
Таблица 3 - Результаты расчета амплитуд ускорений
Плоскость |
Масса |
Угол |
Точка |
Первая гармоника |
расчетная эффективность балансировки |
||||
Вертикальная |
Поперечная |
||||||||
амплитуда |
фаза |
амплитуда |
фаза |
||||||
М01 |
3, 47 |
27,6 |
Т01 |
0,83 |
114,1 |
0,13 |
81,4 |
78,326 % |
|
М02 |
0,25 |
183,0 |
Т02 |
0,53 |
90,0 |
0,86 |
278,7 |
Таблица 4 - Результаты расчета положения корректирующей массы в плоскости МО1
Расчетный груз |
Разложение грузов |
||||
плоскость М01 |
доступные углы |
разложение груза |
|||
Груз |
3,47 |
Угол 1 |
35 |
1,7731 |
|
Угол |
27,6 |
Угол 2 |
20 |
1,7267 |
Таблица 5 - Результаты расчета положения корректирующей массы в плоскости МО2
Расчетный груз |
Разложение грузов |
||||
плоскость М02 |
доступные углы |
разложение груза |
|||
Груз |
0,25 |
Угол 1 |
170 |
0,0337 |
|
Угол |
183,0 |
Угол 2 |
185 |
0,2172 |
3 Оценка адекватности проведенной балансировки
Для оценки адекватности проведенной балансировки определим относительные погрешности теоретических значений корректирующей массы.
Погрешности определяются по следующим формулам:
(7)
Результаты расчета погрешностей выбранной математической модели представлены в таблице 6.
Таблица 6 - Погрешности балансировки
% |
||||
1 вертикальная |
3,47 |
5,6031 |
61,5 |
|
2 вертикальная |
0,25 |
0,2410 |
3,6 |
|
1 горизонтальная |
3,47 |
16,8045 |
384,3 |
|
2 горизонтальная |
0,25 |
0,2410 |
3,6 |
Данные погрешности отражают неточность проведения балансировочных мероприятий.
Вывод: Данные полученные в результате проведенного эксперимента и расчетов показывают, что выбранный способ трех пусков с пробными массами не позволяют достаточно точно определить массу и угол его установки.
Определение дисбаланса возможно лишь на основе исследований тонкой структуры виброакустического сигнала и связи его с кинематикой и динамикой агрегата.
Литература
1. Захезин А.М., Колосова О.П., Малышева Т.В. Теоретическая и прикладная механика: Учебное пособие. - Челябинск: Изд. ЮУрГУ, 2001. - 47с.
Подобные документы
Балансировка роторной системы. Описание установки и методика проведения эксперимента. Способ трех пусков с пробными массами. Порядок проведения работы. Определение величины и угла прикрепления корректирующей массы. Балансировка роторной установки.
курсовая работа [1,5 M], добавлен 11.10.2008Описание организационной структуры автоцентра "Бизон" и определение основных направлений его деятельности. Характеристика видов технического обслуживания автомобилей, шиномонтаж и балансировка колес. Должностные обязанности автослесаря и охрана труда.
отчет по практике [989,7 K], добавлен 03.06.2014Устранение причин повышенного шума при работе двигателя, механических повреждений и аварийных поломок кривошипно-шатунного и газораспределительного механизма. Балансировка колёс (статическая, динамическая). Проверка освещения и регулировка света фар.
контрольная работа [1,6 M], добавлен 29.01.2010Характеристика комбайнов немецкой фирмы "Claas". Особенности ремонта зарубежных комбайнов в сельском хозяйстве. Классификация современных балансировочных станков по назначению, режиму работы, конструктивному выполнению опор. Основные методы балансировки.
контрольная работа [212,6 K], добавлен 29.01.2012Характеристика оборудования шиномонтажного участка в автосервисе. Основные виды балансировочных станков. Набор функций и сервисных программ балансировочных машин. Демонтаж и монтаж шин, очистка колес. Визуальный осмотр, смазывание, накачивание шин.
реферат [188,1 K], добавлен 01.02.2016Организация труда в шиномонтажном цехе. Правила монтажа и демонтажа шин. Соблюдение правил по технике безопасности при проведении балансировки. Расшифровка значений элементов маркировки на шинах по типоразмерам. Конструкции, типы и размеры шин и ободьев.
реферат [1,2 M], добавлен 24.03.2015Характеристики и режимы работы СЭУ. Судовые комбинированные энергетические установки. Системы, которые обслуживают двигатель. Системы управления комплексом двигатель-ВРШ. Холодильные установки, их классификация по принципу работы и холодильному агенту.
контрольная работа [2,6 M], добавлен 14.07.2008Состав и функции основных элементов вспомогательного энергетического комплекса судна. Обоснование оптимального режима работы вспомогательных двигателей. Расчет топливной системы судовой энергетической установки. Выбор водоопреснительной установки.
дипломная работа [860,5 K], добавлен 04.02.2016История создания самолета, его массо-геометрические и летно-технические характеристики. Аэродинамические характеристики профиля RAF-34. Определение оптимальных параметров движения. Балансировка и расчет аэродинамических параметров заданного вертолета.
курсовая работа [1,3 M], добавлен 26.08.2015Описание судовой энергетической установки лесовоза дедвейтом 13400 тонн. Расчет буксировочной мощности, судовой электростанции, вспомогательной котельной установки. Анализ эксплуатации систем смазки главного двигателя. Охрана труда и окружающей среды.
дипломная работа [867,0 K], добавлен 31.03.2015