Ядерный взрыв, его поражающие факторы

Последовательность событий при ядерном взрыве. Основные поражающие факторы ядерного оружия: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс. Способы их воздействия на человека и методы защиты.

Рубрика Военное дело и гражданская оборона
Вид реферат
Язык русский
Дата добавления 27.03.2010
Размер файла 829,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Содержание

  • Введение
    • 1. Последовательность событий при ядерном взрыве
      • 2. Ударная волна
        • 3. Световое излучение
        • 4. Проникающая радиация
        • 5. Радиоактивное заражение
        • 6. Электромагнитный импульс
        • Заключение
        • Список литературы

Введение

Ядерный взрыв - мощный взрыв, вызванный высвобождением ядерной энергии: либо при быстро развивающейся цепной реакции деления тяжелых ядер; - либо при термоядерной реакции синтеза ядер гелия из более легких ядер. В зависимости от задач, решаемых применением ядерного оружия, ядерные взрывы могут производиться в воздухе, на поверхности земли и воды, под землей и водой. Ядерный взрыв сопровождается выделением огромного количества энергии, поэтому по разрушающему и поражающему действию он в сотни и тысячи раз может превосходить взрывы самых крупных боеприпасов, снаряженных обычными взрывчатыми веществами.

Поражающие факторы ядерного оружия - физические процессы и явления, которые возникают при ядерном взрыве и определяют его поражающее воздействие. Характер, степень и продолжительность воздействия поражающих факторов зависят от мощности ядерного боеприпаса, вида взрыва, расстояния от его эпицентра, степени защиты объектов, метеорологических условий, характера местности.

Основными поражающими факторами ядерного оружия являются: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс. Примерно половина всей энергии выходит в виде ударной волны, остальное - световое излучение, на долю проникающей радиации (гамма-лучей и нейтронов) приходится не более 5%. Такое разнообразие поражающих факторов говорит о том, что ядерный взрыв представляет собой гораздо более опасное явление, чем взрыв аналогичного по энерговыходу количества обычной взрывчатки.

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают психологическое угнетающее воздействие от осознания факта близкого ядерного взрыва -- самого разрушительного оружия, известного человечеству на данный момент.

1. Последовательность событий при ядерном взрыве

Выделение огромного количества энергии, происходящее в ходе цепной реакции деления, приводит к быстрому разогреву вещества взрывного устройства до температур порядка 107 К. При таких температурах вещество представляет собой интенсивно излучающую ионизированную плазму. На этом этапе в виде энергии электромагнитного излучения выделяется около 80% энергии взрыва. Максимум энергии этого излучения, называемого первичным, приходится на рентгеновский диапазон спектра. Дальнейший ход событий при ядерном взрыве определяется в основном характером взаимодействия первичного теплового излучения с окружающей эпицентр взрыва средой, а также свойствами этой среды Подвиг П.Н. Ядерная энциклопедия. /под ред. А.А. Ярошинской. - М.: Благотворительный фонд Ярошинской, 2006..

В случае если взрыв произведен на небольшой высоте в атмосфере, первичное излучение взрыва поглощается воздухом на расстояниях порядка нескольких метров. Поглощение рентгеновского излучения приводит к образованию облака взрыва, характеризующегося очень высокой температурой. На первой стадии это облако растет в размерах за счет радиационной передачи энергии из горячей внутренней части облака к его холодному окружению. Температура газа в облаке примерно постоянна по его объему и снижается по мере его увеличения. В момент, когда температура облака снижается до примерно 300 тысяч градусов, скорость фронта облака уменьшается до величин, сравнимых со скоростью звука. В этот момент формируется ударная волна, фронт которой "отрывается" от границы облака взрыва. Для взрыва мощностью 20 кт это событие наступает примерно через 0.1 м/сек после взрыва. Радиус облака взрыва в этот момент составляет около 12 метров.

Интенсивность теплового излучения облака взрыва целиком определяется видимой температурой его поверхности. На некоторое время воздух, нагретый в результате прохождения взрывной волны, маскирует облако взрыва, поглощая излучаемую им радиацию, так что температура видимой поверхности облака взрыва соответствует температуре воздуха за фронтом ударной волны, которая падает по мере увеличения размеров фронта. Через примерно 10 миллисекунд после начала взрыва температура во фронте падает до 3000 °С и он вновь становится прозрачным для излучения облака взрыва. Температура видимой поверхности облака взрыва вновь начинает расти и через примерно 0.1 сек после начала взрыва достигает примерно 8000 °С (для взрыва мощностью 20 кт). В этот момент мощность излучения облака взрыва максимальна. После этого температура видимой поверхности облака и, соответственно, излучаемая им энергия быстро падает. В результате, основная доля энергии излучения высвечивается за время меньшее одной секунды.

Формирование импульса теплового излучения и образование ударной волны происходит на самых ранних стадиях существования облака взрыва. Поскольку внутри облака содержится основная доля радиоактивных веществ, образующихся в ходе взрыва, дальнейшая его эволюция определяет формирование следа радиоактивных осадков. После того как облако взрыва остывает настолько, что уже не излучает в видимой области спектра, процесс увеличения его размеров продолжается за счет теплового расширения и оно начинает подниматься вверх. В процессе подъема облако увлекает за собой значительную массу воздуха и грунта. В течение нескольких минут облако достигает высоты в несколько километров и может достичь стратосферы. Скорость выпадения радиоактивных осадков зависит от размера твердых частиц, на которых они конденсируются. Если в процессе своего формирования облако взрыва достигло поверхности, количество грунта, увлеченного при подъеме облака, будет достаточно велико и радиоактивные вещества оседают в основном на поверхности частиц грунта, размер которых может достигать нескольких миллиметров. Такие частицы выпадают на поверхность в относительной близости от эпицентра взрыва, причем за время выпадения их радиоактивность практически не уменьшается.

В случае если облако взрыва не касается поверхности, содержащиеся в нем радиоактивные вещества конденсируются в гораздо меньшие частицы с характерными размерами 0.01-20 микрон. Поскольку такие частицы могут достаточно долго существовать в верхних слоях атмосферы, они рассеиваются над очень большой площадью и за время, прошедшее до их выпадения на поверхность, успевают потерять значительную долю своей радиоактивности. В этом случае радиоактивный след практически не наблюдается. Минимальная высота, взрыв на которой не приводит к образованию радиоактивного следа, зависит от мощности взрыва и составляет примерно 200 метров для взрыва мощностью 20 кт и около 1 км для взрыва мощностью 1 Мт Характеристика ядерных взрывов и их поражающих факторов. Военная энциклопедия //http://militarr.ru/?cat=1&paged=2 , 2009..

2. Ударная волна

Основные поражающие факторы -- ударная волна и световое излучение -- аналогичны поражающим факторам традиционных взрывчатых веществ, но значительно мощнее.

Ударная волна, формирующаяся на ранних стадиях существования облака взрыва, представляет собой один из основных поражающих факторов атмосферного ядерного взрыва. Основными характеристиками ударной волны являются пиковое избыточное давление и динамическое давление во фронте волны. Способность объектов выдерживать воздействие ударной волны зависит от множества факторов, таких как наличие несущих элементов, материал постройки, ориентация по отношению ко фронту. Избыточное давление в 1 атм (15 фунтов/кв. дюйм), возникающее на расстоянии 2.5 км от наземного взрыва мощностью 1 Мт, способно разрушить многоэтажное здание из железобетона. Радиус области, в которой при взрыве в 1 Мт создается подобное давление составляет около 200 метров.

На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления Российская энциклопедия по охране труда: В 3 т. -- 2-е изд., перераб. и доп. -- М. Изд-во НЦ ЭНАС, 2007..

Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд - 2000 м, за 8 сек - 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.

Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

3. Световое излучение

Световое излучение -- это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва -- нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном -- полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °С. Когда температура снижается до 1700°C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/смІ (для сравнения -- максимальная интенсивность солнечного света 0,14 Вт/смІ).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела и временное ослепление, а также может возникнуть поражение и защищенных одеждой участков тела.

Ожоги возникают от непосредственного воздействия светового излучения на открытые участки кожи (первичные ожоги), а также от горящей одежды, в очагах пожаров (вторичные ожоги). В зависимости от тяжести поражения ожоги делятся на четыре степени: первая -- покраснение, припухлость и болезненность кожи; вторая -- образование пузырей; третья -- омертвление кожных покровов и тканей; четвертая -- обугливание кожи.

Ожоги глазного дна (при прямом взгляде на взрыв) возможны на расстояниях, превышающих радиусы зон ожогов кожи. Временное ослепление возникает обычно ночью и в сумерки и не зависит от направления взгляда в момент взрыва и будет носить массовый характер. Днем оно возникает лишь при взгляде на взрыв. Временное ослепление проходит быстро, не оставляет последствий, и медицинская помощь обычно не требуется.

4. Проникающая радиация

Еще одним поражающим фактором ядерного оружия является проникающая радиация, представляющая собой поток высокоэнергетичных нейтронов и гамма-квантов, образующихся как непосредственно в ходе взрыва так и в результате распада продуктов деления. Наряду с нейтронами и гамма-квантами, в ходе ядерных реакций образуются также альфа- и бета-частицы, влияние которых можно не учитывать из-за того что они очень эффективно задерживаются на расстояниях порядка нескольких метров. Нейтроны и гамма-кванты продолжают выделяться в течение достаточно длительного времени после взрыва, оказывая воздействие на радиационную обстановку. К собственно проникающей радиации обычно относят нейтроны и гамма-кванты появляющиеся в течение первой минуты после взрыва. Подобное определение связано с тем, что за время порядка одной минуты облако взрыва успевает подняться на высоту, достаточную для того, чтобы радиационный поток на поверхности стал практически незаметен.

Интенсивность потока проникающей радиации и расстояние на котором ее действие может нанести существенный ущерб, зависят от мощности взрывного устройства и его конструкции. Доза радиации, полученная на расстоянии около 3 км от эпицентра термоядерного взрыва мощностью 1 Мт достаточна для того чтобы вызвать серьезные биологические изменения в организме человека. Ядерное взрывное устройство может быть специально сконструировано таким образом, чтобы увеличить ущерб, наносимый проникающей радиацией по сравнению с ущербом, наносимым другими поражающими факторами (так называемое нейтронное оружие).

Процессы, происходящие в ходе взрыва на значительной высоте, где плотность воздуха невелика, несколько отличаются от происходящих при проведении взрыва на небольших высотах. Прежде всего, из-за малой плотности воздуха поглощение первичного теплового излучения происходит на гораздо больших расстояниях и размер облака взрыва может достигать десятков километров. Существенное влияние на процесс формирования облака взрыва начинают оказывать процессы взаимодействия ионизированных частиц облака с магнитным полем Земли. Ионизированные частицы, образовавшиеся в ходе взрыва, оказывают также заметное влияние на состояние ионосферы, затрудняя, а иногда и делая невозможным распространение радиоволн (этот эффект может быть использован для ослепления радиолокационных станций).

Поражение человека проникающей радиацией определяется суммарной дозой, полученной организмом, характером облучения и его продолжительностью. В зависимости от длительности облучения приняты следующие суммарные дозы гамма-излучения, не приводящие к снижению боеспособности личного состава: однократное облучение (импульсное или в течение первых 4 сут.) --50 рад; многократное облучение (непрерывное или периодическое) в течение первых 30 сут. -- 100 рад, в течение 3 мес. -- 200 рад, в течение 1 года -- 300 рад.

5. Радиоактивное заражение

Радиоактивное заражение -- результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва -- продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведённая активность).

Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной, в зависимости от окружающих условий.

Радиоактивные продукты взрыва испускают три вида излучения: альфа, бета и гамма. Время их воздействия на окружающую среду весьма продолжительно.

С течением времени активность осколков деления быстро уменьшается, особенно в первые часы после взрыва. Так, например, общая активность осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через один день будет в несколько тысяч раз меньше, чем через одну минуту после взрыва. При взрыве ядерного боеприпаса часть вещества заряда не подвергается делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа - частиц.

Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило, бета - активны, распад многих из них сопровождается гамма - излучением. Периоды полураспада большинства из образующихся радиоктивных изотопов, сравнительно невелики - от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

Поражения в результате внутреннего облучения появляются в результате попадания радиоактивных веществ внутрь организма через органы дыхания и желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают в непосредственный контакт с внутренними органами и могут вызвать сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм. На вооружение, боевую технику и инженерные сооружения радиоактивные вещества не оказывают вредного воздействия.

Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60 °С (гипотетическая грязная бомба) Энциклопедия «Кругосвет», 2007..

6. Электромагнитный импульс

При ядерном взрыве в результате сильных токов в ионизованном радиацией и световым излучением воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км).

Возникновение ЭМИ происходит следующим образом:

1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.

2. Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.

3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

Электромагнитный импульс (ЭМИ) влияния на людей по понятным причинам не оказывает, зато выводит из строя электронное оборудование.

ЭМИ воздействует, прежде всего, на радиоэлектронную и электротехническую аппаратуру, находящуюся на военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда величина ЭМИ недостаточна для повреждения приборов или отдельных деталей, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Если ядерные взрывы произойдут вблизи линий энергоснабжения, связи, имеющих большую протяженность, то наведенные в них напряжения могут распространяться по проводам на многие километры и вызывать повреждение аппаратуры и поражение личного состава, находящегося на безопасном удалении по отношению к другим поражающим факторам ядерного взрыва.

Заключение

Для эффективной защиты от поражающих факторов ядерного взрыва необходимо чётко знать их параметры, способы воздействия на человека и методы защиты.

Укрытие личного состава за холмами и насыпями, в оврагах, выемках и молодых лесах, использование фортификационных сооружений, танков, БМП, БТР и других боевых машин снижает степень его поражения ударной волной. Так, личный состав в открытых траншеях поражается ударной волной на расстояниях в 1,5 раза меньше, чем находящийся открыто на местности. Вооружение, техника и другие Материальные средства от воздействия ударной волны могут быть повреждены или полностью разрушены. Поэтому для их защиты необходимо использовать естественные неровности местности (холмы, складки и т. п.) и укрытия.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда. В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается. В целях защиты глаз от светового излучения личный состав должен находиться по возможности в технике с закрытыми люками, тентами, необходимо использовать фортификационные сооружения и защитные свойства местности.

Проникающая радиация не является основным поражающим фактором при ядерном взрыве, от неё легко защититься даже обычными средствами РХБЗ общевойскового образца. Наиболее защищёнными являются объекты -- здания с железобетонными перекрытиями до 30см, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше) и бронированная (даже легкобронированная) техника.

Основным способом защиты населения от радиоактивного заражения следует считать изоляцию людей от внешнего воздействия радиоактивных излучений, а также исключение условий, при которых возможно попадание радиоактивных веществ внутрь организма человека вместе с воздухом и пищей.

Список литературы

1. Арустамов Э.А. Безопасность жизнедеятельности.- М.: Изд. Дом «Дашков и К0», 2006.

2. Атаманюк В.Г., Ширшев Л.Г. Акимов Н.И. Гражданская оборона. - М.,2000.

3. Подвиг П.Н. Ядерная энциклопедия. /под ред. А.А. Ярошинской. - М.: Благотворительный фонд Ярошинской, 2006.

4. Российская энциклопедия по охране труда: В 3 т. -- 2-е изд., перераб. и доп. -- М.: Изд-во НЦ ЭНАС, 2007.

5. Характеристика ядерных взрывов и их поражающих факторов. Военная энциклопедия //http://militarr.ru/?cat=1&paged=2 , 2009.

6. Энциклопедия «Кругосвет», 2007.


Подобные документы

  • Разработка физических принципов осуществления ядерного взрыва. Характеристика ядерного оружия. Устройство атомной бомбы. Поражающие факторы ядерного взрыва: воздушная (ударная) волна, проникающая радиация, световое излучение, радиоактивное заражение.

    презентация [1,2 M], добавлен 12.02.2014

  • Поражающее действие ядерного взрыва, его зависимость от мощности боеприпаса, вида, типа ядерного заряда. Характеристика пяти поражающих факторов (ударная волна, световое излучение, радиоактивное заражение, проникающая радиация и электромагнитный импульс).

    реферат [63,6 K], добавлен 11.10.2014

  • Ядерное оружие и виды ядерных взрывов. Воздействие поражающих факторов на элементы объектов полиграфии. Воздушная ударная волна, излучение, проникающая радиация, заражение местности, электромагнитный импульс. Вторичные поражающие факторы ядерного взрыва.

    реферат [529,4 K], добавлен 29.02.2012

  • Предпосылки создания атомного оружия в США. Применение первого атомного оружия, атомная бомбардировка Японии. Поражающие факторы ядерного взрыва: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, электромагнитный импульс.

    реферат [30,0 K], добавлен 28.05.2010

  • Краткая характеристика ядерного оружия, его воздействие на объекты и человека. Поражающие факторы ядерного взрыва: световое излучение, проникающая радиация. Четыре степени лучевой болезни. Правила поведения и действия населения в очаге ядерного поражения.

    реферат [25,3 K], добавлен 15.11.2015

  • Поражающие факторы ядерного взрыва. Воздушная ударная волна и световое излучение ядерного взрыва. Толщина слоев половинного ослабления. Радиоактивное заражение при ядерных взрывах. Загрязнение местности при разрушении предприятий атомной энергетики.

    курсовая работа [838,9 K], добавлен 24.10.2010

  • Поражающие факторы ядерного оружия. Атомный, термоядерный и комбинированный виды ядерных боеприпасов. Виды ядерных взрывов. Способы защиты человека от влияния ядерного оружия. Использование населением коллективных и индивидуальных средств защиты.

    курсовая работа [66,4 K], добавлен 25.10.2011

  • Обычные средства поражения. Поражающие факторы ядерного взрыва. Химическое, биологическое, геофизическое оружие. Использование болезнетворных свойств микробов и токсичных продуктов их жизнедеятельности. Виды оружия на новых физических принципах.

    презентация [3,7 M], добавлен 24.04.2014

  • Ключевые моменты в истории создания ядерного оружия. Основные виды и характеристики атомных снарядов. Классификация ядерных взрывов. Формы выделения энергии при взрыве; виды её распространения и действия на человека. Поражающие факторы ядерных взрывов.

    курсовая работа [3,2 M], добавлен 05.06.2011

  • Определение полученной дозы радиации. Поражающие факторы ядерного оружия. Характеристика светового излучения, физическая сущность и поражающее действие данного фактора. Бактериологическое оружие. Профилактические и лечебные мероприятия в зоне карантина.

    контрольная работа [28,1 K], добавлен 10.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.