Баллистическое движение тел

Изучение баллистики, как науки о движении снарядов, мин, пуль, ракет при стрельбе. Обзор ее основных разделов: внутренняя и внешняя баллистика. Открытие закона всемирного тяготения. Применение теоретических расчётов к управлению баллистическими ракетами.

Рубрика Военное дело и гражданская оборона
Вид реферат
Язык русский
Дата добавления 24.05.2010
Размер файла 598,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рассмотрим невесомость на опытах: 1). Тело подвешено к пружине, конец которой закреплён. Представим себе, что нить, удерживающую пружину, пережгли. Теперь пружина вместе с грузом свободно падает. При этом мы замечаем, что растяжение исчезло. И пока пружина с телом падает, она остается нерастянутой. Следственно падающее тело не действует на падающую вместе с ним пружину и вес тела равен нулю, но сила тяжести не равна нулю, она по-прежнему действует на тело и заставляет его падать.

2). Между гирями закладывают полоску бумаги, свободный конец которой закрепляют в лапке штатива. Если медленно опускать груз, то полоска натягивается и рвется. Из этого следует, что бумажная полоска была достаточно сильно зажата грузами. Заменив порванную полоску бумаги на целую, грузу позволяют свободно падать. Бумажная полоска повисает при этом неповрежденной. Этот опыт показывает, что при свободном падении давление гири на опору отсутствует, то есть гиря при падении стала невесомой.

3). Одновременно с парашютистами с самолета сбросили большой пустой ящик. Два человека, тоже выпрыгнувшие из самолета пока не раскрывают парашютов. Они летят с такой же скоростью, что и ящик. Один парашютист протянул руку, схватился за летящий рядом ящик, открыл в нем дверцу и втянулся внутрь. Теперь из двух человек один летит, кувыркаясь внутри ящика, а другой снаружи. У них будут совершенно разные ощущения. Тот, который летит снаружи, видит и чувствует, что он стремительно летит вниз. В ушах у него свистит ветер. Вдали видна приближающая Земля. Мимо проносятся облака. А этот, который летит внутри ящика, закрыл дверцу, и начал, отталкиваясь от стенок "плавать" по ящику. Ему кажется, что ящик спокойно стоит на земле, а он, потеряв вес, плавает в воздухе, как рыба в аквариуме. Строго говоря, разницы между обоими парашютистами нет никакой. Оба с одной и той же скоростью летят к земле. Но один сказал бы: " Я лечу", а другой: " Я плаваю на месте". Дело в том, что один ориентируется по Земле, а другой по ящику, в котором летит. Вот именно так возникает состояние невесомости в кабине космического корабля.

Сейчас космонавты совершают длительные полеты. Но никто еще не может сказать с твердой уверенностью, что с невесомостью можно обращаться на "ты". Это явление, интересующее очень многих, требуемого и последовательного изучения.

Перегрузки, испытываемые космонавтами в невесомости

При совершении космического полета космонавт подвергается воздействию ряда факторов: невесомость, перегрузки, шумы, вибрации, ограничение подвижности, изоляция, существование в замкнутом ограниченном пространстве и пр.

Ни одна профессиональная деятельность человека не связана с воздействием на него всех этих факторов в тех количественных соотношениях, как при полетах в космос. Так, состояние длительной невесомости, которое испытывает космонавт, не может быть испытано человеком в земных условиях.

В земных условиях человек может испытать только состояние кратковременной невесомости, например, если человек находится в лифте, движущемся по вертикали вниз с ускорением a = g. Где g - ускорение свободного падения, т.е. ускорение силы тяжести.

Как и сила тяжести, ускорение свободного падения зависит от широты места j и высоты его над уровнем моря Н. Приблизительно ускорение свободного падения = 978,049 (1 + 0,005288 sin2j - 0,000006 sin22 j - 0,0003086 Н. На широте Москвы на уровне моря g = 981,56 см/сек.

Но при а = g - тело и лифт совершают свободное падение и никаких взаимных давлений друг на друга не оказывают, в результате организм воспринимает оказываемое на него давление как состояние невесомости.

Состояние космической невесомости имеет отличия от состояния невесомости в земных условиях, что вызывает изменения ряда его жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

Если в полете не применяются средства профилактики, то в первые часы и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего длительный космический полет, наблюдается следующий комплекс изменений:

1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция; 2. Нарушение кислородного режима организма при физических нагрузках; 3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий); 4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное; 5. Снижение иммунобиологической резистентности (ослабление иммунитета);  вестибуловегетативные расстройства.

Нарушения работы организма человека, вызванные невесомостью, обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства).

Другим фактором, оказывающим значительное влияние на человеческий организм при совершении космического полета, являются перегрузки.

Перегрузки космонавт испытывает при старте и возвращении космического корабля.

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. Другими словами, вес космонавта во время запуска корабля как бы увеличивается в семь раз.

Человек легче всего переносит перегрузки, действующие в горизонтальной плоскости, хуже - в вертикальной. Однако способность переносить перегрузки (величина допустимых перегрузок) у разных людей различна и зависит от ряда факторов, например от скорости нарастания перегрузки, температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и даже от эмоционального состояния космонавта. Существуют, несомненно, и другие более сложные или менее уловимые факторы, влияние которых еще не совсем выяснено.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, длящемся более 3 секунд, могут возникнуть серьезные нарушения периферического зрения.

С увеличением перегрузок острота зрения уменьшается, поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности. При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси.

Такое положение обеспечивает эффективное кровоснабжение головного мозга космонавта при ускорениях до 10 g, а кратковременно даже до 25 g.

При возвращении космического корабля на Землю, когда он входит в плотные слои атмосферы, космонавт испытывает перегрузки торможения, то есть отрицательного ускорения. По интегральной величине торможение соответствует ускорению при старте.

Космический корабль, входящий в плотные слои атмосферы, ориентируют так, чтобы перегрузки торможения имели горизонтальное направление. Таким образом, их воздействие на космонавта сводится к минимуму, как и во время запуска корабля.

По статистике, космонавты редко испытывают перегрузки, превышающие 4g.

Маневренные возможности пилотируемых ЛА ограничиваются способностью людей, находящихся на его борту, переносить перегрузки. Чем большую перегрузку можно создать на самолете, тем меньше будет радиус кривизны траектории, тем будет маневр В зависимости от направления центростремительного ускорения субъективная сила тяжести человеческого тела (его вес) может быть больше нормального (положительная перегрузка), обращаться в нуль (невесомость) и принимать отрицательные значения (отрицательная перегрузка).

При выходе самолета из пикирования, когда инерционная сила направлена вниз, летчика прижимает к сиденью, на него действует положительная перегрузка в направлении голова - таз. При входе самолета в пикирование, когда инерционная сила направлена вверх, летчика отрывает от сиденья, на него действует отрицательная перегрузка в направлении таз - голова.

На рисунке показаны предельные перегрузки n в различных направлениях, переносимые человеком в зависимости от продолжительности их действия t. Переносимость перегрузки связана с механическим воздействием опоры (кресла, сиденья, ложемента) на тело человека, с приливами и отливами крови (с нарушением мозгового кровообращения).

Рисунок объясняет, почему космонавты возвращаются на Землю в летательных аппаратах с низким аэродинамическим качеством (т.е. по баллистическим траекториям) лежа в специальных креслах спиной к направлению полета - при таком положении тела легче всего переносить перегрузки.

Тренированные люди в специальных противоперегрузочных костюмах способны переносить достаточно высокие перегрузки в течение длительного времени. Поэтому маневренные самолеты (например, перехватчики) могут достигать эксплуатационных перегрузок (т.е. перегрузок, действующих на самолёт в процессе его нормальной эксплуатации) порядка 10-13. Для неманевренных самолетов (пассажирские, самолеты для транспортировки грузов) эксплуатационные перегрузки не превышают 2.

Баллистические ракеты подводных лодок

Баллистические ракеты подводных лодок (БРПЛ) -- баллистические ракеты, размещаемые на подводных лодках. Практически все БРПЛ оснащаются ядерными боезарядами и составляют Морские Стратегические Ядерные Силы (МСЯС) - одну из составляющих ядерной триады. Современные баллистические ракеты обладают межконтинентальной дальностью, оснащаются разделяющимися головными частями с индивидуальным наведением и способны поразить одновременно несколько целей на удалении сотен километров друг от друга.

С момента создания боевых ракет витала в воздухе идея их запуска с борта подводной лодки. В силу малой дальности ракет их необходимо было запускать вблизи цели. Для стрельбы по прибрежным целям в качестве носителя ракет идеально подходила подводная лодка. С помощью нее можно было скрытно доставить к берегу ракеты и выпустить их по противнику.

Первый удачный старт ракет из под воды был осуществлен в Германии. Согласно мемуарам генерала Вальтер Дорнбергера летом 1942 года рядом с Грейфсвалдер-Ойе проводились эксперименты с запуском пороховых ракет с подводной лодки. На палубу было установлено импровизированное стартовое устройство для запуска тяжелых реактивных снарядов, созданных для многоствольной установки "небельверфер". С глубины от 10 до 15 метров было произведено несколько залпов. Траектории полета ракет были безукоризненными; величина рассеяния уменьшилась, а расстояние полета даже несколько увеличилось - на начальном участке движения ракета шла сквозь воду, которая играла роль словно бы направляющего рельса. Но отдел вооружений военно-морского флота, отвечавший за создание всех видов оружия морского базирования, не одобрил дальнейшую разработку и работы были прекращены.

С осени 1943 года прорабатывались варианты удара ракетами ФАУ-2 по территории США. Подводная лодка должна была в течение тридцати дней со средней скоростью 12 узлов буксировать за собой три контейнера весом примерно 500 тонн. Их погружение и всплытие контролировались с подводной лодки. По прибытии к месту старта контейнеры слегка притапливались, и они занимали в воде вертикальное положение. Крышка верхнего люка откидывалась, и "А-4", стоя на платформе, которая стабилизировалась гироскопами, заправлялась, подготавливалась к старту и запускалась в полет. К середине декабря 1944 года была полностью подготовлена программа предварительных экспериментов, появились первые наброски конструкции. Но эвакуация Пенемюнде в первой половине февраля положила конец этому так и не состоявшемуся проекту.

После войны работы были продолжены в СССР и США. 26 января 1954 года вышло совместное постановление ЦК КПСС и Совмина СССР <О проведении проектно-экспериментальных работ по вооружению подводных лодок баллистическими ракетами дальнего действия и разработке на базе этих работ технического проекта большой подводной лодки с реактивным вооружением> (тема «Волна»). В результате данной программы была осуществлена разработка ракет Р11-ФМ с пуском ракет с подводной лодки в надводном положении. 16 сентября 1955 года с борта ракетной подводной лодки Б-67 был осуществлен первый в мире запуск БРПЛ. Реализация данной программы резко повысила возможности СССР по нанесению ядерных ударов по территории Западной Европы и США.

Параллельно эта тематика прорабатывалась и в США. В 1956 году была начата разработка ракеты Поларис с запуском с подводной лодки из подводного положения. А уже в сентябре 1958 года были проведены пуски с борта атомной подводной ракетной лодки «Джордж Вашингтон». Было положено начало подводной гонке вооружений.

Баллистические ракеты подводных лодок СССР и РФ

БРПЛ имеют широкий диапазон дальностей: от 150 км (ракета Р-11ФМ в составе комплекса Д-1, 1959) до 9100 км (ракета Р-29РМ в составе комплекса Д-9РМ, 1986). Ранние версии БРПЛ запускались из надводного положения и требовали длительной процедуры подготовки к пуску, что повышало уязвимость подводных лодок, вооружённых такими ракетами. В дальнейшем, с развитием технологии, был освоен пуск из подводного положения: «мокрый» -- с предварительным затоплением шахты и «сухой» -- без него.

Большинство БРПЛ, разработанных в СССР, использовали жидкое ракетное топливо. Такие ракеты были хорошо отработаны и имели отличные характеристики (Р-29РМ обладает наивысшим энергомассовым совершенством среди всех баллистических ракет мира), но у них есть несколько существенных недостатков, в первую очередь связанных с безопасностью эксплуатации. Топливом в таких ракетах является азотный тетраоксид в качестве окислителя и несимметричный диметилгидразин в качестве горючего. Оба компонента в высшей степени летучи, едки и токсичны. И хотя на ракетах применяется ампулизированная заправка, когда ракета поступает с завода-изготовителя уже заправленной, возможная разгерметизация топливных баков является одной из самых серьёзных угроз при их эксплуатации. Также велика вероятность инцидентов при выгрузке и транспортировке жидкотопливных БРПЛ для последующей утилизации. Поэтому начиная с 1960-х в СССР проводились работы по разработке твердотопливных БРПЛ. Однако, при имеющемся традиционном лидерстве СССР в разработке жидкостных ракет и отставании от США в разработке твердотопливных, на тот момент создать комплекс с приемлемыми характеристиками не удалось. Первая советская двухступенчатая БРПЛ на твёрдом топливе Р-31 в составе комплекса Д-11 поступила в опытную эксплуатацию лишь в 1980 г. Носителем двенадцати таких ракет стал единственный РПКСН К-140, получивший проектный индекс 667АМ («Yankee-II», или «Навага-М»).

Новая ракета Р-31 при стартовой массе 26,84 т, близкой к уже стоявшей к тому времени на вооружении жидкотопливной Р-29 (33,3 т), имела вдвое меньшую дальность (4200 км против 7800 км), вдвое меньший забрасываемый вес и низкую точность (КВО 1,4 км). Поэтому было решено в серийное производство комплекс Д-11 не запускать, и в 1989 он был снят с вооружения. Всего было выпущено 36 серийных ракет Р-31, из них 20 были израсходованы в процессе испытаний и практических стрельб. В середине 1990 года министерство обороны приняло решение об утилизации всех имеющихся ракет этого типа методом отстрела. С 17 сентября по 1 декабря 1990 все ракеты были успешно запущены, после чего 17 декабря 1990 лодка К-140 отправилась в Северодвинск для разделки на металл.

Следующая советская твердотопливная ракета -- трехступенчатая Р-39 -- получилась очень большой (длина 16 м и диаметр 2,5 м). Для размещения комплекса Д-19 в составе двадцати ракет Р-39 была разработана подводная лодка проекта 941 «Акула» (обозначение НАТО «Typhoon») особой компоновки. Этот самый большой подводный корабль в мире имел длину 170 м, ширину 23 м и подводное водоизмещение почти 34 000 мі. Первая подлодка этого класса вошла в состав Северного флота 12 декабря 1981. После ряда неудачных пусков, доводки ракеты и пробной эксплуатации на головном «Тайфуне» в 1984 комплекс Д-19 был принят на вооружение. Однако и эта ракета уступала по характеристикам американскму комплексу «Трайдент». Помимо размеров (длина 16 м против 10,2 м, диаметр 2,5 м против 1,8 м, вес со стартовой системой 90 т. против 33,1 т.) Р-39 обладала и меньшей дальностью -- 8 300 км против 11 000 и точностью -- КВО 500 м против 100 м. Поэтому уже с середины 1980-х была начата работа над новой твердотопливной БРПЛ для «Тайфунов» -- ракетой «Барк».

Практически все БРПЛ для подводных лодок ВМФ СССР и России были созданы в Конструкторском бюро машиностроения (КБМ, в настоящее время -- Государственный ракетный центр, КБ имени академика В. П. Макеева). Исключение составляют твердотопливные Р-31, разработанная КБ завода им. Фрунзе (ныне КБ «Арсенал») в Ленинграде и разрабатываемая в настоящее время Московским институтом теплотехники «Булава», призванная на замену ракете «Барк», работы над которой были прекращены.

РС-18, межконтинентальная баллистическая ракета

Одна из наиболее совершенных межконтинентальных баллистических ракет России.

История создания

Ракета РС-18 -- одна из наиболее совершенных межконтинентальных баллистических ракет России. Ее создание началось в 1967 году в конструкторском бюро МПО Машиностроения, расположенном в подмосковном Реутове.

Принята на вооружение 17 декабря 1980 года. Под эту ракету создавалась шахтная пусковая установка повышенной защищенности, а также новый комплекс средств преодоления противоракетной обороны. В январе 1981 года первые полки с УР-100Н УТТХ заступили на боевое дежурство. Всего было поставлено на боевое дежурство 360 шахтных пусковых установок РС-18.

Назначение

Ракетный комплекс РС-18 стратегического назначения выполнялся по тактико-техническому заданию Минобороны РФ. обширной кооперацией разработчиков и изготовителей составных частей комплекса при головной роли ФГУП «НПО машиностроения» - головного разработчика ракеты и комплекса.

Особенности

РС-18 - двухступенчатая ракета-носитель. Оснащена разделяющейся головной частью индивидуального наведения с 6 боевыми блоками. Максимальная дальность стрельбы - 10 тыс.км. Стартовая масса - 106 т. Масса головной части - 4,3 т.

МБР третьего поколения относятся к ракетам с жидкостными ракетными двигателями (ЖРД) и последовательным расположением ступеней. При их разработке использован опыт создания предшествующего поколения ампулизированных жидкостных ракет на компонентах топлива НДМГ + AT (несимметричный диметилгидразин и четырехокись азота - азотный тетраксид), размещенных в шахтных пусковых установках (в первую очередь, опыт создания ракет PC-10 и Р-36). Наряду с принципиальным новшеством - применением РГЧ типа MIRV к новым техническим решениям комплексов этого поколения следует отнести применение в ракетах автономной системы управления (СУ) с бортовой цифровой вычислительной машиной (БЦВМ), размещение ракет и пункта управления боевым ракетным комплексом в сооружениях высокой защищенности, возможность дистанционного переприцеливания перед пуском, наличие на ракетах более совершенных средств преодоления противоракетной обороны (ПРО), более высокую, боевую готовность, применение более совершенной системы боевого управления, повышенную живучесть комплексов. Были резко повышены характеристики боевой эффективности за счет увеличения точности ракет и общей мощности их боевого оснащения.

Третьей из поступивших на вооружение РВСН ракет третьего поколения стала МБР легкого типа УР-100Н или РС-18А по классификации СНВ-1. В свою очередь МБР УР-100НУ (РС-18Б) является ее модификацией - ракетой с улучшенными тактико-техническими характеристиками (УТТХ). На новой ракете была повышена надежность работы двигательных установок, улучшились характеристики системы управления и боевого оснащения. Общая дальность полета ракеты немного возросла. Значительно упростилась эксплуатация ракетных комплексов при одновременном повышении стойкости к поражающим факторам ядерного взрыва. Ракета отличается простотой конструкции и высокой надежностью ряда систем.

МБР УР-100НУ -- двухступенчатая ракета, выполненная по схеме «тандем» с последовательным разделением ступеней в полете. Все топливные баки -- несущей конструкции. Корпус первой ступени состоит из хвостового, топливного отсеков и переходника. Корпус второй ступени состоит из короткого хвостового и топливного отсеков.

Двигательная установка первой ступени состоит из четырех маршевых ЖРД с поворотными соплами, выполненных по замкнутой схеме. Каждый двигатель закреплен шарнирно на раме в хвостовом отсеке и может отклоняться от нейтрального положения в соответствующей плоскости. На второй ступени устанавливался один маршевый однокамерный и один рулевой четырехкамерный жидкостные ракетные двигатели. К верхней части второй ступени корпуса ракеты крепится агрегатно-приборный блок разделяющейся головной части, в котором размещаются приборы инерциальной системы управления и жидкостная двигательная установка разведения шести боевых блоков мощностью по 550 кт каждый. Боевые блоки прикрыты обтекателем. На ракете установлена автономная инерциальная система управления с БЦВМ. При несении боевого дежурства все важнейшие параметры ракеты непрерывно контролируются. Высокие характеристики СУ подтвердились при пусках. Характеристика точности стрельбы - круговое вероятное отклонение (КВО) составило 380 м. Боевое оснащение УР-100НУ может поражать высокозащищенные и прикрытые системой ПРО точечные цели. УР-100НУ имеет газодинамическую схему старта, при которой она выходит из транспортно-пускового контейнера (ТПК), размещенного в шахтной ПУ, за счет действия силы тяги двигательной установки первой ступени. Конструкция ТПК позволяет производить техническое обслуживание систем ракеты, заправку и слив компонентов топлива после установки ракеты в шахту.

Вывод

В этой научной работе я много нового и интересного узнал о баллистике, баллистическом движении тел, о полёте ракет, нахождении их координат в пространстве.


Подобные документы

  • Изучение истории возникновения баллистического движения. Особенности оформления баллистики, как науки о движении снарядов, мин, пуль, неуправляемых ракет при стрельбе. Законы движения Исаака Ньютона. Характеристика применения баллистики на практике.

    презентация [1,4 M], добавлен 24.05.2010

  • Баллистическое проектирование боеприпасов ствольной артиллерии. Модуль внутренней и внешней баллистики. Критерии оптимизации, система ограничений и вектор оптимизируемых параметров снаряда. Моделирование и разработка неуправляемых реактивных снарядов.

    курсовая работа [1,5 M], добавлен 15.02.2012

  • Изучение места и роли арсеналов, баз и складов в системе обеспечения войск ракетами и боеприпасами. Планирование территории базы, организационная структура основных подразделений. Производственная и операционная деятельность артиллеристских арсеналов.

    презентация [98,5 K], добавлен 22.10.2013

  • Понятие о меткости стрельбы и поражаемой зоне. Меры рассеивания и зависимость между ними. Причины, вызывающие разнообразие углов бросания и направления стрельбы. Явления разбрасывания пуль при стрельбе из одного и того же оружия в одинаковых условиях.

    разработка урока [33,4 K], добавлен 10.08.2013

  • История возникновения огнестрельного оружия. Изобретение фитильного замка и аркебузы с фитильным замком. Использование энергии пороха для метания пуль и снарядов. Оружие, в котором используются принципы силы давления газов при сгорании вещества.

    презентация [1,9 M], добавлен 31.01.2014

  • История развития снайперских винтовок. Список российских снайперских винтовок. Расчет внутренней баллистики для нескольких патронов разного калибра и массы при различных условиях. Основные параметры, характеризующие качество снайперской винтовки.

    курсовая работа [1,3 M], добавлен 19.06.2012

  • Штурмовой автомат как основное наступательное оружие современной пехоты. Главные этапы проектирования штурмовой винтовки, обеспечивающей пробитие бронежилета 4-го класса на дальности 250 метров. Особенности проектирования ствола, этапы расчета баллистики.

    курсовая работа [3,6 M], добавлен 23.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.